Formula/Conversion Table for Water Treatment Plant and Water Distribution Systems

1 foot = 12 inches	1 MGD = 1.55 cfs	1 grain / gal = 17.1 mg/L	1 minute = 60 seconds
1 yard = 3 feet	1 cu. yd. = 27 cu. ft.	1 gram = 1,000 mg	1 hour = 60 minutes
1 meter = 3.28 feet	1 cu. ft. = 7.48 gal	1 kg = 1,000 gram	1 day = 1,440 min
1 mile = 5,280 feet	1 gal = 8.34 lbs	1 liter = 1,000 ml	1% = 10,000 mg/L
1 sq. ft. = 144 sq. in.	1 cu. ft. = 62.4 lbs	1 gal = 3.785 liters	1 mg/l = 1 ppm
1 acre = 43,560 sq. ft.	1 kg = 2.2 lbs	1 psi = 2.31 ft. of water head	1 hp= 0.746 kW
1 acre-ft. = 43,560 cu. ft.	1 lb. = 454 g	1 ft. of water head = 0.433 psi	1 hp = 33,000 ft. lbs/min
1 acre-ft. = 325,829 gallons			1kW = 1,000 Watts

Legend: L = length

W = width

H = height

R = radius

D = diameter

 $\pi = 3.14$

g = gram

Alkalinity Concepts

Phenolphthalein Alkalinity, mg/L as CaCO₃ =

(Titrant Volume A, ml) (Acid Normality) (50,000) Sample Volume, ml

Total Alkalinity, mg/L as CaCO₃ =

(<u>Titrant Volume B, ml</u>) (<u>Acid Normality</u>) (<u>50,000</u>) Sample Volume, ml

Alkalinity Relationships: Alkalinity, mg/l as CaCO₃

	· · · · · · · · · · · · · · · · · · ·	, 0,	
Result of	Bicarbonate	Carbonate	Hydroxide
Titration	Alkalinity as	Alkalinity as	Alkalinity as
	CaCO₃	CaCO₃	CaCO₃
P = 0	Т	0	0
P < ½ T	T – 2P	2P	0
P = ½ T	0	2P	0
P > ½ T	0	2(T – P)	2P – T
P = T	0	0	T

Key: P – phenolphthalein alkalinity; T – total alkalinity

Area, Circumference and Volume

Area, square feet (ft²)

Circle: $A = 3.14 \times R^2$ or $A = 0.785 \times D^2$

Cylinder, (total outer surface area): $A = (2 \times 3.14 \times R^2) + 3.14 \times D \times H$ or $A = (2 \times 0.785 \times D^2) + (3.14 \times D \times H)$

Cylinder (pipe): A = 3.14 x D x L Square or Rectangle: A = L x W

<u>Circumference</u> (Perimeter), linear feet

Circle = $3.14 \times D$

Rectangle = $(2 \times L) + (2 \times W)$

Volume, cubic feet (ft³):

Cylinder: $V = 3.14 \times R^2 \times H$ or $V = 0.785 \times D^2 \times H$

Rectangle: $V = L \times W \times H$

Sum of All Terms or Measurements Average (arithmetic mean) = **Number of Terms or Measurements**

> Sum of All Averages **Number of Averages**

Annual Running Average =

Chemical Feed, Mixing and Solution Strengths

Chemical Feed, lbs/day = (Dry Chemical, g) (60 min/hr.) (24 hr./day)

(454 g/lb.) (Time, min) (Dry Chemical Feeder)

Chemical Feed, lbs/day = (Polymer Conc., mg/l) (Volume Pumped, ml) (60 min/hr.) (24 hr./day)

(Time Pumped, min) (1,000 mg/l) (1,000 mg/gm) (454 gm/lb.) (Polymer Feeder)

Desired feed flow, gpd

Maximum feed flow, gpd x 100% Chemical feed pump setting, % stroke =

(Flow, MGD) (Dose, mg/L) (3.785 L/gal) (1,000,000 gal/MG) Chemical Feed Pump Setting, mL/minute =

