

50 South Belcher Road, Suite 116 Clearwater, Florida 33765 PH 813.792.4820 www.geosyntec.com

12 June 2020

Mr. David Meyers Florida Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2400

Subject: Groundwater Sampling Trip Report

Florida State Fire College 11655 NW Gainesville Road Ocala, Marion County, Florida

ERIC_6494

FDEP Contract HW550, Task Assignment SOL-0A087, Subtasks 4 and 5

Dear Mr. Meyers,

Geosyntec Consultants, Inc. (Geosyntec) has prepared this Trip Report for the Florida Department of Environmental Protection (FDEP) to document activities associated with groundwater, water supply, and filtration system sampling at the Florida State Fire College (FSFC; the "Site") located at 11655 NW Gainesville Road, Ocala, Marion County, Florida. The objective of this investigation is to assess the extent of groundwater that was previously documented to be affected with per- and polyfluoroalkyl substances. Geosyntec completed the activities under Task Assignment SOL-0A087.

On 8 June to 11 June 2020, Geosyntec completed the following activities at FSFC:

- collected groundwater samples from 11 shallow (water-table) monitoring wells;
- collected groundwater samples from 11 deep (up to 120 feet) monitoring wells;
- collected two water samples from the FSFC Supply Well;
- collected one water sample from the FSFC Fire Well;
- collected five water samples from supply wells located on the adjacent Lhoist property;
- staged and filled 10, 55-gallon drums with investigation-derived waste; and
- completed synoptic water level gauging of all groundwater monitoring wells sampled.

The monitoring well locations, screen intervals, analyses, sampling methods, rationale, and criteria are summarized in **Table 1**. Well locations are depicted on **Figure 1**. Field notes are included in **Attachment A**, and a photographic log documenting representative activities is included as **Attachment B**.

Mr. David Meyers 12 June 2020 Page 2

If you have any questions or comments or require additional information, please contact Eric Sager at 727-330-9952.

Sincerely, Geosyntec Consultants, Inc.

JJ Hollingshead Scientist

Eric Sager, P.G. Principal Geologist

Copy: Mike Lodato, Geosyntec Todd Kafka, Geosyntec

Attachments

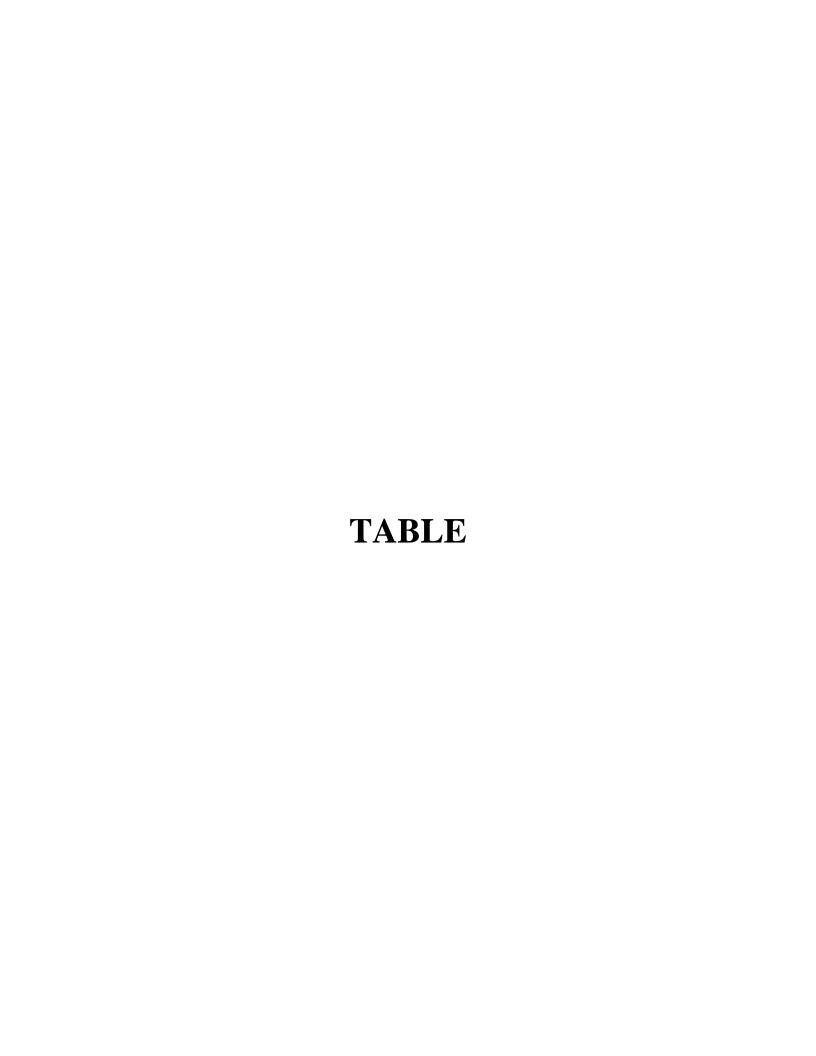
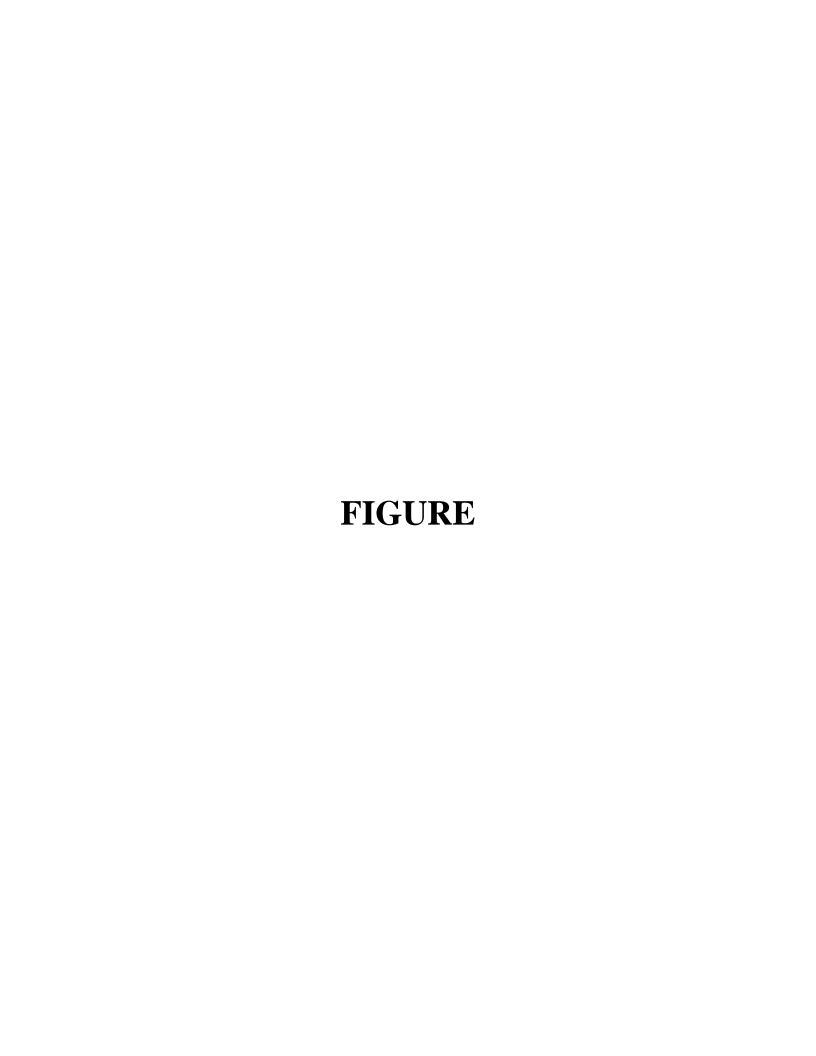


Table 1: Groundwater Monitoring Well Sampling Locations, Matrices, Analytes, Rationale, and Criteria Florida State Fire College June 2020

Location ID	Sample ID	Matrix	Depth (ft BLS)	Sample Method	Analyses	Rationale	Criteria
		Monitor	ing Well San				
DW-1 (FACID#429101718)	CCDW-1 (90-95)		90-95				
MW-3 (FACID#429101718)	CCMW-3 (60-80)		60-80				
DEPMW-1 (100-120)	DEPMW-1 (100-120)]	100-120				
DEPMW-2 (35-55)	DEPMW-2 (35-55)]	35-55				
DEPMW-3 (100-120)	DEPMW-3 (100-120)]	100-120				
DEPMW-4 (100-120)	DEPMW-4 (100-120)]	100-120				
DEPMW-5 (50-70)	DEPMW-5 (50-70)		50-70				
DEPMW-6 (100-120)	DEPMW-6 (100-120)	1	100-120				
DEPMW-7 (30-50)	DEPMW-7 (30-50)	1	30-50				
DEPMW-8 (100-120)	DEPMW-8 (100-120)]	100-120				
DEPMW-9 (40-60)	DEPMW-9 (40-60)		40-60				
DEPMW-10 (100-120)	DEPMW-10 (100-120)	Ĭ	100-120	Submersible			
DEPMW-11 (30-50)	DEPMW-11 (30-50)	1	30-50	Pump			
DEPMW-12 (100-120)	DEPMW-12 (100-120)	1	100-120				
DEPMW-13 (40-60)	DEPMW-13 (40-60)	1	40-60				Provisional
DEPMW-14 (100-120)	DEPMW-14 (100-120)]	100-120			Site-Wide Groundwater	Groundwater
DEPMW-15 (35-55)	DEPMW-15 (35-55)	Groundwater	35-55		PFAS	Monitoring	Cleanup Target
DEDMW 16 (20.50)	DEPMW-16 (30-50)]	30-50			Wontoring	Levels
DEPMW-16 (30-50)	DEPMW-16 (30-50) DUP]	30-30				Levels
DEDMW 17 (100 120)	DEPMW-17 (100-120)	Ī	100-120				
DEPMW-17 (100-120)	DEPMW-17 (100-120) DUP	Ī	100-120				
DEPMW-18 (100-120)	DEPMW-18 (100-120)	Ī	100-120				
DEPMW-19 (45-65)	DEPMW-19 (45-65)]	45-65				
DEPMW-20 (30-50)	DEPMW-20 (30-50)]	30-50				
FSFC Supply Well	FSFC Supply Well (Pre-filter)]					
rsrc supply well	FSFC Supply Well (Post-filter)]					
FSFC Fire Well	FSFC Fire Well]					
Well #1 (Lhoist property)	Well #1						
Well #4 (Lhoist property)	Well #4	1	Unknown	From Tap			
Well #5AC (Lhoist property)	Well #5AC						
Well #8 (Lhoist property)	Well #8	1					
wen #8 (Lnoist property)	Well #8 DUP]					
CC Supply Well (Lhoist property)	CC Supply Well						


Table 1: Groundwater Monitoring Well Sampling Locations, Matrices, Analytes, Rationale, and Criteria Florida State Fire College June 2020

	Laboratory Quality Assurance/Quality Control Samples											
Sample Type	Sample ID	Matrix	Equipment Sampled	Analyses	Rationale	Criteria						
Equipment Blanks (ratio of 1:10) Field Reagent Blanks (1 per cooler)	EQB 1		Submerisble Pump Assess potential a contamination									
	EQB 2		Submerisole 1 ump		monitoring well sampling equipment							
	FRB 3	Water	N/A	PFAS		N/A						
	FRB 4				Evaluate potential impact of sample cross-contamination							
	FRB 5											

Notes:

- 1. ft BLS indicates feet below land surface.
- 2. PFAS indicates per- and polyfluoroalkyl substances.
- 3. N/A indicates not applicable.

- 4. EQB indicates equipment blank.
- 5. FRB indicates field reagent blank.
- 6. DUP indicates duplicate.

11655 NW Gainesville Road Ocala, Marion County, Florida

Date: June 01, 2020

ATTACHMENT A

Field Forms

Geosyntec onsultants

Water Level Measurement Field Form

Site:	Florida State 1	Fire College (FSFC)
-------	-----------------	---------------------

Project No.:

FR3511C/04

Date	6/10/20-6/11/20
Weather	Hot & hum: d
Initials	ਹੈਜ! -

Page	/ of	(

		Control Point		Measurement	
Well ID	Status	Monitoring Point	Time of Measurement	Depth to Water feet	Depth to Bottom feet
CCDW-1	Goed	N	6737(6/4)	65.19	NM
CCMW-3	4.5		0739(6/11)	68.35	
DEPMW-1			1000(6/10)	40.39	
DEPMW-2			1003(40)	40.79	MA KE
DEPMW-3			1030 (6/10)	68.35	
DEPMW-4			0727(6/11)	64.59	
DEPMW-5			0725 (6/11)	64.55	
DEPMW-6			0733(6/11)	35.46	
DEPMW-7			0732 (6/4)	36.03	
DEPMW-8			1315 (6/10)	49.52	
DEPMW-9			(318 (6/10)	49.38	8
DEPMW-10		1	0755 (6/11)	35.69	i k
DEPMW-11		k	0753(6/11)	36,32	
DEPMW-12		M.	0748 (6/11)	51.48	
DEPMW-13			0749 (4/11)	51.57	
DEPMW-14		W.	0902 (4/11)	39.09	M .
DEPMW-15			0900 (6/11)	39,49	
DEPMW-16			0912 (1/11)	34.85	
DEPMW-17			0915 (6/11)	34.45	
DEPMW-18	-	1	0720 (6/4)	55.21	
DEPMW-19		15	0719 (6/11)	55.42	
DEPMW-20	Grood	Al	1540 (4/11)	38-60	NM

votes			

FIELD DRUM INVENTORY TRACKING LOG

Project Name: Florida State Fire College

Drum Number	Generation Date	Content % Full	Contents (soil, development water, purge water, etc.)	Source Location (Well #, Boring #, etc.)
	6/08/20	90	DW WAter	DEPMW-18,19,10,11,6,7
2	6/08/20	98		((
3	6/09/20	90		DEPMW-4,5,12,13,CC
4	6/09/20	90		DEP MW-4,5,12,13,CC MW-3,CCDW-1
5	6/09/20	70		((
ها ا	6/10/20	90		DEPHW-3,8,9,1,2,20
7	6/6/20	90		
8	6/10/20	90		((
9	6/4/20	90	A	DEPMW-14,15,16,17
10	6/4/20	90	IDW Water	((

DEP-SOP-001/01 FS 220 Groundwater Sampling Form FD 9000-24

SITE NAME: Florida State Fire College SITE LOCATION: 11655 NW Gainesville Rd, Ocala, FL											
WELL NO: DW-1 CFA	CIDHI	1291017	18)	SAMPLE ID:	e DW-1	(90-95)			DATE: 6 /ò	9/2020)
				PUF	RGING DAT	Α				7	
WELL DIAMETER (inches): WELL VOLUME PURGE: 1 WELL (only fill out if applicable)		TUBING DIAMETER (inch DTAL WELL DEP		EPTH TO WATE		feet to 9		STATIC DEPTH (feet): 65	TO WATER	PURGE PUMP OR BAILER:	ESP
EQUIPMENT VOLUME PURGE: 1 (only fill out if applicable)			UME + (TUBING)		TUBING LEN	GTH) + FLOW C	ELL VOLUME feet)+	0.1	gallons	#:	
INITIAL PUMP OR TUBING		FINAL PUMP OF	or contract of the contract of		PURGING	50 W	PURGING	0,1	TOTAL VOLUM		
DEPTH IN WELL (feet): ~ 6	7	DEPTH IN WELL	-	5	INITIATED AT:	1655	ENDED AT:	724	PURGED (gallo	00	
TIME VOLUME PURGED (gallons)	VOLUME PURGED (gallens)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP _* (°C)	COND (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:
1700 5	5	0.5	73.82	9.67	24.02	2,069	53.36		Hwhite		
1715 15	20	1,0	73.82	9.44	24.03	2,044	44,05	524	Itwhite		
1720 5	25	1.8	7382	9.64	2397	2,004	62.47	426	It whole	215.2	
1722 2	27	1.0	73.14	9,59	23.95	1999	42.75	404	It white		
1724 2	29	1.0	73.82	9.56	23.93	1,988	42.00	430	Italite	222.6	
WELL CAPACITY (Gallons Per Foo	st): 0.75" = 0.02	1" = 0.04:	1 25" - 0.06:	2" - 0.16: 3" -	0.37; 4" = 0.65	5" - 1 02·	6" = 1 47: 12"	= 5.88			
TUBING INSIDE DIA. CAPACITY (Gal/Ft): 1/8" =	0.0006; 3/16"	= 0.0014; 1/4"	= 0,0026; 5/1	6" = 0.004; 3/8	3" = 0.006; 1/2		1" = 0.016			
					PLING DA	ГА					
SAMPLED BY (PRINT) / AFFILIATION J. Hollingshead/Geosyn			SAMPLER(S) SI	SNATURES:				SAMPLING INITIATED AT:	1725	SAMPLING ENDED AT:	726
PUMP OR TUBING DEPTH IN WEL	L (feet): ~ 7	5	SAMPLE PUMP		. per minute): 3	787	TUBING MATI	RIAL CODE:	HDPE		
	\sim	(pump)	FIELD-FILTERED	D: Y N ent Type:	FILTER SIZE:	μm		DUPLICATE:	Y)	
SAMPLE CONTAINE	R SPECIFICATIO	ON		SAM	IPLE PRESERVA	TION		1) ANALYSIS	SAMPLING EQUIPMENT	SAMPLE PUMP FLO
SAMPLE ID # CODE CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA	TIVE USED	(m		FINAL Ph	AND/OR METHOD EQUIPMEN		CODE	RATE (mL per mi
W-1(90.45) 2	HDPE	125 mL	none 250 9.54				9.56	PFAS	- 8321B	ESP	3,78
											21
REMARKS: # No Odo	13; 191	pm was	lowest	tchioso	rble flo	wrote					
		CG = Clear Glass		ylene; PP = F	olypropylene; 5	= Silicone, T		Other (Specify)			
	fter Peristallic Pu Reverse Flow Pe	ristaltic Pump;	SM = Straw M	ethod (Tubing Gr	avity Drain);	VT = Vacuum Tr		taltic Pump er (Specify)			

<sup>The above do not constitute all of the information required by Chapter 62-160, F.A.C.

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2); optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)</sup>

DEP-SOP-001/01

FS 220 Groundwater Sampling

Form FD 9000-24

S473 2 2 0.5 70.92 0.67 2447 844 873 45.00 17.0 0.686706 0.70 1.554 0.5 1.5	SITE NAME:	Florida Stat	e Fire Colleç	ge			SITE LOCATION: 11655 NW Gainesville Rd, Ocala, FL							
WELL CAPACITY (Gallois Paul Paul Paul Paul Paul Paul Paul Paul	WELL NO: M	W-3(FA	CID#4	29/017/18)									
DAMETER (orbines)						PUF	RGING DAT	ΓΑ						
WELL CAPACITY (Claims Per Foot) 0.75 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00; 2 *= 0.00; 125 *= 0.00;	DIAMETER (inch	es):		DIAMETER (inch	36"	ンリ	DEPTH: (a)	feet to X	5 feet	STATIC DEPTH	TO WATER			
EQUIPMENT VOLUME PURGES: 1 EQUIPMENT VOLUME (TUBING CAPACITY X TUBING LENGTH) + PLON CELL VOLUME (TUBING CAPACITY (Galloris Purpose))	WELL VOLUME	PURGE: 1 WEL		OTAL WELL DEP	TH - STATIC D	DEPTH TO WATE	R) X WELLC	APACHY		4.0	1			
SAMPLE DI SAMPLE DI SAMPLE DE SAMP			1 EQUIPMENT V	OL = PUMP VOL	UME + (TUBING	CAPACITY X	TUBING LE			1				
DEPTH IN WELL (GROB)	INITIAL PLIMP O	R TURING												
TIME PURCED PURCED OF COLOR OF	DEPTH IN WELL	(feet):	0			0 72.5	100		ENDED AT:	600)	
1556 1,5	TIME	PURGED	VOLUME PURGED				TEMP. (°C)	COND. (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or %) saturation)				NOTES:	
10	1543	2	2	0.5	70,92	6.67	2447	866	44.16	38.3	white	153.1	4	
10	1556	6.5	8.5	0.5	70.94	6.81	24.46	873	45.00		dear	135,5		
MELL CAPACITY (Galions Per Fcot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.08; 2" = 0.18; 3" = 0.37; 4" = 0.65; 5" = 1.02; 6" = 1.47; 12" = 5.88 MELL CAPACITY (Galions Per Fcot): 0.75" = 0.02; 1" = 0.04; 1.25" = 0.08; 2" = 0.18; 3" = 0.03; 4" = 0.05; 5" = 0.004; 39" = 0.006; 12" = 0.016 SAMPLED BY (PRINT) / AFFILIATION:	1558	1.0	9.5	0.5	70.91				43.87		clear	133,9		
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER BY (PRINT) / AFFILIATION: PUMP OR TUBING DEPTH IN WELL (feet): 72.5 SAMPLE PUMP FLOW RATE (mL per minute): 19.3 TUBING MATERIAL CODE: HDPE FIELD FILTER SIZE: µm Filter SIZE: µm Filter SIZE: µm SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE ID CODE TOTAL VOL ADDED IN FIELD FINAL Ph FINAL Ph FINAL Ph FINAL Ph FINAL Ph SAMPLING ENDED AT: 16.00 SAMPLING EQUIPMENT CODE RAT (mi. per	1600	1.0	10.5	0,5	70.90	6.95	24,42	874	45,77	16,3	clens	131.9		
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER(S) SIGNAT									C.					
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER(S) SIGNAT														
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER(S) SIGNAT														
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER BY (PRINT) / AFFILIATION: PUMP OR TUBING DEPTH IN WELL (feet): 72.5 SAMPLE PUMP FLOW RATE (mL per minute): 19.3 TUBING MATERIAL CODE: HDPE FIELD FILTER SIZE: µm Filter SIZE: µm Filter SIZE: µm SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE ID CODE TOTAL VOL ADDED IN FIELD FINAL Ph FINAL Ph FINAL Ph FINAL Ph FINAL Ph SAMPLING ENDED AT: 16.00 SAMPLING EQUIPMENT CODE RAT (mi. per														
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER BY (PRINT) / AFFILIATION: PUMP OR TUBING DEPTH IN WELL (feet): 72.5 SAMPLE PUMP FLOW RATE (mL per minute): 19.3 TUBING MATERIAL CODE: HDPE FIELD FILTER SIZE: µm Filter SIZE: µm Filter SIZE: µm SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE ID CODE TOTAL VOL ADDED IN FIELD FINAL Ph FINAL Ph FINAL Ph FINAL Ph FINAL Ph SAMPLING ENDED AT: 16.00 SAMPLING EQUIPMENT CODE RAT (mi. per														
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER BY (PRINT) / AFFILIATION: PUMP OR TUBING DEPTH IN WELL (feet): 72.5 SAMPLE PUMP FLOW RATE (mL per minute): 19.3 TUBING MATERIAL CODE: HDPE FIELD FILTER SIZE: µm Filter SIZE: µm Filter SIZE: µm SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE ID CODE TOTAL VOL ADDED IN FIELD FINAL Ph FINAL Ph FINAL Ph FINAL Ph FINAL Ph SAMPLING ENDED AT: 16.00 SAMPLING EQUIPMENT CODE RAT (mi. per														
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER BY (PRINT) / AFFILIATION: PUMP OR TUBING DEPTH IN WELL (feet): SAMPLE PUMP FLOW RATE (mL per minute): SAMPLE PUMP FLOW RATE (mL per minute): SAMPLE PRESERVATION SA														
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER BY (PRINT) / AFFILIATION: PUMP OR TUBING DEPTH IN WELL (feet): SAMPLE PUMP FLOW RATE (mL per minute): SAMPLE PUMP FLOW RATE (mL per minute): SAMPLE PRESERVATION SA														
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER BY (PRINT) / AFFILIATION: PUMP OR TUBING DEPTH IN WELL (feet): SAMPLE PUMP FLOW RATE (mL per minute): SAMPLE PUMP FLOW RATE (mL per minute): SAMPLE PRESERVATION SA														
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER BY (PRINT) / AFFILIATION: PUMP OR TUBING DEPTH IN WELL (feet): SAMPLE PUMP FLOW RATE (mL per minute): SAMPLE PUMP FLOW RATE (mL per minute): SAMPLE PRESERVATION SA														
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER BY (PRINT) / AFFILIATION: PUMP OR TUBING DEPTH IN WELL (feet): SAMPLE PUMP FLOW RATE (mL per minute): SAMPLE PUMP FLOW RATE (mL per minute): SAMPLE PRESERVATION SA														
SAMPLED BY (PRINT) / AFFILIATION: JJ Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLER(S) SIGNATURES: SAMPLER(S) SIGNATURES: SAMPLING INITIATED AT: 1601 SAMPLING INITIATED AT: 1601 SAMPLING INITIATED AT: 1600 SAMPLING INITIATED AT: 1600 SAMPLING INITIATED AT: 1600 SAMPLED MATERIAL CODE: HDPE FIELD DECONTAMINATION: N (pump) FIELD-FILTERED: Y (N) FILTER SIZE: µm FILTER SIZE: µm DUPLICATE: Y SAMPLING INITIATED AT: 1600 SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE ID CODE SAMPLING ENDED AT: 1600 SAMPLED AT: 1600 SAMPLING ENDED AT: 1600 SAMPLING ENDED AT: 1600 SAMPLED AT: 1600 SAMPLED AT: 1600 SAMPLING ENDED AT: 1600 SAMPLED AT: 160	WELL CAPACIT TUBING INSIDE	Y (Gallons Per Fo DIA, CAPACITY	oot): 0.75" = 0.02 (Gal./Ft.): 1/8" =	2; 1" = 0.04; = 0.0006; 3/16"	1.25" = 0.06; = 0.0014; 1/4"	' = 0.0026; 5/1	6" = 0.004; 3/	8" = 0.006; 1/.	6" = 1.47; 12" 2" = 0.010; 5/8					
JJ Hollingshead/Geosyntec PUMP OR TUBING DEPTH IN WELL (feet): 725 SAMPLE PUMP FLOW RATE (mL per minute): 1 493 TUBING MATERIAL CODE: HDPE FIELD DECONTAMINATION: N (pump) FIELD-FILTERED: Y (N) FILTER SIZE: µm Filtration Equipment Type: SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE ID # MATERIAL CODE: HDPE INTENDED ANALYSIS AND/OR METHOD SAMPLE ID CONTAINERS CODE SAMPLE ID # MATERIAL CODE TOTAL VOL ADDED IN FIELD FINAL Ph FINAL Ph FINAL Ph SAMPLE PRESERVATION FINAL Ph FINAL Ph SAMPLE PRESERVATION FINAL Ph SAMPLE PRESERVATION SAMPLE ID CODE SAMPLE ID CODE SAMPLE ID FINAL Ph SAMPLE PRESERVATION FINAL Ph SAMPLE PRESERVATION SAMPLE PRESERVATION FINAL Ph SAMPLE PRESERVATION SAMPLE ID FINAL Ph SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION FINAL Ph SAMPLE PRESERVATION SAMPLE PRESERVATION FINAL Ph SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PRESERVATION FINAL Ph SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE PUMP FLOW RATE (mL per minute): 1 493 TUBING MATERIAL CODE: HDPE DUPLICATE: Y SAMPLE PUMP FLOW RATE (mL per minute): 1 493 TUBING MATERIAL CODE: HDPE DUPLICATE: Y SAMPLE PUMP FLOW RATE (mL per minute): 1 493 TUBING MATERIAL CODE: HDPE DUPLICATE: Y SAMPLE PUMP FLOW RATE (mL per minute): 1 493 TUBING MATERIAL CODE: HDPE DUPLICATE: Y SAMPLE PUMP FLOW RATE (mL per minute): 1 493 TUBING MATERIAL CODE: HDPE DUPLICATE: Y SAMPLE PUMP FLOW RATE (mL per minute): 1 493 TUBING MATERIAL CODE: HDPE DUPLICATE: Y SAMPLE PUMP FLOW RATE (mL per minute): 1 493 TUBING MATERIAL CODE: HDPE DUPLICATE: Y SAMPLE PUMP FLOW RATE (mL per minute): 1 493 TUBING MATERIAL CODE: HDPE TOTAL VOLUME PUMP FLOW RATE (mL per minute): 1 493 TUBING MATERIAL CODE: HDPE TOTAL VOLUME PUMP FLOW RA							PLING DA	TA						
PUMP OR TUBING DEPTH IN WELL (feet): 125 SAMPLE PUMP FLOW RATE (mL per minute): 142 TUBING MATERIAL CODE: HDPE FIELD DECONTAMINATION: N (pump) FIELD-FILTERED: Y (N) FILTER SIZE: µm DUPLICATE: Y (N) SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE ID # MATERIAL CODE: HDPE FIELD-FILTERED: Y (N) FILTER SIZE: µm DUPLICATE: Y (N) FILTER SIZE: µm DUPLICATE: Y (N) SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE ID # NATERIAL CODE: HDPE FINAL Ph FIN					SAMPLER(S) SI	to the same of the	1			SAMPLING INITIATED AT:	1601	SAMPLING ENDED AT:	60a	
FIELD DECONTAMINATION: \(\begin{array}{cccccccccccccccccccccccccccccccccccc	PUMP OR TUBIN	NG DEPTH IN WE	ELL (feet): 1	25	SAMPLE PUMP	FLOW RATE (m)	per minute):	193	TUBING MAT					
SAMPLING CODE CONTAINERS CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL Ph	FIELD DECONTA	AMINATION:	М	(pump)	FIELD-FILTERE	D: Y (N)				DUPLICATE:	Y (D		
SAMPLE ID # MATERIAL VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL Ph AND/OR METHOD CODE (mL) FINAL Ph	SA	MPLE CONTAIN	ER SPECIFICAT	ION		SAN	IPLE PRESERVA	ATION		INTENDE	D ANALYSIS		SAMPLE PUMP FLO	
W 3/60 % 2 HDPE 125 mL none 250 6.95 PFAS - 8321B ESP 1/89	CODE	CONTAINERS		VOLUME	PRESERV	ATIVE USED			FINAL Ph	AND/OR METHOD			RATE (mL per mi	
	W3/60-80	2	HDPE	125 mL	no	one	2	250	6.95	PFAS	- 8321B	ESP	6893	
												-		
		-		— —										
REMARKS:	REMARKS:													
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify)	MATERIAL COD	ES: AG =	Amber Glass:	CG = Clear Glass	PE = Polvet	hylene; PP = I	olypropylene:	S = Silicone; T	= Teflon; O = 0	Other (Specify)				
SAMPLING/PURGING APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump; PP	SAMPLING/PUR	GING APP =	After Peristaltic P	ump; B = Ba	iler; BP = B	ladder Pump;	ESP = Electric	Submersible Pum	p; PP = Peri	staltic Pump				

¹ The above do not constitute all of the information required by Chapter 62-160, F.A.C.
2 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2);
optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

SITE NAME:	FSF					ITE DCATION:	Ocalo	, FL			
WELL NO:	DEP	MW 1	(100-1	20) SAMPLE ID	6 0	PMW 1	L (100	-120)	DATE: 6	10.2	020
					PURC	GING DA	TA		(corner)		
WELL DIAMETER	R (inches): Z	TUBII DIAM	NG ETER (inches)	3/8 WELL		INTERVAL eet to \$20 fe	et TO WA	DEPTH TER (feet): 40	.39 OR	RGE PUMP T BAILER:	488
	LUME PURGE: it if applicable)	: 1 WELL V	DLUME = (TO	TAL WELL DEPTH		_	·				2.2
EQUIPME	NT VOLUME P	URGE: 1 EG	= (UIPMENT VO	120 fe L. = PUMP VOLUN	et – 11E + (TUE	40.39 BING CAPACIT	feet)	TUBING LENGT	gallons/foo	ot = 12	.• T5 gallons
	t if applicable)				ns + (ns/foot X		et) +	gallons	
	JMP OR TUBIN WELL (feet):	1G 4Z	FINAL PU DEPTH IN	IMP OR TUBING WELL (feet):	~42	PURGING INITIATE	G DAT: \\\	PURGING ENDED A		TOTAL VO PURGED (
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		DEPTH TO WATER (feet)	pH standard units)	TEMP (°C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) or % saturation	TURBIDIT (NTUs)	Y COLO	
1200	12.9	12.9	.3		1.01	23.34	566	.06	1.80	clos	
1211	3.3	16.7	+	40.57 6	.97	23.26	571	.05	1.73	_	-164.8
1222	3.3	19.5	\perp		2-98	23.35	573		1.22		-139
1233	3.3	22.8	1.	40.57 b	.95	23.40	576	.09	1.40	l I	ाप७.4
							_				
						19					
	PACITY (Gallor				25" = 0.00	6; 2" = 0.16 1/4" = 0.0026				6" = 1.47; ' = 0.010:	12" = 5.88 5/8" = 0.016
	EQUIPMENT (3 = Bailer;	BP = Bladder Pum		SP = Electric S			Peristaltic Pum		ther (Specify)
CAMPI ED	DV (DDINT) I					LING DA	TA			(i)	
	BY (PRINT) / A	4	SETUP	SAMPLER(S) SIG	1/1	a Victoria	4	SAMPLING INITIATED		SAMPLIN ENDED	
PUMP OR	TUDING	~4Z	(Broc)	TUBING MATERIAL COD	- 700	HAPE		L _D-FILTERED:	Y (1)		IZE:μm
	CONTAMINATION				UBING	Y (N (rep		ation Equipment DUPLICAT		(N)	
SAM	PLE CONTAINE	ER SPECIFIC	ATION	SA	MPLE PF	RESERVATION	i ,	INTEN	DED S	AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED		TOTAL VOL D IN FIELD (m	FINAL	ANALYSIS METH		CODE	(mL per minute)
LWMPE	2	HOPE	125 ml	100			6.95	PFAS	s f	SP	~1140
REMARKS		. N 9									1
				: 1234							211 - 12 - 15 1
MATERIAL SAMPLING	CODES:	AG = Amber		= Clear Glass; eristaltic Pump;	PE = Poly B = Bai		PP = Polyprop Bladder Pump		cone; T = Te		Other (Specify)
	420 MEM			se Flow Peristaltic				ng Gravity Drain);			