(Liquid alum, mg/ml) (1,440 min/day)

Volume Pumped, gal Chemical Flow, gpm = (Pumping Time, hr) (60 min/hr)

Desired feed rate, lbs./day Feeder setting, % = x 100% or Maximum flow, gpd Maximum feed rate, lbs./day

Chlorine required, lbs/day Hypochlorite Strength, % = (Hypochlorite solution needed, gal/day) (8.34 lbs./gal)

Lbs. of Chemical = (amount of solution needed, gal) (solution strength, as a decimal) (8.34 lbs/gal)

(Polymer Solution, %) (gal of solution) Liquid Polymer, gal = Supplied Liquid Polymer, %

(Amount 1, gals) (Strength 1, %) + (Amount 2, gals) (strength 2, %) Mixture Strength, % =

(Amount 1, gals) + (Amount 2, gals)

_(Dry Polymer, lbs) (100%)___ Polymer Solution, % = (Dry Polymer, lbs + Water, lbs)

(hypo, gal) (hypo,%) – (hypo, gal) (desired hypo,%) Water added for hypochlorite sol'n, gal =

Desired hypo, %

(0.2 x Iron content, mg/L) + (2.0 x Manganese content, mg/L)Potassium Permanganate Dose, mg/L =

Demineralization

Membrane Area, sq ft = (Number of Vessels) (Number of Elements per Vessel) (Surface Area per Element)

Mineral Rejection, % =
$$\left(1 - \frac{\text{Product TDS Concentration, mg/L}}{\text{Feedwater TDS Concentration, mg/L}}\right) \times 100\%$$

Recovery, % = $\frac{\text{Product Flow, MGD}}{\text{Feed Flow, MGD}} \times 100\%$

Detention Time

Disinfection

Chlorine Demand, mg/L = Chlorine Dosage, mg/L - Chlorine Residual, mg/L

Chlorine Dosage, mg/L = Chlorine Demand, mg/L + Chlorine Residual, mg/L

Chlorine Residual, mg/L = Chlorine Dosage, mg/L - Chlorine Demand, mg/L

CT calculation, time = (Disinfectant Residual Concentration, mg/L) (Time) Time units must be compatible

Electrical

Feed Rate, 100% chlorine

Feed Rate, lbs/day = (Dosage, mg/L) (Flow, MGD) (8.34 lbs/gal)

Ibs/day Chemical Feed @ 100% Purity Flow, 8.34 MGD Dose, mg/L

Using the Davidson Pie Chart

- <u>To find the quantity above the horizontal line:</u> Multiply the 3 pie wedges below the line together. Next, divide by the % purity as a decimal (i.e., 65% = 0.65).
- To solve for one of the pie wedges below the horizontal line: Divide the 2 bottom pie wedges into the quantity of lbs above the horizontal line. Next, multiply by the % purity as a decimal (i.e., 65% = 0.65).
- The given units must match the units shown in the pie wheel.
- Dose = mg/L or PPM

Filtration

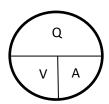
Backwash Rise Rate, inches/min = (Backwash Rate, gpm/sq. ft.) (12 in/ft)
7.48 gal/cu. ft.

Backwash Pumping Rate, gal/min = (Backwash Rate, gpm/sq. ft.) (Filter Surface Area, sq. ft.)