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	FSFC	し				TE CATION:	Ocala.	FL.				
WELL NO	DEP	W 2	(35-55)	SAMPLE	ID: DE	PHW Z	(35-55)		DATE: 6-1	10-2021	0	
					PURG	ING DA	TA	/	Mec) nunc			
WELL DIAMETE	R (inches): Z	, TUBIN	TER (inches):	DEP	L SCREEN TH: 35 fe	et to 55 f	STATIC D	ER (feet): 40 .	19 OR BA	E PUMP TYF NLER:	esp Esp	
	LUME PURGE ut if applicable)	1 WELL VO		TAL WELL DEPT		TIC DEPTH 1 0 -79		WELL CAPAC	ITY gallons/foot	_ 2.2	q allons	
		URGE: 1 EQ		L. = PUMP VOLU			TY X TO	JBING LENGTH	+ FLOW CELL	VOLUME	gallona	
(Offig fill Oc	ut if applicable)	1810	د)	= gal	lions + (gallo	ons/foot X	feet)	1+	gallons =	gallons	
INITIAL PI	UMP OR TUBIN WELL (feet):	IG .	FINAL PU	MP OR TUBING WELL (feet):	~42	PURGIN	ED AT: 1009	PURGING ENDED AT:		TOTAL VOLU		
		CUMUL	1 33 000	DEPTH			COND.	DISSOLVED	,	CHOLD (ga	1011a): - 1 · CC	
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	TO WATER (feet)	pH (standard units)	TEMP. (°C)	(circle units) μmhos/cm or μS/cm	OXYGEN (circle units) (mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe		
1021	2.40	2.40	.2	40.85	6.56	26.03	973	1.07	47.2	-clear	138.4	
1024	.6	3.0	1		6.56		973	1.08	45.7	11	138.1	
1027	. (-	3.le	\perp		6.56		973	1.07	45.1	u	138.1	
1030	.le	4.2	1-1-	40.85	6.56	26.04	973	1.10	44.8	U	139.7	
	PACITY (Gallor NSIDE DIA. CA				1.25" = 0.06 = 0.0014;	3; 2" = 0.10 1/4" = 0.002					2" = 5.88 /8" = 0.016	
PURGING	EQUIPMENT (CODES: E	s = Bailer;	BP = Bladder Pu			Submersible Pur	mp; PP = Pe	eristaltic Pump;	O = Oth	er (Specify)	
SAMPLED	BY (PRINT) / A	AFFILIATION:	1	SAMPLER(S) S		LING DA	ATA					
	MATHIAS	_	NTEC	R	E M	Tim	7	SAMPLING INITIATED AT	1031	SAMPLING ENDED AT:	1032	
PUMP OR		247	(BBC)	TUBING MATERIAL CO	DE: H	DPE -		FILTERED: Y		FILTER SIZ	E: μm	
	CONTAMINATION	ON: PUN	~		TUBING		placed	on Equipment Type DUPLICATE:	pe: Y	$\widehat{\mathbf{N}}$		
SAM	PLE CONTAINE	ER SPECIFICA	ATION	S	SAMPLE PR	ESERVATIO		INTENDE			SAMPLE PUMP	
	# CONTAINEDC		VOLUME	PRESERVATIV		OTAL VOL	FINAL	ANALYSIS AN METHO	ND/OR EQU	IPMENT	FLOW RATE (mL per minute)	
PHW Z	CONTAINERS 7	HAFE	125 ml	USED	ADDEL	D IN FIELD (r	nL) pH				~760	
		(10.0	120 10	100			\$.56	11753		91	100	
63												
DEMARKS												
REMARKS		LE TY	115.	1031								
MATERIAI		AG = Amber		= Clear Glass;	PE = Polye	ethylene;	PP = Polypropyle	ene; S = Silico	ne; T = Teflor	n; O = Oth	ner (Specify)	
-	G EQUIPMENT	CODES:	APP = After Pe	eristaltic Pump; se Flow Peristalti	B = Baile	er; BP =	Bladder Pump; Method (Tubing	ESP = Electri	ic Submersible I O = Other (S	Pump;	(-1)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24

SITE NAME:	Florida Sta	te Fire Colle	ge			SITE LOCATIO	N:	11655 NW	Gainesville	Rd, Ocala,	FL	
WELL NO:	E+MW-	3400-	120)		SAMPLE ID:	DEPMO -	3(100-1	၁ စ်)		DATE: 6/	10/2020	
			007		PUF	RGING DA	ГА					
WELL DIAMETER (inc	hes)	2	TUBING	nes): 3/8"I	D	WELL SCREEN	INTERVAL	↓ feet	STATIC DEPTI		PURGE PUMP	
	hes): E PURGE: 1 WEI pplicable)			TH - STATICE	DEPTH TO WATE							= 2.5
EQUIPMENT V	OLUME PURGE:				CAPACITY X		NGTH) + FLOW (CELL VOLUME				
INITIAL PUMP (OD TUDING		FINAL PUMP OF	gallons + (gallons/foot X PURGING		feet)+	0,1		2	
DEPTH IN WEL	L (feet):	59 T CUMUL	DEPTH IN WEL	/	20	INITIATED AT:	1036		laa	TOTAL VOLUM PURGED (gallo	ons): [8.4]	
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard unils)	TEMP. (°C)	COND. (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:
1101	10.0	10.0	8.4	58141	6.63	23.43	852	0.13	165	clear	-54.9	
1(08	2.8	12.8	0.4	54.44	6.66	2346	844	8.11	7.50	ctear	-55.5	
1115	2.8	15.6	0.4	58,44	667	23.42	842	8.08	5,20	clear	-56.1	
いるタ	2.9	18.4	0,4	58.44	leile 7	23.41	841	0.07	3,03	1.025	-581	
, Gr												
					>							
WELL CAPACITUBING INSIDE	Y (Gallons Per Fo	oot): 0.75" = 0.02 (Gal./Ft.): 1/8" =	0.0006; 3/16"	1.25" = 0.06; 2	2" = 0.16; 3" = = 0.0026; 5/1	0.37; 4" = 0.65 6" = 0.004; 3/4	5" = 1.02; 8" = 0.006; 1/		= 5.88 " = 0.016			
						PLING DA		2 - 0.010, 0/0	- 0,010			
	PRINT) / AFFILIAT head/Geosyi			SAMPLER(S) SIG	11				SAMPLING INITIATED AT:	1/23	SAMPLING ENDED AT:	1/24
PUMP OR TUBI	NG DEPTH IN WE	ELL (feet): 🖍 💪	20	SAMPLE PUMP	FLOW RATE (mL	per minute):	515	TUBING MATE				
FIELD DECONT	AMINATION:	N O	(pump)	FIELD-FILTERED		FILTER SIZE:	μm		DUPLICATE:	Y	D	
S	AMPLE CONTAIN	ER SPECIFICATI	ON			IPLE PRESERVA	TION		INTENDED	ANALYSIS	SAMPLING	SAMPLE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA	TIVE USED		DDED IN FIELD	FINAL Ph		METHOD	EQUIPMENT CODE	PUMP FLOW RATE (mL per min)
0-3/100-10	2) 2	HDPE	125 mL	no	ne	2	50	6.67	PFAS	- 8321B	ESP	1,5,5
REMARKS: ¥	slight 1	other e	19 odor	at pur	ge initia	tion; No	we After	1 ~ 10 avo	ites		****	
MATERIAL COL	the state of the s		CG = Clear Glass			olypropylene; \$			ther (Specify)			
SAMPLING/PUR EQUIPMENT CO NOTES: 1	DES: RFPP =	After Peristallic Pu Reverse Flow Pe		SM = Straw Me	adder Pump; ethod (Tubing Gra	avity Drain);	Submersible Pum VT = Vacuum Tr		taltic Pump r (Specify)			

² STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2);
optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

SITE NAME:	FSF	と				ITE OCATION:	00	da, FL.			
WELL NO:	DEPM	UP G	00-120	SAMPLE	ID: DEP	H WM	(100-		DATE: 6	9-2020	>
						GING DA			(SIRC)		
WELL DIAMETER	. (TUBI	ETER (inches): \ DEP	TH: 100 fe	INTERVAL eet to 120	feet TOV	TIC DEPTH WATER (feet): 64	.53 OR	GE PUMP TY BAILER:	PE ESP
(only fill ou	LUME PURGE t if applicable)	: 1 WELL V	OLUME = (To	TAL WELL DEP		TIC DEPTH		COATTAIN COATTAIN		. = 8.8	2
		URGE: 1 EC	UIPMENT VO	DL. = PUMP VOLU			ITY X	TUBING LENGT	H) + FLOW CEI	L VOLUME	J gallons
(only fill ou	t if applicable)	(86	(2)	= ga	llons + (gallo	ons/foot X	fe	et) +	gallons =	gallons
	JMP OR TUBIN WELL (feet):	IG 💉	FINAL P	UMP OR TUBING N WELL (feet):	~ 44	PURGIN INITIATI	IG ED AT: \\	PURGING ENDED A	1750	TOTAL VOLU	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGI RATE	WATER	pH (standard units)	TEMP. (°C)	COND (circle un µmhos/c	m (circle units	TURBIDIT (NTUs)	Y COLOR (describe	
1770	9.00	9.00	.3	64.59	7.12	28.78	503	ماارا	18.5	clear	- 70/.0
1230	3.00	12.00		64.59	7.07	29.12	509	1.23	13.6	th	-60.7
1240	3.00	15.00			7.06	29.15	510	1.17	9.24	11	~47.2
1250	3.00	18.00	> \	64.59	7.04	29.14	511	1.14	7.07	- 4	-34.9
	ACITY (Gallor SIDE DIA. CA				1.25" = 0.00	6; 2" = 0.1					2" = 5.88 '8" = 0.016
	EQUIPMENT (B = Bailer;	BP = Bladder Pu	ımp; E	SP = Electric	Submersible		Peristaltic Pump		er (Specify)
SAMPLED	BY (PRINT) / A	EEII IATIONI		SAMPLER(S) S		LING DA	ATA	(5)			
RIK M		1	INTEC	SAMPLERIS	M	VI	,	SAMPLING INITIATED		SAMPLING ENDED AT	
PUMP OR		م لاله	(Brac)	TUBING MATERIAL CO	DE:	HAPE		ELD-FILTERED:		FILTER SIZ	E: μm
	ONTAMINATION	ON: PU	-	N N	TUBING		placed)	DUPLICAT		R	
SAMP	LE CONTAINE	ER SPECIFIC	ATION	s	SAMPLE PR	RESERVATIO	N	INTEN			SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIV USED	1100	OTAL VOL D IN FIELD (r	nL) FIN			UIPMENT CODE	FLOW RATE (mL per minute)
PWW 4	2	HAPE	125 m	100	ADDL		7.0		2 6	ESP	~ 1140
								7			
							+				
REMARKS:											
	SAW	T FUAN	IME :	1251							
MATERIAL	CODES:	AG = Amber	Glass; CG	= Clear Glass;	PE = Poly	ethylene;	PP = Polypi	ropylene; S = Sili	cone; T = Tefi	on; O = Oth	ner (Specify)
SAMPLING	EQUIPMENT			eristaltic Pump; rse Flow Peristalti	B = Bail c Pump;		Bladder Pur Method (Tu	mp; ESP = Electric	ctric Submersible O = Other (

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	FSFC					TE OCATION:	Ocala,	FL.			
WELL NO:		>MW S	150-	SAMPLE ID			(50-70		DATE: /	.9.2020	า
	VC. 1	10(100 7	Can	(6)		SING DA		B 10 2	<u>_</u>	1.7050	
WELL	R (inches):	TUBIN	G TER (inches):	3/A WELL	SCREEN	INTERVAL	STATIC I		PUF	RGE PUMP TYP	E A
WELL VOL	UME PURGE:	1 WELL VO	LUME = (TO	TAL WELL DEPTH	H: 30 fe	TIC DEPTH	OWATER) X	ER (feet): 64.	TY OR	BAILER:	SP
(only fill out	t if applicable)	v.	= (70 fe	et -	64.53	feet) X	16	gallons/foo	87	gallons
(only fill out	NT VOLUME P t if applicable)	URGE: 1 EQI	JIPMENT VOI	= PUMP VOLUM	VIE + (TUE	BING CAPAC	TY X TI	UBING LENGTH)	+ FLOW CE	LL VOLUME ,	gamorio
INITIAL DI		(8) /8 To	e		ons + (ons/foot X	feet)	+	gallons =	gallons
DEPTH IN	JMP OR TUBIN WELL (feet):	والمحالمات	DEPTH IN	MP OR TUBING WELL (feet):	الهال	PURGIN INITIATI	ED AT: 1030	PURGING ENDED AT:	1048	TOTAL VOLU PURGED (gal	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (galions)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH standard units)	TEMP.	COND: (circle units) µmhos/cm or uS/cm	DISSOLVED OXYGEN (circle units) mg/D or % saturation	TURBIDIT (NTUs)	Y COLOR (descripe)	ORP'
(039	.90	.90	.10	64-65 6	.35	86.85	637	3.61	145	closedy	242.
042	. 30	1.20	1	64.656		28.81	638	>.58	161	ч	245.
1045	.50	1.50			.35	27.95	637	3.50	153) (245.0
1048	. 30	1.80	1 1	64.65	.74	27.92.	436	3.55	155	2 V	247.8
đi				5 77				- : :			
					-			•			
	PACITY (Gallon ISIDE DIA. CAI				25" = 0.06 0.0014;						2" = 5,88 3" = 0,016
PURGING I	EQUIPMENT C	ODES: B	= Bailer,	BP = Bladder Pun	•		Submersible Pur	mp; PP = Pe	eristaltic Pump	o; O = Othe	er (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION:		SAMPLER(S) SI		LING DA	NTA			T	
RIVMA		GEOSYM	MEC.	Rik	Ma	thing		SAMPLING INITIATED AT	1049	SAMPLING ENDED AT:	1051
PUMP OR 1	TUBING WELL (feet):	-66	(BTOC)	TUBING MATERIAL COD	E: 141	NPE		-FILTERED: Y	(D)	FILTER SIZE	: բ տ ո
	ONTAMINATIO		P O N		TUBING		placed)	DUPLICATE:	Y	(B)	
SAMP	LE CONTAINE	R SPECIFICA	TION	SA	MPLE PR	ESERVATIO	N	INTENDE	D S/		SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED		OTAL VOL D IN FIELD (r	nL) FINAL	ANALYSIS AN METHOI		ODE (FLOW RATE mL per minute)
PMW5	2	HAPE	125 m	ice			6.74	PFAS	E	5A	~380
			1.5					53.3	2 1	-	4.5
* 5 '			47					10000			
					-						1
										1	
REMARKS:											
REMARKS:		W T	ime:	1049		12					3