Backwash Water Required, gal = (Backwash Flow, gpm) (Backwash Time, min)

Backwash Water Used, % = Backwash Water, gal Water Filtered, gal x 100%

Filtration Rate or Backwash Rate, gpm/sq ft = Flow Rate, gpm
Filter Surface Area, sq ft


Hydraulic or Surface Loading Rate, gpd/sq ft = $\frac{Total Flow Applied, gpd}{Surface Area, sq ft}$

Unit Filter Run Volume, gal/sq ft = Total Volume Filtered, gal Filter Surface Area, sq ft

Unit Filter Run Volume, gal/sq ft = (Filtration Rate, gpm/sq. ft.) (Filter Run, hr) (60 min/hr)

Flow Rates and Velocity (pipeline, channel or stream)

Flow Rate, cfs = (Area, sq. ft.) (Velocity, ft/sec) or Q = V x A

Where:

Q = flow rate, cfs V = velocity, fps A = area, ft²

Flow Rate, gpm = (Area, sq. ft.) (Velocity, ft/sec) (7.48 gal/cu ft) (60 sec/min) or Q = V x A x 7.48 x 60

Velocity, fps =
$$\frac{\text{Flow Rate, cfs}}{\text{Area, sq ft}} \quad or \quad \frac{\text{Distance, ft}}{\text{Time, seconds}}$$

Fluoridation

Fluoride Ion Purity, % = Molecular Weight of Fluoride

Molecular Weight of Compound x 100%

Flushing Time

Flushing Time, sec = Volume, cu ft Flow, cfs or (Length of Pipeline, ft) (Number of Flushing Volumes)

Velocity, ft/sec

Laboratory

Dilute to ml = (Actual Weight, gm) (1,000 ml)
Desired Weight, gm

Langelier Saturation Index (L.S.I.) = pH - pH_s

Leakage and Pressure Testing Pipelines

Leakage, $gpd = \frac{Volume, gal}{Time, days}$

Asbestos Cement (AC) or Ductile Iron (DI) Pipe, gpd/mi-in = Leak Rate, gpd (length, miles) (Diameter, in)

Plastic Pipe Leakage, gph/100 joints = $\frac{\text{Leak Rate, gph}}{\text{(Number of Joints } \div 100)}$

Test Pressure, psi = Normal Pressure + 50% or 150 psi, whichever is greater

Loading

Weir Overflow Rate, $gpd/ft = \frac{Total Flow, gpd}{Length of Weir, ft}$

Parts per million (PPM) or milligrams per liter, (mg/L)

Dosage, PPM or mg/L = $\frac{\text{Pounds of Chemical, lbs}}{\text{(Water Volume, MG) (8.34 lbs/gal)}}$

Pressure and Head

Head (Height of Water), ft = (Pressure, psi) (2.31 ft/psi) or Head (Height of Water), ft = $\frac{Pressure, psi}{0.433 \text{ psi/ft}}$

Pressure, psi = $\frac{\text{Head, ft}}{2.31 \text{ ft/psi}}$ or Pressure, psi = (Head, ft) (0.433 psi/ft)

Pumps, Motors and Horsepower

Water Horsepower (WHP) = $\frac{\text{(Flow, gpm) (Head, ft)}}{3,960}$

Brake Horsepower (BHP) = (Flow, gpm) (Head, ft)
(3,960) (Pump Efficiency as decimal)

Motor Horsepower (MHP) = $\frac{\text{(Flow, gpm) (Head, ft)}}{\text{(3,960) (Pump Efficiency as decimal) (Motor Efficiency as decimal)}}$

Pumping Rate, gpm = Volume, gal
Time, min

Total Dynamic Head, ft = Static Head, ft + Discharge Head, ft + Friction Loss, ft

Wire-to-Water Efficiency, $\% = \frac{\text{Water Horsepower, WHP}}{\text{Power Input, (Brake Hp or Water Hp)}} \times 100\%$

Wire-to-Water Efficiency, % = (Flow, gpm) (Total Dynamic Head, ft) (Voltage, volts) (Current, amps) (5.308) x 100%

Kilowatt-hr/day = (Motor, Hp) (Motor Run Time, hr/day) (0.746 kW/Hp)

Softening Processes

Hardness

Total Hardness, mg/l as CaCO₃ = Calcium Hardness, mg/l as CaCO₃ + Magnesium Hardness, mg/l as CaCO₃

If alkalinity is greater than total hardness:

Carbonate Hardness, mg/l as CaCO₃ = Total Hardness, mg/l as CaCO₃ and, Noncarbonate Hardness, mg/l as CaCO₃ = 0

If alkalinity is <u>less</u> than total hardness:

Carbonate Hardness, mg/l as $CaCO_3$ = Amount of total hardness up to the Total Alkalinity, mg/l as $CaCO_3$, or Noncarbonate Hardness, mg/l as $CaCO_3$ = Total Hardness, mg/l as $CaCO_3$ = Total Hardness, mg/l as $CaCO_3$ = Total Alkalinity, mg/l as $CaCO_3$

Lime / Soda Ash Softening

Note: If hydrated lime $(Ca(OH)_2)$ is used instead of quicklime (CaO), substitute 74 for 56 in equations below.

Lime Feed, mg/L =
$$\frac{(A + B + C + D) (1.15)}{Purity of Lime, as a decimal}$$

A = Carbon dioxide (CO₂) in source water: mg/l as CO₂ x (56/44) B = Bicarbonate alkalinity removed in softening: source water, mg/l as CaCO₃ – softened water, mg/l as CaCO₃ x (56/100) C = Hydroxide alkalinity in softener effluent: mg/l as CaCO₃ x (56/100) D = Magnesium removed in softening: source water mg/l x (56/24.3)

Excess Lime, mg/I = (A + B + C + D) (0.15)

Soda Ash, dosage to remove noncarbonated hardness:

Soda Ash (Na_2CO_3) Feed, mg/l = $(Noncarbonate Hardness, mg/l as <math>CaCO_3)$ (106/100)

Carbon Dioxide, dosage to recarbonate:

Total CO₂ Feed, mg/I = (excess lime, mg/I) $(44/56) + (Mg^{2+} residual, mg/I) (44/58.3)$

Lime Feeder Setting, lbs/day = (Flow, MGD) (Dose, mg/l) (8.34 lbs/gal)

Feed Rate, lbs/min = Feeder Setting, lbs/day
1,440 min/day

Ion Exchange Softening

Hardness, grains/gallon = (Hardness, mg/l) (1 grain/gallon) 17.1 mg/l

Exchange Capacity, grains = (Media Volume, cu ft) (Removal Capacity, grains/cu ft)

Water Treated, gal = Exchange capacity, grains

Hardness Removed, grains/gallon

Unit Operating Time, hrs = Water Treated, gallons

(Avg Daily Flow, gpm) (60 min/hr)

(Total Flow, gpd) (Desired Finished Water Hardness, gpg)

Bypass Flow, gpd = Source Water Hardness, gpg

Bypass Water, gals = (Softener Capacity, gal) (Bypass Flow, gpd)
Softener Flow, gpd

Total Flow, gallons = Softener Capacity, gal + Bypass Water, gal

Temperature Conversions

Degrees Celsius, °C = (°F - 32) (0.555) or
$$\frac{(°F - 32)}{1.8}$$

Degrees Fahrenheit,°F = (°C x 1.8) + 32

Turbidity

Water Loss

Water Production

Water Treatment Plant % capacity

Abbreviations:

cfs	Cubic feet per second	m	Meter
DO	Dissolved oxygen	mg	Milligrams
ft	Feet	mg/L	Milligrams per liter
fps	Feet per second		Pounds
GFD	Gallons per day per square foot	MGD	Million gallons per day
gm	Grams	mL	Milliliter
gpd	Gallons per day	ppb	Parts per billion
gpg	Grains per gallon	ppm	Parts per million
gpm	Gallons per minute	psi	Pounds per square inch
gph	Gallons per hour	Q	Flow
gr	Grains	SS	Settleable solids
hp	Horsepower	TTHM	Total trihalomethanes
in	Inch	TOC	Total organic carbon
kg	Kilogram	TSS	Total suspended solids
kW	Kilowatt	VS	Volatile solids
kWh	Kilowatt-hour	W	Watt