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE						TT-						
NAME:	FSFC	•				ITE OCATION:	Ocala	, FL				
WELL NO	DEPI	Jel was	100-12	SAMPLE ID	DE	J wma	(100-	120)	DATE:	6	.8.2	20
(%)			*V ×			GING DA			(Brec)	0		
	().	2 TUBIN	ETER (inches)	P/8 DEPTH	1: 160 fe	INTERVAL eet to 126 f	eet TO WA	DEPTH TER (feet):	35.44		GE PUMP T AILER:	ESP
(only fill o	LUME PURGE ut if applicable)	: 1 WELL VO		TAL WELL DEPTH	-		-				100	6 12
EQUIPME	NT VOLUME F	'URGE: 1 EQ	= (UIPMENT VOI	L. = PUMP VOLUM	et – S	ST.44 BING CAPACI	feet).	X • 16 TUBING LEN	gallor IGTH) + FLOV	ns/foot	= \3	, S C gallons
	ut if applicable)	Com	~ \		ons + (ons/foot X		feet) +	. 0	gallons	= gallons
1	UMP OR TUBIN	VG 37		MP OR TUBING	~ 37	DUDGIN		PURGI	NG .	7	TOTAL VO	LUME -
DEPTHI	VVELL (leet).	CUMUL	DEPTHIN	DEPTH	- 3-1	INITIATE	COND.	DISSOL		. –	PURGED (gallons): 2000
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	ТО Т	pH standard units)	TEMP. (°C)	(circle units) µmhos/cm or µS/cm	OXYGE (circle ur mg/L) % satura	nits) TORE	BIDITY (Us)	COLO (descril	
1748		14.0	.5	35.57 1	.82	25.21	674	2.5		.1	clea	~ 276.7
1756		18.0				25.17	671	2.5	33.		11	276.0
1804		22.0				25.14	669	2.49		58	11	271.9
1812	4.0	26.0		35.51 6	.82	25.13	8ग्र	2.47	<u>_</u> 6.	13	11	270.8
				+								
WELLOA	PACITY (Gallor	D. Frank	0.750 0.00	411 001								
TUBING II	VSIDE DIA. CA	PACITY (Gal./	(Ft.): 1/8" = 0.02;	.0006; 3/16" = 0	25" = 0.06 0.0014	6; 2" = 0.16 1/4" = 0.002			5; 5" = 1.02 " = 0.006;		" = 1.47; = 0.010;	12" = 5.88 5/8" = 0.016
PURGING	EQUIPMENT (CODES: B	= Bailer;	BP = Bladder Pum			Submersible P	ump; PF	Peristaltic	Pump;	O = O	ther (Specify)
SAMPLED	BY (PRINT) / A	AFFILIATION:		SAMPLER(S) SIG		LING DA	IA	SAMPLI	NC		CAMPLIN	
	MATHIE	S GEOS	YNTEC			The	 S	INITIAT	ED AT: 16		SAMPLIN ENDED A	
PUMP OR DEPTH IN	TUBING WELL (feet):	~37	(erroc)	TUBING MATERIAL COD	E: †	ADPE		D-FILTERED tion Equipme			FILTER S	IZE: μm
FIELD DE	CONTAMINATIO	ON: PUN	IP (V) N	I T	UBING	Y N (re	placed)	DUPLIC			(N)	
	PLE CONTAINE		ATION			ESERVATIO	N	INT	ENDED SIS AND/OR		MPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED		OTAL VOL D IN FIELD (r	nL) FINAL		THOD		JIPMENT CODE	FLOW RATE (mL per minute)
EPMW6	2	HPLE	125 ml	ice			682	PF	45	E	42	~1900
									-			
REMARKS		• -										
		MALE		5: 1813	3							
MATERIAL		AG = Amber			PE = Poly		PP = Polyprop			= Teflo		Other (Specify)
SAMPLING	EQUIPMENT			ristaltic Pump; se Flow Peristaltic I	B = Bail Pump;		Bladder Pump Method (Tubin		Electric Subme in);		Pump; Specify)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

	FSF		. /	- CALID		OCATION:	Ocala,	FL	DATE: 1	0	
WELL NO	DEL	smm :	f (30	SAMP		EPMW CINC DA		(e)	DATE: Lo.	8. rore	>
WELL		TUBI	NG	3/0 W	ELL SCREEN	GING DA	STATIC	DEPTH (PUR	GE PUMP TYPE	
	R (inches):	DIAN	IETER (inche	es): 3/8/ D	EPTH: 30 f	eet to 50	eet TO WATE	R (feet): 36	04 OR B	AILER:	ESP
(only fill o	ut if applicable)	: 1 WELL V	OLUME = (50	_	36.04	O WATER) X	WELL CAPACI		2.2	3
EQUIPME	NT VOLUME F	URGE: 1 E	QUIPMENT	OL. = PUMP VO			feet) X	JBING LENGTH)	gallons/foot + FLOW CEL		gallo
(only fill o	ut if applicable)	6-	120	E	gallons + (galle	ons/foot X	feet)	+	gallons =	gallo
	UMP OR TUBIN I WELL (feet):		FINAL	PUMP OR TUBII IN WELL (feet):		PURGIN	IG ED AT: 1638	PURGING	1650	TOTAL VOLUM	IE U.8
DEFITT	VVLLE (reet).	CUMUL		DEPTH	1	INITIATI	COND	DISSOLVED	1030	PURGED (gallo	ons):
TIME	VOLUME PURGED	VOLUME	PUR	GE TO	pH (standard	TEMP.	(circle units)	OXYGEN (circle units)	TURBIDITY		ORP
	(gallons)	PURGEI (gallons)	I .		units)	(°C)	μmhos/cm or aS/cm	mg/Lor % saturation	(NTUs)	(describe)	(mV)
1644	2.40	z.40	.40	36.19	4.74	24.58	721	5.40	247	Slight	267.5
1646	.80	3-20		36.19	6.73	24.57	721	5.37	254	11	264.
1648	.80	4.00		36.19	6.74	24.55	721	5.31	263	1)	268.
1650	.80	4.80		36.19	6.72	24.56	721	5.25	250	11	270.
			-			-					
			+								
			-								
	PACITY (Gallor				1.25" = 0.0	6; 2" = 0.1 1/4" = 0.002					' = 5.88 ' = 0.016
	EQUIPMENT (B = Bailer,	BP = Bladder			Submersible Pur		ristaltic Pump		
				I 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		LING DA	TA				
SAMPLED	BY (PRINT) / A	,	EDSYMT	1	SIGNATUR	Think		SAMPLING INITIATED AT	: 1651	SAMPLING ENDED AT:	165Z
Q W		3 / C	CO0 100 10		~ 1 VOC	~ mar		INITIATEDAT	_		
PUMP OR	TUBING	20	6-	TUBING		111 005	FIELD-	FILTERED: Y	(N)	FILTER SIZE:	
PUMP OR DEPTH IN	TUBING WELL (feet):		BTE	MATERIAL		HAPE	Filtratio	n Equipment Typ	De:	_	μm
PUMP OR DEPTH IN FIELD DE	TUBING WELL (feet): **CONTAMINATION	ON: PU	MP (V)	MATERIAL (TUBING	Y N (re	Filtration Placed)	DUPLICATE:	y Y	(N)	µm
PUMP OR DEPTH IN FIELD DE	TUBING WELL (feet):	ON: PU	MP (O)	MATERIAL	TUBING SAMPLE PI		Filtration Placed	DUPLICATE: INTENDE ANALYSIS AN	Y ID SA ND/OR EQI	MPLING SA	μm MPLE PUM LOW RATE
PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	TUBING WELL (feet): ** CONTAMINATION PLE CONTAINE # CONTAINERS	ON: PU ER SPECIFIC MATERIAL CODE	ATION VOLUME	N PRESERVA USED	TUBING SAMPLE PITIVE ADDE	Y N(re	Filtration placed) N FINAL pH	DUPLICATE: INTENDE ANALYSIS AN	Y ID SA ID/OR EQI	MPLING SAUPMENT FOODE (IT	μM MPLE PUM FLOW RATE L per minut
PUMP OR DEPTH IN FIELD DEC SAM SAMPLE	TUBING WELL (feet): ** CONTAMINATION PLE CONTAINE #	ON: PU ER SPECIFIC MATERIAL	MP (O)	N PRESERVA USED	TUBING SAMPLE PITIVE ADDE	Y N (re	Filtration	DUPLICATE: INTENDE ANALYSIS AN	Y ID SA ID/OR EQI	MPLING SAUPMENT FOODE (IT	μm MPLE PUM LOW RATE
PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	TUBING WELL (feet): ** CONTAMINATION PLE CONTAINE # CONTAINERS	ON: PU ER SPECIFIC MATERIAL CODE	ATION VOLUME	N PRESERVA USED	TUBING SAMPLE PITIVE ADDE	Y N (re RESERVATIO TOTAL VOL	Filtration placed) N FINAL pH	DUPLICATE: INTENDE ANALYSIS AN	Y ID SA ID/OR EQI	MPLING SAUPMENT FOODE (IT	μm MPLE PUN FLOW RATE
PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	TUBING WELL (feet): ** CONTAMINATION PLE CONTAINE # CONTAINERS	ON: PU ER SPECIFIC MATERIAL CODE	ATION VOLUME	N PRESERVA USED	TUBING SAMPLE PITIVE ADDE	Y N (re RESERVATIO TOTAL VOL	Filtration placed) N FINAL pH	DUPLICATE: INTENDE ANALYSIS AN	Y ID SA ID/OR EQI	MPLING SAUPMENT FOODE (IT	μm MPLE PUN FLOW RATE
PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	TUBING WELL (feet): ** CONTAMINATION PLE CONTAINE # CONTAINERS	ON: PU ER SPECIFIC MATERIAL CODE	ATION VOLUME	N PRESERVA USED	TUBING SAMPLE PITIVE ADDE	Y N (re RESERVATIO TOTAL VOL	Filtration placed) N FINAL pH	DUPLICATE: INTENDE ANALYSIS AN	Y ID SA ID/OR EQI	MPLING SAUPMENT FOODE (IT	μm MPLE PUN FLOW RATE
PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	TUBING WELL (feet): CONTAMINATION PLE CONTAINE CONTAINERS Z	ON: PU ER SPECIFIC MATERIAL CODE	ATION VOLUME	N PRESERVA USED	TUBING SAMPLE PITIVE ADDE	Y N (re RESERVATIO TOTAL VOL	Filtration placed) N FINAL pH	DUPLICATE: INTENDE ANALYSIS AN	Y ID SA ID/OR EQI	MPLING SAUPMENT FOODE (IT	μM MPLE PUN FLOW RATE L per minut
PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	TUBING WELL (feet): CONTAMINATION PLE CONTAINERS Z	DN: PU ER SPECIFIC MATERIAL CODE HIME	MP VOLUME	PRESERVA USED	TUBING SAMPLE PI TIVE ADDE	Y N(re RESERVATIO TOTAL VOL ED IN FIELD (1	Filtratic Placed N FINAL pH C.72	DUPLICATE: INTENDE ANALYSIS AN METHOI	Y ED SA ND/OR EQI O	MPLING SAPUIPMENT (IT	μΜ MPLE PUN FLOW RATE L per minut
PUMP OR DEPTH IN FIELD DEC SAM SAMPLE ID CODE	TUBING WELL (feet): * CONTAMINATION PLE CONTAINERS Z	DN: PU ER SPECIFIC MATERIAL CODE HIME	MP VOLUME	PRESERVA USED	TUBING SAMPLE PI TIVE ADDE	Y N(reservation total voluments)	Filtration placed) N FINAL pH	DUPLICATE: INTENDE ANALYSIS AN METHOI PFAS	SIS;eq	MPLING SAPUIPMENT (IT	μΜ MPLE PUN FLOW RATE L per minut

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24

SITE NAME:	Florida Stat	te Fire Colleç	je			SITE LOCATION	N:	11655 NW	Gainesville	Rd, Ocala,	FL	
WELL NO: §	SEP MW-8	1/100-12	09		SAMPLE ID:	FPMW	-86/00-	رمحر		DATE: 6 /10	stacas	
		100				RGING DAT				- 11	Account of	
WELL DIAMETER (ir	nches): ME PURGE: 1 WEL	2	TUBING DIAMETER (inch	es): 3/1/	TD WATE	WELL SCREEN DEPTH: (150 R) X WELL C	INTERVAL feet to	Q <i>W</i> feet	STATIC DEPTH (feet): 49,	TO WATER	PURGE PUMP I OR BAILER:	ESP
(only fill out if	applicable)	=(120	ft- 4	9.52	ft) X	3.16	gallons/foot =	11.3 gal		1/4=2	.8
(only fill out if a	VOLUME PURGE: applicable)	1 EQUIPMENT V		UME + (TUBING) gallons + (CAPACITY X	gallons/foot X	IGTH) + FLOW (feet)+	0.1	gallons	=	
INITIAL PUMP		~1	FINAL PUMP OF		- 1	PURGING	111/11/2	PURGING	10-11-	TOTAL VOLUM	17/	
DEPTH IN WE		CUMUL	DEPTH IN WELL	(feet):) (INITIATED AT:	1447	ENDED AT:	1545	PURGED (gallo	ons): [7.4	
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or 9 saturation)	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:
1525	राःम्	4.4	0.3	49.76	7.03	24.89	554	0.45	2.58	clear	-9.9	
1535	3.0	14.4	0.3	49.78	7,05	24,79	552	0,46	202	clear	-6.8	
1545	3,8	17.4	6.3	49.78	202	24.70	551	0.48	200	cless	-8,6	
					13.1							12
		1										
WELL CAPA	CITY (Gallons Per F	oot): 0.75" = 0.0	2; 1" = 0.04;	1.25" = 0.06;	2" = 0.16; 3" =	0.37; 4" = 0.65	5; 5" = 1.02;	6" = 1.47; 12"	= 5.88			
TUBING INSI	IDE DIA. CAPACITY	(Gal./Ft.): 1/8":	= 0.0006; 3/16"	= 0.0014; 1/4		16" = 0.004; 3/		12" = 0.010; 5/	8" = 0.016			
	Y (PRINT) / AFFILIA			SAMPLER(S) S					SAMPLING		SAMPLING	DU
JJ Holling	gshead/Geosy	ntec							INITIATED AT:	1546	ENDED AT:	548
PUMP OR TU	JBING DEPTH IN W		51			L per minute): 🗽	136	TUBING MAT	$\overline{}$		<u> </u>	
FIELD DECO	NTAMINATION	N O	(pump)	FIELD-FILTERE Filtration Equipm	D: Y (N) nent Type:	FILTER SIZE:	μm		DUPLICATE:	Y (P	
	SAMPLE CONTAIN	NER SPECIFICAT	ION		SAN	MPLE PRESERVA	ATION		INTENDE	D ANALYSIS	SAMPLING	SAMPLE PUMP FLOW
SAMPLE ID	SAMPLEID # MATERIAL VOLUME PRESERVATIVE LIS						DDED IN FIELD nL)	FINAL Ph		METHOD	EQUIPMENT CODE	RATE (mL per min)
W-8(100-	-(D) 2	HDPE	125 mL	n	one	2	50	7.02		- 8321B	ESP	1,136
		-										
-	_	-				8		4	-			
REMARKS:	the eder	73										
MATERIAL C		= Amber Glass, After Peristaltic F	CG = Clear Glas		hylene; PP =		S = Silicone; 1 Submersible Pur	r = Teflon; O =	Other (Specify) staltic Pump			
EQUIPMENT		= Reverse Flow F	Peristaltic Pump:	SM = Straw N	Method (Tubing G	ravity Drain);	VT = Vacuum T		er (Specify)			

¹ The above do not constitute all of the Information required by Chapter 62-160, F.A.C.
2 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2);
optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

DEP-SOP-001/01 FS 220 Groundwater Sampling Form FD 9000-24

SITE NAME:	Florida Sta	te Fire Colle	ge			SITE LOCATION	N:	11655 NW	Gainesville	Rd, Ocala,	FL	
WELL NO: 🕇	FAMW-	9(40-	60)		SAMPLE ID: 3	SEDMW-	9640-60)		DATE: 6/1	0/28	
					PUF	RGING DAT	ΓΑ				,	
WELL DIAMETER (inc	hes):	2	TUBING DIAMETER (inch	3/8 ¹¹	ID	WELL SCREEN	INTERVAL feet to	(r) feet	STATIC DEPTH (feet): 49	TO WATER	PÜRGE PUMP OR BAILER:	
WELL VOLUME (only fill out if a		LL VOLUME = (T	OTAL WELL DEP		19.38		APACITY CO. / L	gallons/foot =	1.7 90	h	1/4=	
EQUIPMENT VO (only fill out if ap		1 EQUIPMENT V	OL: = PUMP VOL				NGTH) + FLOW C	ELL VOLUME feet)+	0.1	gallons		
INITIAL PUMP (OR TUBING		FINAL PUMP OF	RTUBING		PURGING		PURGING		TOTAL VOLUM	AC	
DEPTH IN WEL	T	S COMUL.	DEPTH IN WELL	416		INITIATED AT:	1339	ENDED AT:	1414	PURGED (gallo	1//	
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:
1343	2.8	2.0	0.5	49,40	6,31	24.73	535	4.81	140	1t. white	186.0	
1354	7.5	9,5	0.5	49.42	6.83	24.96	537	4.78	55.5	clear	157.5	
1405	3.5	13.0	0.5	49,42	6.88	24.97	536	4.92	26,5	clear	164.9	
1410	2.0	1510	0.5	49.42	le.89	24.93	536	5.01	(2,0	clear	164.8	
1412	0.8	15.8	0.5	49.42	6.90	24.97	536	5.01	4.9	clear	163.9	
1414	8.0	16.6	0.5	49.42	6.90	25.00	536	5.01	10.1	Clear	163.6	
	,											
WELL CAPACIT	Y (Gallons Per Fo	oot): 0.75" = 0.02 (Gal./Ft.): 1/8" =	1* = 0.04; 0.0006; 3/16*	1.25" = 0.06; 2 = 0.0014; 1/4"	2° = 0.16; 3° = 0 = 0.0026; 5/1	0.37; 4" = 0.65 6" = 0.004; 3/8	5" = 1.02; 8" = 0.006; 1/2		= 5.88 3" = 0.016		4	
		X			SAM	PLING DA						
	PRINT) / AFFILIAT head/Geosyi			SAMPLER(S) SIG	GNATURES:				SAMPLING INITIATED AT:	1415	SAMPLING ENDED AT:	<u></u>
PUMP OR TUBI	NG DEPTH IN WE	ELL (feet): 45		SAMPLE PLIMP	FLOW RATE (ml	per minute): (,	893	TUBING MATE		1100	ENDED AT: P	4.0
FIELD DECONT		N O	(pump)	FIELD-FILTERED	D: Y (N)	FILTER SIZE:	μm	TODINO MATE	DUPLICATE:	Y 🐧	0	
SA	AMPLE CONTAIN	ER SPECIFICATI	ON	Filtration Equipme		IPLE PRESERVA	TION				SAMPLING	SAMPLE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA	TIVE USED		DDED IN FIELD	FINAL Ph		ANĀLYSIS METHOD	EQUIPMENT CODE	PUMP FLOW RATE (mL per min)
N9 (40-10	2	HDPE	125 mL	no	ne	25	50	6.90	PFAS	- 8321B	ESP	1,893
												-
REMARKS: V	No od	75										
X												
MATERIAL COL	DES: AG =	Amber Glass;	CG = Clear Glass		ylene; PP = P		S = Silicone; T = Submersible Pump		other (Specify)			

² STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2);
optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

Form FD 9000-24

SITE NAME:	Florida Sta	te Fire Colle	ge			SITE LOCATION	N:	11655 NW	Gainesville	Rd, Ocala,	FL	
WELL NO:	EPMW-10	(100-12	g')			DEPMU		-120)		DATE: 6/8	8/2020	
					PUI	RGING DAT	ΓΑ					
WELL DIAMETER (inc	hes):	2 LL VOLUME = (T	TUBING DIAMETER (inch	nes): 3/8 " 3	r D	WELL SCREEN		2ø feet	STATIC DEPTI	H TO WATER	PURGE PUMP OR BAILER:	
(only fill out if a	PURGE: 1 WE oplicable)	LL VOLUME = (T	OTAL WELL DEP	TH - STATIC	5.7	ft) X	11.	gallons/foot =			1/47 3	
EQUIPMENT VO (only fill out if ap		1 EQUIPMENT V	OL. = PUMP VOL	UME + (TUBING gallons + (CAPACITY X	TUBING LEN	NGTH) + FLOW C	ELL VOLUME feet)+	0,1	gallons		
INITIAL PUMP (OR TUBING		FINAL PUMP OF	TURING		IPURGING		PURGING		TOTAL VOLUM	ic.	
DEPTH IN WEL	L (feet): ~	37.5	DEPTH IN WELL	(feet): ~ 3	8.5	INITIATED AT:	1714	ENDED AT:	802	PURGED (gallo	36.5	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:
1741	27	27	0.5	37,18	7.80	24,48	277	0,06	4,00	clear	-153,2	
5748	3.5	30.5	0.5	37.18	7,53	24,32	297	0.06	3,98	clear	-155.6	
1755	3.5	33.5	0.5	37,18	1,53	24.41	299	0.07	5.60	cler	-157,3	
1802	35	36,5	0.5	37,18	7,52	24.43	299	0.06	4.70	dear	-159.8	
										Į.		
							-					
					1.							
			-									
WELL CAPACIT TUBING INSIDE	Y (Gallons Per Fe DIA, CAPACITY	oot): 0.75" = 0.02 (Gal./Ft.): 1/8" =	1" = 0.04; 0.0006; 3/16"	1.25" = 0.06; 2 = 0.0014; 1/4"	2" = 0.16; 3" = = 0.0026; 5/1	0.37; 4" = 0.65 6" = 0.004; 3/8	5" = 1.02; 3" = 0.006; 1/2		= 5.88 " = 0.016			
					SAM	PLING DA						
	PRINT) / AFFILIAT head/Geosyl			SAMPLER(S) SI	GNATURES:	/			SAMPLING INITIATED AT:	1803	SAMPLING ENDED AT:	104
PUMP OR TUBI	NG DEPTH IN WE	ELL (feet): 38	75	SAMPLE PUMP	FLOW RATE (mL	per minute);		TUBING MATE				
FIELD DECONT		И		FIELD-FILTEREI	D: Y (N)	FILTER SIZE:	μm		DUPLICATE:	Y (1)	I	
SA	MPLE CONTAIN	ER SPECIFICATION	NC			PLE PRESERVA	TION		INTENDED) ANALYSIS	SAMPLING	SAMPLE PUMP FLOW
SAMPLE ID CODE							DDED IN FIELD	FINAL Ph	1	METHOD	EQUIPMENT CODE	RATE (mL per min)
MW-10(10	2 (20) 2	HDPE	125 mL	no	ne	25	50	7.52	PFAS	- 8321B	ESP	1,894
								-22				
REMARKS: Y	No odo	15										
MATERIAL COD		Amber Glass; (CG = Clear Glace	PE = Polyeth	viene: PP = 0	olypropylene; S	S = Silicone; T =	Teflon 0 = 0	Other (Specify)			
SAMPLING/PUR	GING APP = /	After Peristattic Pu	mp; B = Bai	ler; BP = Bla	adder Pump;	ESP = Electric S	ubmersible Pump	PP = Peris	taltic Pump			
EQUIPMENT CO	DES: KEPP=	Reverse Flow Pe	ristatic Pump;	SM = Straw M	ethod (Tubing Gra	svity Drain);	VT = Vacuum Tra	p; O = Othe	r (Specify)			

<sup>The above do not constitute all of the information required by Chapter 62-160, F.A.C.

The above do not constitute all of the information required by Chapter 62-160, F.A.C.

The above do not constitute all of the information required by Chapter 62-160, F.A.C.

Three Consecutive Readings (SEE FS 2212, SECTION 3)

PH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2); optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)</sup>

Form FD 9000-24

SITE NAME:	Florida Sta	te Fire Colle	90			AUTE LOCATION	• 1	44055 NINA	0-1	D.I. Ossila	-	
						SITE LOCATION			Gainesville	Rd, Ocala,	FL.	
MELL NO: D	EPMW-1	1630-50)		SAMPLE ID: J	EPMW-	11 (30-50	သ)		DATE: 6 /08	3/2020	
			r		PUI	RGING DAT	ΓΑ				<u></u>	
DIAMETER (inc	ches): E PURGE: 1 WE	2 11 VOLUME = 7	TUBING DIAMETER (inci	nes): 3/1/1	D	WELL SCREEN) feet to 5	o feet	STATIC DEPTI	10 WATER	PURGE PUMP OR BAILER:	
(only fill out if a	ipplicable)	=	50	ft-	36.34	ft) X		gallons/foot =	2.2 gA	H	14= 0.1	ø
(only fill out if ap			= 0,1	gallons + (CAPACITY X	TUBING LEN	NGTH) + FLOW (CELL VOLUME feet)+	0,1	gallons		
INITIAL PUMP (DEPTH IN WEL	OR TUBING ~ 3	8.5	FINAL PUMP OF	. 7	8.5	PURGING INITIATED AT:	V-18	PURGING ENDED AT:	1646	TOTAL VOLUM PURGED (gallo		
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP_(°C)	COND. (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or % saturation)		COLOR (describe)	ORP (mV)	NOTES:
1630	2.5	2.5	0,5	36.71	5,30	25.73	62	6.46	98.1	It.white	254.8	
1632	1,0	3,5	0.5	36,71	5.48	25.40	76	10.40	42.7	1t. white		
16346	20	\$ 5	0.5	36.71	5,74	25.37	115	5.86	16,1	clear	228.9	
1638	1,0	6,5	0.5	36.71	5,78	25,48	118	5.85	14.1	clear	228,0	
1640	40	7.5	0.5	36.21	5,94	25,47	125	5,78	14.0	CLEAT	233.4	
642	1.0	9.5	0.5	3421	5.89	25.57	135	5,63	13.7	chear	238.7	
1644	60	9.5	0.5	32.71	5.91	25.57	136	5.66	12.2	clear	739.2	
444	1,0	6.5	0.5	36.71	5.96	25,42	142	5,51	11.5	clear	279.7	
											;	
										2.4		
NELL CAPACI	TY (Gallons Per Fe E DIA, CAPACITY	oot): 0.75" = 0.02	2; 1" = 0.04;	1.25" = 0.06; 2	2"=0.16; 3"=	0.37; 4" = 0.65 6" = 0.004; 3/			= 5.88		l	
OBINO INSIDE	E DIA. CAPACITI	(Gal./FL). 110 -	0.0006, 3716	= 0.0014, 1/4		PLING DA		2" = 0.010; 5/8	3" = 0.016			
	PRINT) / AFFILIAT			SAMPLER(S) SI	GNATURES:				SAMPLING	1. 11-	SAMPLING	
				11114			001		INITIATED AT:		ENDED AT:	48
FIELD DECONT	ING DEPTH IN WI	N N	(pump)	SAMPLE PUMP		per minute): FILTER SIZE:	894 um	TUBING MATE	DUPLICATE:	HDPE Y	<u> </u>	
	\			Filtration Equipm	ent Type:				DOI EIOATE.	. 6		
S/	AMPLE CONTAIN	ER SPECIFICATI	ON		SAM	PLE PRESERVA	TION		INTENDED	ANALYSIS	SAMPLING EQUIPMENT	SAMPLE PUMP FLOV
SAMPLE ID CODE	CODE CONTAINERS CODE VOLUME				TIVE USED		DDED IN FIELD	FINAL Ph	AND/OR	METHOD	CODE	RATE (mL per min
10-11(30%	2	HDPE	125 mL	no	ne	2	50	5,96	PFAS	- 8321B	ESP	6,894
REMARKS:	L										<u></u>	
MATERIAL COL	DES: AG =	Amber Glass;	CG = Clear Glass ump; B = Ba		ylene; PP = F		S = Silicone; T		Other (Specify)			
OHIDMENT CO	ODES: REPP =	Reverse Flow Pr	eristaltic Pump;		ethod (Tubing Gr		VT = Vacuum Tr		or (Specify)			

The above do not constitute all of the information required by Chapter 62-160, F.A.C.

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2); optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

SITE NAME:	Fs'	ビア				SITE	Ocala	· FL.			
WELL NO:			f	SAMI		LOCATION:		S = 1	DATE: 10.	9 -	
	DEFM	IM 15	(100-1	20) 9"		FPMW 12 RGING DA		0)		9. 2020)
WELL		TUBI			VELL SCREE	N INTERVAL	STATIC			E PUMP TY	
			IETER (inche:	S): ~/.&/ [DEPTH: 160	feet to 120 f	eet TO WAT	ER (feet): 51.	OR BA	AILER	ESP
(only fill ou	t if applicable)		= (120		51.64	feet) X			= 10.0	3
EQUIPMEI	NT VOLUME P	URGE: 1 EC				JBING CAPACI		UBING LENGTH	l) + FLOW CELL	VOLUME	gallons
(Orlly IIII Ou		(81	~	=	gallons + (gallo	ns/foot X	feet	i) +	gallons =	galions
	JMP OR TUBIN WELL (feet):	~53	FINALP	UMP OR TUB	ING ~ 5	3 PURGIN	G ED AT: 1541	PURGING ENDED AT:		TOTAL VOLU PURGED (ga	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURG RATE	DEPTH E TO WATER	PH (standar	TEMP	COND. (circle units) µmhos/cm or (uS/cm)	DISSOLVED OXYGEN (circle units)	TURBIDITY (NTUs)	COLOR (describe	ORP
1618	11.1	11.11	_ 3	51.90	6.94	25.27	531	% saturation	2.69	clear	156.7
1428	3	14.1	1	51.91		25.29	532	3.61	3.47	L1	157.6
1638	3	17.1		51.90			531	3.50	4.01	CI	158.8
1648	3	20.1		51.91		25.33	530	3.60	3.63	11	159.7
					-	-			-		
				_					-		
WELL CAP	PACITY (Gallon	s Per Foot):	0.75" = 0.02	1" = 0.04							2" = 5.88
	EQUIPMENT O		B = Bailer;	BP = Bladde	16" = 0.0014; er Pump:	1/4" = 0.0026 ESP = Electric 3	5; 5/16" = 0. Submersible Pu		eristaltic Pump;		8" = 0.016 er (Specify)
					SAM	PLING DA			onotatio i amp,	O Our	si (openiy)
	BY (PRINT) / A	1			S) SIGNATUI	4.0		SAMPLING	11.419	SAMPLING	11 ===
PUMP OR		GREO	SYMMEC	TUBING 1	esk. M	atris	FIELD.	SAMPLING INITIATED A' -FILTERED: Y	(N)	FILTER SIZ	1001
DEPTH IN	WELL (feet):	~53	(BTOC)	MATERIAL		HAPE	Filtration	on Equipment Ty	pe:		
	ONTAMINATIO			N	TUBING		placed)	DUPLICATE:	$\overline{}$	N MS	/MSD +
SAMPLE	PLE CONTAINE	R SPECIFIC MATERIAL		PRESERV		RESERVATION TOTAL VOL	FINAL	INTENDI ANALYSIS A		IPLING S	SAMPLE PUMP FLOW RATE
ID CODE	CONTAINERS	CODE	VOLUME	USE		ED IN FIELD (n		METHO	D C	ODE	(mL per minute)
ETHINIT	24	HTRE	125 ml	sce		~		PFAS	E	37 1	1140
1 225	-11	,_		77				BN 41-			77
MS D	1,	,,,			-	-		BNr			u
REMARKS:											
	SNW	ple tr	ne: 11	049			*	F MS M	SD take	an her	e
MATERIAL		kG = Amber	Glass; CG	= Clear Glass	s; PE = Po	iyethylene; I	P = Polypropyl				er (Specify)
SAMPLING	EQUIPMENT			Peristaltic Pum rse Flow Peris			Bladder Pump; Method (Tubing		ic Submersible F		
OTEC. 4	The above					Sivi - Straw i			O = Other (S	pecily)	

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP-SOP-001/01 FS 220 Groundwater Sampling Form FD 9000-24

SITE NAME:	Florida Sta	ite Fire Colle	ge			SITE LOCATIO	N:	11655 NW	Gainesville	Rd, Ocala	, FL	
WELL NO: D	EPMW-1	13640-6	0)		SAMPLE ID: 🕽	EPMW-1	3 (40-60	9)		DATE: 6/C	09/2020	,
Total C			Tables to the same of the same		PUI	RGING DA						
WELL DIAMETER (inc	hes):	2	TUBING DIAMETER (inc	hes): 3/8"		WELL SCREEN DEPTH:	D toot to	o feet	STATIC DEPTH	TO WATER	PURGE PUMP OR BAILER:	
(only fill out if a	PURGE: 1 WE	LL VOLUME = (T	OTAL WELL DEF	TH - STATIC	DEPTH TO WATE 51,57	R) X WELL (CAPACITY				1/4=0,	
EQUIPMENT V	OLUME PURGE:	1 EQUIPMENT V					O. 16 NGTH) + FLOW (gallons/foot = CELL VOLUME	1.391		4 - 1	
(only fill out if ap		=		gallons + (gallons/foot X	•	feet)+	0.1	gallons	(=	
INITIAL PUMP (DEPTH IN WEL	OR TUBING	53.5	FINAL PUMP O	R TUBING L (feet): ~5	3.5	PURGING INITIATED AT:	1018	PURGING ENDED AT:	1114	TOTAL VOLU	ME lons): 33.6	•
	VOLUME	CUMUL. VOLUME	PURGE RATE	DEPTH TO	pH (standard		COND	OXYGEN (circle		COLOR	ORP	`
TIME	PURGED (gallons)	PURGED (gallons)	(gpm)	WATER (feet)	units)	TEMP _{(C})	(µmhos/cm or µS/cm)	mg/ or % saturation)	(NTUs)	(describe)	(mV)	NOTES:
1022	1,6	1.6	0.4	51.79	6.82	24.10	511	4.53	OUELRAVER	white	206,1	
1040	7,2	8.8	0.4	51,78	6.90	23.73	502	4.57	166	Itakite	(84.9	
1100	8.0	16.8	0.4	51.79	6,92	23.76	497	4,63	34.2	clear	197.3	
1110	4.0	20.8	6,4	51.79	6.92	23.78	496	4,60	20.5	clear	199.4	
1112	0.8	21.6	0.4	5178	6.93	23.84	496	4.59	18.0	clier	200.1	
1114	6.8	22.4	6,4	5679	6.93	23.80	494	4.62	18:2	Close	1950	
1116	6.8	23,2	0,4	51.79	6.92	23,81	496	4,54	17.1	clear	1967	
				2 2 1	**	, , , , , , , , , , , , , , , , , , ,				-0.00	1.110	
WELL CAPACIT	Y (Gallons Per Fo	oot): 0.75° = 0.02	2; 1" = 0.04;	1.25" = 0.06;	2"=0.16; 3"=	0.37; 4" = 0.65	5" = 1.02;		= 5.88			
		(GaL/Ft.): 1/8" =	0.0006, 3/16	= 0.0014; 1/4"		PLING DA		2" = 0.010; 5/8	" = 0.016			
SAMPLED BY (F JJ Hollingsl				SAMPLER(S) SIG	GNATURES:				SAMPLING	11.0	SAMPLING	11.4
		ELL (feet): 1	2 ~		mm.	9 53 7	الرب ا		INITIATED AT:	111/	ENDED AT:	118
FIELD DECONTA		N N	(pump)	FIELD-FILTERED	FLOW RATE (mL D: Y (N)	per minute): FILTER SIZE:	1,515 um	TUBING MATE	DUPLICATE:		3	
	MDI E CONTAIN	ED ODEOIEIOATI	011	Filtration Equipm	ent Type:							
SAMPLE ID	#	ER SPECIFICATION MATERIAL	ON		SAM	PLE PRESERVA				ANALYSIS METHOD	SAMPLING EQUIPMENT	SAMPLE PUMP FLOW RATE
CODE	CONTAINERS	CODE	VOLUME	PRESERVA	TIVE USED		DDED IN FIELD IL)	FINAL Ph	ANDIOR	WETHOD	CODE	(mL per min)
W13 (dole	0) 4	HDPE	125 mL	no	ne	2:	50		PFAS -	8321B	ESP	1,515
												/
REMARKS: V	ساداده ها	i, group	durator "	shite at -	which	· DTG)	asurd fr	em ton a	12 D.C. 4	State	· Az- 101	S N
										STEEDING	1 20/00/	40
MATERIAL COD SAMPLING/PUR	GING APP = A	Amber Glass; C After Peristaltic Pu	mp; B = Bai	ler, BP = Bia	dder Pump;	ESP = Electric S	S = Silicone; T = ubmersible Pump	p; PP = Perist				
NOTES: 1	The above do n	Reverse Flow Pe	of the informatio	n required by Ch	ethod (Tubing Gra apter 62-160, F.J	A.C.	VT = Vacuum Tra		r (Specify)	11		
	pH: + 0.2 units Te	CRITERIA FOR emperature: + 0.3 mg/L or + 10% (v	2 oC Specific Co	nductance: + 5%	Dissolved Oxy	gen: all readings	< 20% saturation	(see Table FS 22	00-2);			1
	-parenany, + 0.2	yr = 01 + 10% (\		acer) rurbidity: a	n readings < 20 N	110, optionally + 5	N 10 OF + 10% (V	willcnever is great	er)			

SITE NAME:						ITE OCATION:					
WELL NO:	DEPMU	0 14 (1	00-120)	SAMPLE	ID: DE	I WMA	4 (100-1	20)	DATE: 6	11-202	 ⊘
					PUR	GING DA	TA		(870C)		
WELL DIAMETER	. (TUBII DIAM	ETER (inches):	B DEF	PTH: 100 fe	INTERVAL eet to 120 fe	STATIC eet TO WAT	ER (feet): 39	OR B	E PUMP TY AILER:	4 2 3 ⁼⁹
(only fill ou	LUME PURGE: t if applicable)	: 1 WELL V	DLUME = (TO	TAL WELL DEP	TH - STA	TIC DEPTH T	O WATER) X	WELL CAPAC		= 12.9	ધ
EQUIPMEN	NT VOLUME P	URGE: 1 EC		L. = PUMP VOL	UME + (TUE	BING CAPACI		UBING LENGTH	f) + FLOW CELI	VOLUME	7 gallons
(Only IIII Ou	t if applicable)	/6	10c)	= ga	allons + (gallo	ns/foot X	fee	t) +	gallons =	gallons
	IMP OR TUBIN WELL (feet):	1G-41	FINAL PU	MP OR TUBING WELL (feet):	~41	PURGIN INITIATE	G ED AT: /35		1452	TOTAL VOLU PURGED (ga	JME allons): 24.0
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) (mg/L) or % saturation	TURBIDITY (NTUs)	COLOR (describe	
1425	13.2	13.2	4	39.23	6.88	26.23	535	3.30	1.44	clear	-22.3
1434	3. le	16.8		39.23	6.87	26.19	537	3.35	1.05	16	-16.6
1443	3.6	20.4			6.86	26.13	541	3.27	.90	11	-3.0
1452	3.6	24.0	1	39.23	6.86	26.10	545	3.22	.70	11	16.3
	ACITY (Gallon				1.25" = 0.0	6; 2" = 0.16	3" = 0.37;	4" = 0.65;	5" = 1.02; 6'	" = 1.47; 1	2" = 5.88
	SIDE DIA. CAI EQUIPMENT C				= 0.0014;	1/4" = 0.0026					/8" = 0.016
TORGING	LQOIP WILLIAT C	ODES. I	5 - Dallel,	BP = Bladder P		LING DA	Submersible Pu	imp; PP = P	eristaltic Pump;	O = Oth	er (Specify)
	BY (PRINT) / A	1		SAMPLER(S)				SAMPLING		SAMPLING	
	PATHINS	/ GEO	SYNTEC	Kik	Mas	ting		INITIATED A		ENDED AT	1454
PUMP OR 1 DEPTH IN \	NELL (feet): 🍍	~41	(\$100)	TUBING MATERIAL CO	DDE:	HDPE		FILTERED: Y on Equipment Ty		FILTER SIZ	:E: μḿ
	ONTAMINATIO		MP 🗑 N		TUBING	Y (re	placed)	DUPLICATE:	Y	®	
SAMP	LE CONTAINE	R SPECIFIC	ATION		SAMPLE PF	RESERVATION	١	INTEND			SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATI'		TOTAL VOL D IN FIELD (m	FINAL	ANALYSIS A		JIPMENT CODE	(mL per minute)
PIOMA	2	HDPE	125ml	ice	7,002		4.86	PFAS	E:	5 P	~ 1520
				•							
		10									
			6.								
REMARKS:	- A	III NIC	مرور الشيور							,	
MATERIA:	- 0.	el4my			53						
MATERIAL SAMPLING	EQUIPMENT	AG = Amber	Glass; CG = APP = After Pe	Clear Glass;	PE = Poly		PP = Polypropy				ner (Specify)
			RFPP = Revers	e Flow Peristalt		SM = Straw N	Bladder Pump; Method (Tubing	Gravity Drain);	ric Submersible O = Other (S		

OTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

^{2.} STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24

SAMPLE ID CODE WATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL Ph AND/OR METHOD CODE (mL per mir (mL) FINAL Ph	SITE NAME:	Florida Sta	te Fire Colle	ge			SITE LOCATION	Gainesville Rd, Ocala, FL					
DELINE COUNTY C	WELL NO: T) tomo	-15/35	-55)		SAMPLE ID:	DEPMU	15 (35-	55) DATE: 6/11/2020				
DAMETER GOVERNING (1974) THE CONTROL OF THE POST OF THE CONTROL OF				100		PUF	RGING DAT	Α					
WELL CAPACITY (CALINE PURCE 1 EXCENPENT VOL. = FLORE DEPTH O WATER) A VELL CAPACITY (CALINE PURCE 1 EXCENPENT VOL. = FLORE PURCE 1 CAPACITY (CALINE PURCE 1 EXCENPENT VOL. = FLORE PURCE 1 CAPACITY (CALINE PURCE 1 EXCENPENT VOL. = FLORE PURCE 1 CAPACITY (CALINE PURCE 1 EXCENPENT VOL. = FLORE PURCE 1 CAPACITY (CALINE PURCE 1 EXCENPENT VOL. = FLORE PURCE 1 CAPACITY (CALINE PURCE 1 EXCENPENT VOL. = FLORE PURCE 1 CAPACITY (CALINE PURCE 1 EXCENPENT VOL. = FLORE PURCE 1 CAPACITY (CALINE PURCE 1 EXCENPENT VOL. = FLORE PURCE 1 CAPACITY (CALINE PURCE 1 CAPACITY (CAPACITY CAPACITY C	I.	hes):	2	1	nes): 3/4"	TD	WELL SCREEN	INTERVAL 5 feet to 5	5 feet	STATIC DEPTH	TO WATER	1	
BOUTHER PURSER: FULL PRIVATE VOLUME FULL PRIVATE VOLUME FULL PRIVATE FULL	WELL VOLUME	PURGE: 1 WE	LL VOLUME = (T =(OTAL WELL DEP	TH - STATIC	DEPTH TO WATE	R) X WELLC	APACITY		gallons/foot = 2.5 gal			
STATE PURPOR TUBING				OL, = PUMP VOL	UME + (TUBING		TUBING LEN		CELL VOLUME		collana	_	
DEPTH N NELL (DATE) DEPTH N NELL (DATE) DEPTH TO	INITIAL DUMO	20 TUDING					-			0,1			
TIME PURICED PURICES AND COURS OF THE PROPERTY OF MILESTAND OF MARKET PROPERTY PROPERTY PROPERTY OF MARKET PROPERTY OF MARKET PROPERTY PROPERTY PROPERTY OF MARKET PROPERTY PR			• •	1	N. 1	2.5		1367		1324		_ 1	
31 8 8 6 3 3 0 3 4 6 1 7 8 5 6 4 6 1 1 1 5 8 4 5 6 1 1 5 8 4 6 1 1 1 5 8 4 6 6 6 6 6 6 6 6 6	TIME	PURGED	VOLUME PURGED			units)		COND. (µmhos/cm or µS/cm)	mg/Cor %				NOTES:
3	1316	2.7	2.7	0.3	41.05	676	24,96	656	1.97		clear		
3 A Q	1318	B.6	3.3	0.3	41.05	6.78	25.09	669	1.95	21.2	clear	269.8	
3 A Q	1329	0-6	3,9	0.3	41.06	6.78	25.04	672	1.65	8.45	clear	269.8	
WELLCAPACITY (Gallons Per Foot) 0.75° = 0.02. 1° = 0.04. 1.25° = 0.08. 2° = 0.10; 3° = 0.37. 4° = 0.08. 5° = 1.02; 6° = 1.47; 12′ = 8.88 WELLCAPACITY (Gallon): 16° = 0.005. 3° 16° = 0.004. 1.26° = 0.004. 28′ = 0.008. 12′ = 0.010. 58′ = 0.016 SAMPLE OB (PRINT) (AFFILIATION J Hollingshead/Geosyntec SAMPLING SAMPLERS) SIGNATURES SAMPLING SAMPLERD (Signatures)	1322	0.6	4.5	4.3	41.06	6.77	25.01	67a	1.55	7.45	clerr	271.0	
TUBING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLE PLOW RATE (mL per minute): 34c TUBING MATERIAL CODE: HDPE SAMPLED DATA SAM	1324	0.4	5.1	0.3	41.05	4.77	25,02	670	1.53	6,00	chear	274.1	
TUBING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURES: SAMPLE PUMP FLOW RATE (mL per minute): 36 TUBING MATERIAL CODE: HDPE													
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec PUMP OR TUBING DEPTH IN WELL (feet): 1.44.5 SAMPLE PUMP FLOW RATE (mL per minute): 1/3/e FIELD DECONTAMINATION: N (pump) FIELD-FILTERED: Y () FILTER SIZE: µm DUPLICATE: Y SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE ID (mL) FINAL Ph MATERIAL CODE: MATERIAL CODE: HDPE OONTAINERS MATERIAL CODE: MATERIAL CODE HDPE TOTAL VOL ADDED IN FIELD FINAL Ph RATE (mL) FIN													ļ,
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 6/16" = 0.004: 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016													
TUBING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLE PLOW RATE (mL per minute): 34c TUBING MATERIAL CODE: HDPE SAMPLED DATA SAM													
TUBING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURES: SAMPLER(S) SAMPLER													
TUBING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURES: SAMPLE PUMP FLOW RATE (mL per minute): 36 TUBING MATERIAL CODE: HDPE													
TUBING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLE PLOW RATE (mL per minute): 34c TUBING MATERIAL CODE: HDPE SAMPLED DATA SAM													
TUBING INSIDE DIA. CAPACITY (Gal/FL): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 5/16" = 0.004; 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016 SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec PUMP OR TUBING DEPTH IN WELL (feet): 1.44.5 SAMPLE PUMP FLOW RATE (mL per minute): 1/3/e FIELD DECONTAMINATION: N (pump) FIELD-FILTERED: Y () FILTER SIZE: µm DUPLICATE: Y SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE PRESERVATION SAMPLE ID (mL) FINAL Ph MATERIAL CODE: MATERIAL CODE: HDPE OONTAINERS MATERIAL CODE: MATERIAL CODE HDPE TOTAL VOL ADDED IN FIELD FINAL Ph RATE (mL) FIN													
TUBING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLE PLOW RATE (mL per minute): 34c TUBING MATERIAL CODE: HDPE SAMPLED DATA SAM													
TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/8" = 0.0006; 3/16" = 0.0014; 1/4" = 0.0026; 6/16" = 0.004: 3/8" = 0.006; 1/2" = 0.010; 5/8" = 0.016													ų.
SAMPLED BY (PRINT) / AFFILIATION: JJ HOllingshead/Geosyntec SAMPLE PUMP FIRE PUMP FLOW RATE (mL per minute): SAMPLE PUMP FIRE PUMP FLOW RATE (mL per minute): SAMPLE PUMP FIRE PUMP FLOW RATE (mL per minute): SAMPLE PUMP FIRE PUMP FLOW RATE (mL per minute): SAMPLE PUMP FIRE PUMP FLOW RATE (mL per minute): SAMPLE PUMP FLO											<u>.</u>		
SAMPLED BY (PRINT) / AFFILIATION: J Hollingshead/Geosyntec SAMPLER(S) SIGNATURES: SAMPLING INITIATED AT: (325) SAMPLING ENDED AT: J 32/ SAMPLING ENDE													
PUMP OR TUBING DEPTH IN WELL (feet): A CD . SAMPLE PUMP FLOW RATE (mL per minute): 1 34 TUBING MATERIAL CODE: HDPE FIELD DECONTAMINATION: N (pump) FIELD-FILTERED: Y N Filtrestize: µm DUPLICATE: Y N SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION SAMPLE ID # MATERIAL CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL Ph (mL) FINAL					SAMPLER(S) SI		1				سے حدد	SAMPLING	20.1
FIELD PECONTAMINATION: N (pump) FIELD-FILTERED: Y N FILTER SIZE: µm DUPLICATE: Y N SAMPLE PRESERVATION SAMPLE CONTAINERS PECIFICATION SAMPLE ID CODE CONTAINERS CODE VOLUME PRESERVATIVE USED TOTAL VOLADDED IN FIELD (mL) FINAL Ph MATERIAL CODE: AG A miber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon, O = Other (Specify) MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PP = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon, O = Other (Specify) MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PF = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon, O = Other (Specify) MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PF = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon, O = Other (Specify) SAMPLING INTERNAL CODES: AG = Amber Glass; CG = Clear Glass; PF = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon, O = Other (Specify) MATERIAL CODES: AG = Amber Glass; PF = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon, O = Other (Specify)				12		11/1/10		121.				ENDED AT:	Jala
SAMPLE CONTAINER SPECIFICATION SAMPLE PRESERVATION INTENDED ANALYSIS AND/OR METHOD RATE (mL) PRAS - 8321B ESP 1//36 REMARKS: **TOTAL VOL ADDED IN FIELD (mL) FINAL Ph PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) PRAS - 8321B ESP 1//36 **TOTAL VOL ADDED IN FIELD (mL) PRAS - 8321B E			_					(e)-)	
SAMPLE ID CODE CONTAINERS CODE VOLUME PRESERVATIVE USED TOTAL VOL ADDED IN FIELD (mL) FINAL Ph INTENDED ANALYSIS AND/OR METHOD RATE (mL) PFAS - 8321B ESP 1/36 REMARKS: ** MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene; PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING OPP = After Peristaltic Pump; B = Bailer; BP = Elactific Submersible Pump; PP = Peristaltic Pump					Filtration Equipm	ent Type:					- 0	ĺ	
SAMPLE ID # MATERIAL CODE CONTAINERS CG = Clear Glass; PE = Polyethylene, PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene, PP = Polypropylene; SP = Electric Submersible Pump; PP = Peristallic Pump	SA	AMPLE CONTAIN	IER SPECIFICATI	ON		SAN	IPLE PRESERVA	TION		1			PUMP FLOW
REMARKS: + No add - S MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene, PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING/PURGING APP = After Peristaltic Pump; B = Bailer, BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump	CODE	CONTAINERS		VOLUME	PRESERVA	ATIVE USED				AND/OR	METHOD		(mL per min)
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene, PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING/PURGING APP = After Peristallic Pump; B = Bailer, BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristallic Pump PP = Peristallic Pump	MW-15135	55) ²	HDPE	125 mL	no	ne	25	50	(e'77	PFAS	- 8321B	ESP	1,136
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene, PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING/PURGING APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump									-				
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene, PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING/PURGING APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump													
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene, PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING/PURGING APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump													
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene, PP = Polypropylene; S = Silicone; T = Teffon; O = Other (Specify) SAMPLING/PURGING APP = After Peristaltic Pump; B = Bailer, BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump													
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene, PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING/PURGING APP = After Peristallic Pump; B = Bailer, BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristallic Pump PP = Peristallic Pump													
MATERIAL CODES: AG = Amber Glass; CG = Clear Glass; PE = Polyethylene, PP = Polypropylene; S = Silicone; T = Teflon; O = Other (Specify) SAMPLING/PURGING APP = After Peristaltic Pump; B = Bailer; BP = Bladder Pump; ESP = Electric Submersible Pump; PP = Peristaltic Pump	REMARKS:	No oder	 5										
	MATERIAL COL	DES: AG =	Amber Glass;										
EQUIPMENT CODES: RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); VT = Vacuum Trap; O = Other (Specify) NOTES: 1 The above do not constitute all of the information required by Chapter 62-160, F.A.C.	EQUIPMENT CO	DDES: RFPP	Reverse Flow Pe	eristaltic Pump;	SM = Straw M	ethod (Tubing Gr	avity Drain);						

² STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2);
optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

SITE NAME:	FSF	c			7.04	ITE OCATION:	Ocala,	FL			
WELL NO:	DEAM	w 16	(30-50	SAMPLE II	DEA	mw 16	(30-50)		DATE: 6	·11-702	o
					PURC	GING DA		- /	870c)		
WELL DIAMETER	(inches)	TUBI DIAN	NG IETER (inches)			INTERVAL set to 50 fe	STATIC D	ER (feet): 34. 2	→ PIIR	GE PUMP TYP	ESP
WELL VOL	UME PURGE	: 1 WELL V	OLUME = (TO	TAL WELL DEPTH	H - STA	TIC DEPTH T	O WATER) X	WELL CAPACI	TY	SAILER:	057
-	t if applicable)		= (5b		4.85	feet) X	.16	gallons/foo	= 2.42	z gallons
EQUIPMENT Only fill out	NT VOLUME P t if applicable)	URGE: 1 E	QUIPMENT VO	L. = PUMP VOLU	ME + (TUE	BING CAPACI	ΓΥ Χ ΤΙ	JBING LENGTH)	+ FLOW CEL	L VOLUME	3
		(81	o c)		ons + (ns/foot X	feet)	+	gallons =	gallons
	MP OR TUBIN WELL (feet):	G 34	FINAL PL DEPTH II	JMP OR TUBING N WELL (feet):	~ 34	PURGIN	G DAT: 0956		1033	TOTAL VOLUM PURGED (gall	ME 4.30
TIME	VOLUME PURGED (gallons)	CUMUL VOLUMI PURGEI (gallons	E PURGE RATE	DEPTH TO WATER (feet)	pH standard units)	TEMP. (°C)	COND. (circle units) µmhos/cm or uS/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)
015	2.50	2.5	01.10	35.25	10:71	24.55	blela	79	9.99	clear	54.5
150	.60	3.10	1	35.25	0.71	24.55	جاعاما	,82	9.25	15	56.6
627	00.	3.70		35.25	0.70	24.57	lele7	. 83	5.63	41	55.4
033	. 60	4.30	l	35.25	0 70	24.59	667	84	3.91	11	54,4
UBING IN: URGING E	SIDE DIA. CAI	PACITY (Gal	B = Bailer;	0.0006; 3/16" = 0 BP = Bladder Pun	ip; E	1/4" = 0.0026 SP = Electric S LING DA	5; 5/16" = 0.0 Submersible Pun	04; 3/8" = 0.		= 0.010; 5/8	" = 5.88 " = 0.016 (Specify)
NLM	BY (PRINT) / A LATHI AS	1 .	HUTEC	SAMPLER(S) SI	MOS	(S):		SAMPLING INITIATED AT	1034	SAMPLING ENDED AT:	1036
UMP OR T	ΓUBING NELL (feet): °	~ 36	(BTac)	TUBING MATERIAL COD	E: #	BAE		FILTERED: Y	<u>(M)</u>	FILTER SIZE	μm
IELD DEC	ONTAMINATIO	ON: PU	MP		UBING	Y (reg	placed	DUPLICATE:	(7)	DO BM.	*
SAMP	LE CONTAINE	R SPECIFIC	CATION	SA	MPLE PR	ESERVATION		INTENDE	D SA	- James	AMPLE PUMP
SAMPLE D CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED		OTAL VOL D IN FIELD (m	FINAL	ANALYSIS AN METHOD	_		FLOW RATE nL per minute)
Pervole	Z	HOPE	125 ml	ıce	AUDE	D IN TIELD (III	(.70	PFAS	E		-380
							<u>.</u>				
EMARKS:	SAM	ple 7	IIME :	1034			* DUP	collected	here "	DEPMW IL	(30-56) Du
IATERIAL		AG = Ambe	TIME:		PE = Poly	ethylene; F	P = Polypropyle			- •	(30-56) Du r (Specify)

pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater) Turbidity: all readings ≤ 20 NTU; optionally ± 5 NTU or ± 10% (whichever is greater)

The above do not constitute all of the information required by Chapter 62-160, F.A.C.
 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	FSF	-c				ITE DCATION:	Oodo	∼ ,	Fr.			
WELL NO:	DEPV	F1 W1	(100-1	SAMPLE ID:	94	FMW 1=	+ /10	0-1	20\	DATE: 6	11.202	20
					PURC	SING DA	TA		/1	-18a \		
WELL DIAMETER		TUBII	ETER (inches)	: 🏸 👸 DEPTH	: 100 fe	INTERVAL eet to 120 fe	eet TO	ATIC D WATE	R (feet): 34.4	45 OR	GE PUMP T BAILER:	YPE ESP
WELL VOL (only fill out	UME PURGE: t if applicable)	1 WELL V		TAL WELL DEPTH	227		O WATER	R) X	WELL CAPACI	TY	.2	1000
EQUIPMEN	NT VOLUME P	URGE: 1 EC	= (QUIPMENT VO	120 fee L. = PUMP VOLUM	et – 3° E + (TUE	4.45 BING CAPACIT	fee TY X	t) X TU	BING LENGTH)	+ FLOW CEI	t = 13.	gallons
(Orlly fill Out	і і арріісавіе)	/8	166)	= gallor	ıs + (gallo	ns/foot X		feet)	+	gallons	= gallons
	MP OR TUBIN WELL (feet):	IG	FINAL PU	MP OR TUBING WELL (feet):	-34.	5 PURGING INITIATE	G DAT: /	757	PURGING ENDED AT:	1202	TOTAL VOI PURGED (9	LUME gallons): Z6. D
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)		WATER (S	pH tandard units)	TEMP (°C)	COND (circle ur µmhos/ or µS/c	nits) cm	OXYGEN (circle units) (mg/L) or % saturation	TURBIDIT' (NTUs)	Y COLO (descril	
1132	14.0	14.0	.4	35.97 7	.37	24.89	458		.47	7.02	Clear	51.2
1142	4.0	18.0			.36	14.92	457		.51	6.19	11	-56.7
1152	4.0	22.0			.34	24.94	452	_	160	3.72	11	-54.6
1202	4.0	26.0		35.97 7	.33	z4.94	451		. ble	3.13	11	-56.3
		1										
				-								
MELL CAD	A OITM (O III			411 - 2.21								
TUBING IN	ACITY (Gallon SIDE DIA. CAI	PACITY (Gal	/Ft.): 1/8" = 0	.0006; 3/16" = 0		6; 2" = 0.16 1/4" = 0.0026		0.37; ''' = 0.0	4" = 0.65; 8 104; 3/8" = 0.		6" = 1.47; = 0.010;	12" = 5.88 5/8" = 0.016
PURGING I	EQUIPMENT C	ODES:	3 = Bailer;	BP = Bladder Pum		SP = Electric S		le Pur	np; PP = Pe	ristaltic Pump	o; O = O	ther (Specify)
SAMPLED	BY (PRINT) / A	FFILIATION		SAMPLER(S) ŞIG			IA_		SAMPLING		SAMPLIN	
RIKM	ATHIAS	6608	INTEL	Rik	Mat	trint			INITIATED AT	1203	ENDED A	
PUMP OR 1 DEPTH IN \	TUBING NELL (feet):	€36.5	(BTEC	TUBING MATERIAL CODE	: 1	HAPE			FILTERED: Y n Equipment Typ	ne:	FILTER S	IZE: μm
FIELD DEC	ONTAMINATIO	ON: PU	200	/	UBING		placed)		DUPLICATE:	(((((((((((((803	4
SAMP	LE CONTAINE	R SPECIFIC	ATION	SAM	MPLE PR	RESERVATION	1		INTENDE		AMPLING	SAMPLE PUMP
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED		OTAL VOL D IN FIELD (m		NAL oH	ANALYSIS AN METHO		UIPMENT CODE	(mL per minute)
FI was	2	HDAE	125 ml	1ce	ADDL	D IN TIELD (II	,,, ,,	,,,,	PFAS	F	42	~1570
Dup	VI	Į!	71	11			7:	33	11		10	11
	7											
REMARKS:				A D	1		a k 4		11 1	0 -		
		7	me: 1						P collect		ere	
MATERIAL SAMPLING		AG = Ambe					PP = Polyr					Other (Specify)
JAMITLING	EQUIPMENT			eristaltic Pump; se Flow Peristaltic F	B = Bail Pump;		Bladder Pu Method (Ti		ESP = Electri Gravity Drain);	O = Other		

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

Form FD 9000-24

SITE NAME: Florida State Fire Co	lege			SITE LOCATION: 11655 NW Gainesville Rd, Ocala, FL						
MELL NO: DEPMW-18(10C	·-(20·)		SAMPLE ID:	DEPIMW-18 (100-120) DATE: 6/08/2020)
			PUF	RGING DAT	ΓA					
WELL 2 DIAMETER (inches):	TUBING DIAMETER (inc	thes): '3/g '' 1	D	WELL SCREEN	INTERVAL feet to	20 feet	STATIC DEPTH	TO WATER	PURGE PUMP OR BAILER:	
WELL VOLUME PURGE: 1 WELL VOLUME = (only fill out if applicable)	=(20	PTH - STATIC	5,25	R) X WELLC	64,75	gallons/foot =	10.36	1/4	1=2.59 9	M
EQUIPMENT VOLUME PURGE: 1 EQUIPMEN (only fill out if applicable)	T VOL. = PUMP VO = 0.1	LUME + (TUBING gallons + (CAPACITY X	CITY X TUBING LENGTH) + FLOW CELL VOLUME gallons/foot X feet)+			0.1 gallons =			
INITIAL PUMP OR TUBING	FINAL PUMP O			PURGING	ulal	PURGING		TOTAL VOLUM		
DEPTH IN WELL (feet): 57	DEPTH IN WEL	L (feet):		INITIATED AT:	1401		440	PURGED (gall	ons): 20,0	
TIME PURGED PURGED (gallons) (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:
1422 11.0 11.0	0,5	57.56	6.95	23.54	784	0.15	13.6	elear	-79.9	
H28 3.0 14.0	0.5	57,44	6.94	24,06	784	0.14	15.8	CLEAR	-89.9	
1434 3.0 17.0	0.5	5742	6.97	24.12	784	0.13	11.1	CLEAS	-95.5	
1440 30 20.0	0.5	57.43	6,96	24.15	784	0.12	11.4	ctear	-101.9	
										1
5/i. s.										
WELL CAPACITY (Gallons Per Foot): 0.75" = 0 TUBING INSIDE DIA. CAPACITY (Gal./Ft.): 1/0	0.02; 1" = 0.04; 3" = 0.0006: 3/16	1,25" = 0,06; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		0.37; 4" = 0.65 6" = 0.004; 3/6			= 5.88 1" = 0.016	<u></u>)	
<u></u>				PLING DA			0.010			
SAMPLED BY (PRINT) / AFFILIATION:		SAMPLER(S) SI	GNATURES:				SAMPLING		SAMPLING	
JJ Hollingshead/Geosyntec		11111	1211.				INITIATED AT:	1441	ENDED AT:	442
PUMP OR TUBING DEPTH IN WELL (feet):	0	SAMPLE PUMP	FLOW RATE (ml	per minute): (894	TUBING MATE	ERIAL CODE:	HDPE		
FIELD DECONTAMINATION: N	(pump)	FIELD-FILTEREI	D: Y (N)	FILTER SIZE:	μm		DUPLICATE:	Y	9	
SAMPLE CONTAINER SPECIFIC	ATION	T III audit Equipit		IPLE PRESERVA	TION		INTENDED	ANALYSIS	SAMPLING	SAMPLE PUMP FLOW
SAMPLE ID # MATERIAL CODE CONTAINERS CODE	VOLUME	PRESERVA	ATIVE USED	TOTAL VOL AD		FINAL Ph	INTENDED ANALYSIS AND/OR METHOD		EQUIPMENT	RATE (mL per min)
MW-i8(150-130) 2 HDPE	125 mL	no	one	25	50	6.96	PFAS	- 8321B	ESP	1,894
	-									
REMARKS: V		L		-100	· ·					
4 No odos; coll										
MATERIAL CODES: AG = Amber Glass; SAMPLING/PURGING APP = After Peristaltic	Pump; B = Ba		nyiene; PP = F adder Pump;	Polypropylene; S ESP = Electric S	= Silicone; T = ubmersible Pump		Other (Specify) taltic Pump			
NOTES: 1 The above do not constitute			ethod (Tubing Grahapter 62-160, F.		VT = Vacuum Tra	p; O = Othe	r (Specify)			

pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2); optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

ITE IAME:	FSFC					ITE OCATION:	Ocala	FL			
VELL NO:	DEPM	w 19 ((55-75)	SAMPLE	ID: Dé	wm 45	19 (55	-75)	DATE: 6	.8.202	ø)
					PUR	GING DA	TA	(8	TEC)		N.
VELL HAMETER	(inches): 7	TUBI	NG IETER (inches):			INTERVAL eet to	STATIC I	DEPTH ER (feet): 55.	+ PUR	GE PUMP TYP BAILER:	ESP
VELL VOL	UME PURGE:		OLUME = (TOT		TH - STA	ATIC DEPTH	O WATER) X	WELL CAPAC	TY OR E	PAILER.	001
	if applicable)		= (75	feet -	55.42	feet) X	. 16	gallons/foot	= 3.13	gallons
QUIPMEN only fill out	IT VOLUME P if applicable)	URGE: 1 EC	QUIPMENT VOL	. = PUMP VOLU	JME + (TUI	BING CAPACI	TY X TI	UBING LENGTH	+ FLOW CEL	L VOLUME	======================================
UTIAL BUI	MD OD TUDIN	57(8			lons + (ons/foot X	feet)	+	gallons =	gallons
	MP OR TUBIN WELL (feet):	~5+	DEPTH IN	IP OR TUBING WELL (feet):	15	PURGIN	G ED AT: 1404	PURGING ENDED AT:	1422	TOTAL VOLUI PURGED (gall	
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE	DEPTH TO WATER (feet)	pH (standard units)	TEMP.	COND. (circle units) µmhos/cm or µS/cm	DISSOLVED OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	(describe)	ORP (mV)
416	5.00	5.00	.50	50.02	6.92	24.86	602	2.50	30.3	Goud	207.8
418	1.00	6.00		56.02	90	24.80	601	2.55	29.8	CLIBAR	Z.885
420	1.00	7.00		66.02		29.79	600	2.59	Z9.1	11	207.3
122	(.00	8.00		56.02	289	24.79	600	2.62	28.7	II.	205.7
			_					- 11			
						†					
			0.75" = 0.02; I./Ft.): 1/8" = 0.0		1.25" = 0.0	V0.7/ (6565)/					" = 5.88
	QUIPMENT C		and the state of t	3P = Bladder Pt			6; 5/16" = 0. Submersible Pur		ristaltic Pump		" = 0.016 r (Specify)
					SAMP	LING DA			7.		
2001240	BY (PRINT) / A		STATEC	SAMPLER(S)	SIGNATUR	H .		SAMPLING INITIATED AT	1423	SAMPLING	1424
UMP OR T	***************************************	100	/ \	TUBING	@ /VI	acpro	FIELD	-FILTERED: Y		ENDED AT:	
	VELL (feet):	US 7	(DOTEC)	MATERIAL CO		HDPE	Filtratio	on Equipment Ty	_		- μη
	ONTAMINATIO				TUBING		placed)	DUPLICATE:	Y (W _	
	LE CONTAINE #	MATERIAL		PRESERVATIV		RESERVATIO	FINAL	INTENDE ANALYSIS AI			AMPLE PUMP FLOW RATE
CODE	CONTAINERS	CODE	VOLUME	USED		D IN FIELD (nL) pH	METHO			mL per minute)
PI-COM	2	HOPE	125 ml	Ice	_		6.89	PFAS	E	SP ~	1900
							_				
-								-			
								-			
EMARKS:	SAMI	LET	ME: 12	123				Turi	s: star	ted his	4/623
ATERIAL	CODES:	AG = Ambe		Clear Glass;	PE = Poly	vethylene:	PP = Polypropyl	ene; S = Silico	ne; T = Tefl	ou. U = Oth	er (Specify)
4 1 FIXIAL 1											

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

SITE NAME:	FSF	C			17.00	ITE OCATION:	Ocalo	n. Fl			
WELL NO	DEP	mw z	0 (35%	SAMPLE I		EP MW Z	0 (35-5	55)	DATE: 6	·10·202	e D
					_	GING DA	TA		(2010C)		
	it (interior).		ETER (inches):	DEPT	H: 35 fe	INTERVAL eet to 55	eet TO WAT	ER (feet):	OR B	GE PUMP TYPI BAILER:	ESA
(only fill or	ut if applicable)	; 1 WELL V	OLUME = (TO			TIC DEPTH '	F)	WELL CAPAC		7 1.7	
EQUIPME	NT VOLUME P	URGE: 1 EC	UIPMENT VOL	= PUMP VOLU	eet – ME + (TUE	BING CAPACI	feet) X	UBING LENGTH	gallons/foot) + FLOW CEL	_ 2 . 62.	gallons
(Only IIII O	at if applicable)	(8	(oc)		ons + (gallo	ons/foot X	feet) +	gallons =	gallons
	UMP OR TUBIN I WELL (feet):	IG . 💟	/FINAL PU	MP OR TUBING WELL (feet):	~40	PURGIN INITIATI	G DAT: 1550	PURGING ENDED AT:	1639	TOTAL VOLUM PURGED (galio	
TIME	VOLUME PURGED (gallons)	CUMUL VOLUME PURGED (gallons)	PURGE RATE	(feet)	pH (standard units)	TEMP (°C)	COND. (circle units) µmhos/cm or µS/cm	OXYGEN (circle units) mg/L or % saturation	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)
1618	2.80	2.80	- 1	39.55	6.65	25.37	741	z.83	3.34	clear	125.5
1625	.70	3.50			0.65	25.36	741	2.82	2.95	- 11	176.2
1632		4.20		39.55	6.66	25.31	742	2.79	2.74	et	128.8
1639	.70	4.90		39-55 (عاما.	25.27	740	2.80	2.09	11	128.8
				-							
											-
WELL CAI TUBING IN	PACITY (Gallor ISIDE DIA. CA	is Per Foot): PACITY (Gal.	0.75" = 0.02; /Ft.): 1/8" = 0.0	1" = 0.04; 1 0006: 3/16" =	. 25" = 0.06						" = 5.88 " = 0.016
	EQUIPMENT (BP = Bladder Pur			Submersible Pur		eristaltic Pump;		
SAMPLED	BY (PRINT) / A	EEU IATION				LING DA	TA				
	ATHIAS	GEOSY		SAMPLER(S) S	West			SAMPLING INITIATED AT	1640	SAMPLING ENDED AT:	1647
PUMP OR	TUBING	~40	(Days a)	TUBING			FIELD-	-FILTERED: Y	(D)	FILTER SIZE:	
	WELL (feet): CONTAMINATION		-	MATERIAL COL	DE: TUBING	HDPE Y W (re	-	on Equipment Typ		(N)	
	PLE CONTAINE		-			ESERVATIO	placed	DUPLICATE:	Υ	_	
SAMPLE	#	MATERIAL		PRESERVATIVE		OTAL VOL	FINAL	ANALYSIS AN	ND/OR EQU	JIPMENT f	AMPLE PUMP FLOW RATE
FYUW 20	CONTAINERS 2	CODE		USED	ADDE	D IN FIELD (n		METHO			nL per minute)
11-30 20		HOPE	125 ml	1ce	-		کی.ک	PFAS	, 6	ESP a	380
				ě!							
REMARKS		A	·	1, 1/0	311		-11;			-	
MATERIAL			TIME:	1640	DE - :						
MATERIAL SAMPLING	EQUIPMENT	AG = Amber	Glass; CG = APP = After Per		PE = Poly		PP = Polypropyl				(Specify)
- will Elite	don men		RFPP = Reverse	ristaitic Pump; e Flow Peristaltic	B = Bail Pump;		Bladder Pump; Method (Tubing)	ESP = Electri Gravity Drain);	c Submersible O = Other (S	Pump; Specify)	

pH: \pm 0.2 units Temperature: \pm 0.2 °C Specific Conductance: \pm 5% Dissolved Oxygen: all readings \leq 20% saturation (see Table FS 2200-2); optionally, \pm 0.2 mg/L or \pm 10% (whichever is greater) Turbidity: all readings \leq 20 NTU; optionally \pm 5 NTU or \pm 10% (whichever is greater)

NOTES: 1. The above do not constitute all of the information required by Chapter 62-160, F.A.C.

2. STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

DEP-SOP-001/01 FS 220 Groundwater Sampling Form FD 9000-24

SITE NAME:	Florida Sta	ite Fire Colle	ge			SITE LOCATION	N:	11655 NW	Gainesville	Rd, Ocala,	FL	
WELL NO:	FSFC S	woly Well	(Pro-f	(14er)	SAMPLE ID:	SFC Su	00/4 ()/	1 (Ae-1	- filter) DATE: 6/11/20			
		****			PUF	RGING DA	ΓA		-1147		700	
WELL	04007400		TUBING	01001		WELL SCREEN			STATIC DEPTH TO WATER PURGE PU			
DIAMETER (In: WELL VOLUM	E PURGE: 1 WE	LL VOLUME = (T	OTAL WELL DEF	nes): PTH - STATIC [DEPTH TO WATE	DEPTH: R) X WELL C	feet to APACITY	feel	(feet):		OR BAILER:	F
(only fill out if a	applicable)	=	(ft.÷		ft) X		gallons/foot =				
EQUIPMENT V (only fill out if a		1 EQUIPMENT V	OL, = PUMP VOL	UME + (TUBING	CAPACITY X	TUBING LEN	NGTH) + FLOW C	ELL VOLUME				
				gallons + (gallons/foot X		feet)+	0.1	gallons		
INITIAL PUMP DEPTH IN WE			FINAL PUMP OF DEPTH IN WELI			PURGING INITIATED AT:	0736	PURGING ENDED AT: O	914	TOTAL VOLUM	ons): 320	2
TIME	VOLUME PURGED (gallons)	CUMUL. VOLUME PURGED	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µmhos/cm or	OXYGEN (circle		COLOR (describe)	ORP (mV)	NOTES:
0917	316.2	316.2	3.1	NA	7.04	23.97	(µS/cm)	saturation)	4.98	,		
Day	6.2							5.96		clear		
2919	6.0	322.2	3.1	NA	7.60	23.87	578	5.76	4.40	clear	699.5	
							- 1					
-							7 1					
							7					
								2				
WELL CARACI	TV (College Deep	0.75=-0.00	4									
TUBING INSIDE	E DIA. CAPACITY	oot): 0.75" = 0.02 (GaL/Ft.): 1/8" =	0.0006; 3/16*	1.25° = 0.06; 2 = 0.0014; 1/4"	= 0.0026; 5/1	0.37; 4* = 0.65; 6" = 0.004; 3/8	3" = 0.006; 1/2		= 5.88 " = 0.016			(8)
CAMPLED BY	DOINT (AFFILIA	701				PLING DA	ГА					
	PRINT) / AFFILIAT head/Geosyl			SAMPLER(S) SIG	SNATURES:				SAMPLING INITIATED AT:	0915	SAMPLING ENDED AT:	6917.
PUMP OR TUBI	NG DEPTH IN WE	ELL (feet):		SAMPLE PUMP	LOW RATE (mL	per minute):	242	TUBING MATE				1)9
FIELD DECONT	AMINATION:	И О		FIELD-FILTERED): Y (N)	FILTER SIZE:	μm		DUPLICATE:	Y	8	
S	AMPLE CONTAIN	ER SPECIFICATION				PLE PRESERVA	ΓΙΟΝ				SAMPLING	SAMPLE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA	TIVE USED	TOTAL VOL AD		FINAL Ph		ANALYSIS METHOD	EQUIPMENT CODE	PUMP FLOW RATE (mL per min)
CHU	2	HDPE	125 mL	no	ne	25	60	7.00	PFAS	- 8321B	ESP	11,742
	-											
REMARKS:			,	/ 4 1	11.0	-			1			
*		ors; san	ple colle	icted di	reetly f	rom tap						
MATERIAL COL		Amber Glass, C	CG = Clear Glass; mp; B = Bail		ylene; PP = P	olypropylene; S ESP = Electric S			ther (Specify)			
QUIPMENT CO	DDES: RFPP =	Reverse Flow Pe		SM = Straw Me	lhod (Tubing Gra	vity Drain):	/T = Vəcuum Tra		r (Specify)			

CODES: RFPP = Reverse Flow Penstallic Pump; SM = Straw Melhod (Tubing Gravity Drain); VT = vacuum trap; O = Utner (Specific Post of the above do not constitute all of the information required by Chapter 62-160, F.A.C.

2 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2); optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

Form FD 9000-24

SITE NAME:	Florida Sta	te Fire Colle	ge			SITE LOCATION: 11655 NW Gainesville Rd, Ocala, FL							
WELL NO:	SEC SUN	oply well	Clast-G	Her	SAMPLE ID:	DATE: 6/11/20							
-		17	-10 (11	1	PUF	RGING DAT	ΓA			1	1/20		
WELL			TUBING			WELL SCREEN			STATIC DEPTH	TO WATER	PURGE PUMP	TYPE	
DIAMETER (incl			DIAMETER (inch	nes):		DEPTH:	feet to	feet	(feet): OR BAILER:				
(only fill out if ap		LL VOLUME = (T =(TH - STATICE ft-	DEPTH TO WATE	R) X WELL C.	APACITY	gallons/foot =					
		1 EQUIPMENT V	OL, = PUMP VOL	UME + (TUBING	CAPACITY X	TUBING LEN	TUBING LENGTH) + FLOW CELL VOLUME						
(only fill out if ap	plicable)	=	0.1	gallons + (gallons/foot X		feet)+	0.1	gallons	=		
INITIAL PUMP C	OR TUBING		FINAL PUMP OF	R TUBING		PURGING		PURGING	00 4 6	TOTAL VOLUM	TE 7 (a		
DEPTH IN WEL	L (feet):	CUMUL	DEPTH IN WELI	(feet):		INITIATED AT:	0130	ENDED AT:	<u>0908</u>	PURGED (gallo	ons): 3(3 a		
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:	
0905	303.8	303.8	3.1	NA	7,22	24,27	352	4.86	B.76	char	227.1		
0208	9.3	3131	3.1	NA	7.16	24,20	374	4.76	0.88	Clear	238.3		
					1	4 11 2				1400	1111		
											-		
			v										
_													
TUBING INSIDE	Y (Gallons Per For DIA, CAPACITY	oot): 0.75" = 0.02 (Gal./Ft.): 1/8" =	; 1" = 0.04; 0.0006: 3/16"	1.25" = 0.06; 2 = 0.0014: 1/4"	" = 0.16; 3" = 1 = 0.0026: 5/1	0.37; 4" = 0.65 6" = 0.004; 3/8			= 5.88 " = 0.016				
						PLING DA							
	PRINT) / AFFILIAT			SAMPLER(S) SIG	GNATURES:				SAMPLING		SAMPLING		
JJ Hollings	head/Geosy	ntec			allh	// .			INITIATED AT:	8909	ENDED AT:	910	
PUMP OR TUBI	NG DEPTH IN W	ELL (feet):		SAMPLE PUMP	FLOW RATE (mL	per minute):	1742	TUBING MATE					
FIELD DECONTA	AMINATION:	V N	(ритр)	FIELD-FILTERED		FILTER SIZE:	μm		DUPLICATE:	Y	b		
SA	MPLE CONTAIN	ER SPECIFICATION	ON		SAM	PLE PRESERVA	TION		INTENDED	ANIAI VOIC	SAMPLING	SAMPLE PUMP FLOW	
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA	TIVE USED	TOTAL VOL AD		FINAL Ph		ANALYSIS METHOD	EQUIPMENT CODE	RATE (mL per min)	
CW	2	HDPE	125 mL	no	ne	25	50	7.16	PFAS	- 8321B	ESP	11,742	
									i=				
REMARKS:	Ne odos	3; 8 Luy	she colle	ot-d di	ceth s	from fr	tp.						
MATERIAL COD		Amber Glass; (olypropylene; S			ther (Specify)				
SAMPLING/PUR		After Peristaltic Pu Reverse Flow Pe			idder Pump; athod (Tubing Gra	ESP = Electric S avity Drain);	ubmersible Pum VT = Vacuum Tri		taltic Pump r (Specify)				

<sup>The above do not constitute all of the information required by Chapter 62-160, F.A.C.

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2); optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbldity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)</sup>

DEP-SOP-001/01 FS 220 Groundwater Sampling Form FD 9000-24

SITE NAME:	Florida Sta	te Fire Colle	ge			SITE LOCATIO	N:	11655 NW	Gainesville	Rd, Ocala,	FL	
WELL NO:	SFC F	re well			SAMPLE ID:	L				DATE: 6/	4/2020	
		-			PUI	RGING DA	ГА				17100	
WELL			TUBING			WELL SCREEN			ETATIC DEDT	LTOWATER	Inunce numb	TYPE
DIAMETER (inc	hes):	II VOLUME = /T	DIAMETER (inch	nes):	DERTH TO WATE	DEPTH:	feet to	feet	STATIC DEPTI	H TO WATER	PURGE PUMP OR BAILER:	TYPE
(only fill out if a	pplicable)	=	(ft-		ft) X	ALACH II	gallons/foot =				
EQUIPMENT VI (only fill out if ap	OLUME PURGE: oplicable)	1 EQUIPMENT V	OL, = PUMP VOL = 0,1	UME + (TUBING gallons + (CAPACITY >	TUBING LET	NGTH) + FLOW (CELL VOLUME feet)+	0_1	gallons		
INITIAL PUMP	OR TUBING		FINAL PUMP OF	R TUBING		PURGING	_	PURGING		TOTAL VOLUI	ME	
DEPTH IN WEL	.L (feet):		DEPTH IN WELI	L (feet):		INITIATED AT:	0926	ENDED AT:		PURGED (gall		
TIME	VOLUME PURGED (gailons)	CUMUL. VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND (µmhos/cm or µS/cm)	OXYGEN (circle	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:
0933	2,625	2,625	375	WA	6.85	22.34	505	8.91	0.97	clear	265.7	
0935	758	3,315	375	NA	6.70	22.36	505	6.84	0.87	clear	252./	
						-						
WELL CAPACIT	V (Gallons Per F.	oot): 0.75* = 0.02	15 = 0.04:	125" - 0.06)* = 0.10: 2* =	0.37; 4" = 0.65	F = 4 00	0" = 4.47: 40*	= 5.88			
TUBING INSIDE	DIA. CAPACITY	(Gal./Ft.): 1/8" =	0.0006; 3/16"	= 0.0014; 1/4"	= 0.0026; 5/1	16" = 0.004; 3/	8" = 0.006; 1/		= 5.88 " = 0.016			
	PRINT) / AFFILIAT					IPLING DA	TA					
	head/Geosy			SAMPLER(S) SI	GNATURES:				SAMPLING INITIATED AT:	2936	SAMPLING ENDED AT:	937
PUMP OR TUBI	NG DEPTH IN WI	ELL (feet):		SAMPLE PUMP	FLOW RATE (ml	L per minute):	420,455	TUBING MATE	ERIAL CODE:	HDPE		
FIELD DECONT	AMINATION:	У О И		FIELD-FILTERED	D: Y (N)	FILTER SIZE:	μm		DUPLICATE:	Y	D	
SA	AMPLE CONTAIN	ER SPECIFICATI	ON		SAN	IPLE PRESERVA	TION		INTENDED	A NIAL VEIE	SAMPLING	SAMPLE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA	TIVE USED	TOTAL VOL AL	DDED IN FIELD nL)	FINAL Ph		METHOD	EQUIPMENT CODE	PUMP FLOW RATE (mL per min)
bw	2	HDPE	125 mL	no	ne	2:	50	670	PFAS	- 8321B	ESP	1,420,458
	B											
REMARKS: N) 60015.	Sporolo	collector	1 Emus	lowerk	, pipe he	11011					L .
MATERIAL COD						•		*.e.				
SAMPLING/PUR	GING APP =	After Peristaltic Pu		ier, BP = Bia	adder Pump;	ESP = Electric S	ubmersible Pum	p: PP = Peris	ther (Specify) taltic Pump			
NOTES: 1		Reverse Flow Pe	eristaltic Pump; of the information	SM = Straw Me	ethod (Tubing Gr	avity Drain);	VT = Vacuum Tr	ap; O = Othe	r (Specify)			

The above do not constitute all of the information required by Chapter 62-160, F.A.C.

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)

pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2); optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

DEP-SOP-001/01 FS 220 Groundwater Sampling Form FD 9000-24

						1						_
SITE NAME:	Florida Stat	te Fire Colle	ge			SITE LOCATION: 11655 NW Gainesville Rd, Ocala, FL						
WELL NO: W	4141				SAMPLE ID:	Nell #1				DATE: 4/	4/20	
					PUF	RGING DAT	Α					
WELL DIAMETER (incl	nos).		TUBING DIAMETER (inch	200		WELL SCREEN DEPTH:	INTERVAL feet to	feet	STATIC DEPTH	TO WATER	PURGE PUMP OR BAILER:	
	PURGE: 1 WEL		OTAL WELL DEF	TH - STATIC	EPTH TO WATE	R) X WELL C			(leel).		JON BAILEN.	<u>L')</u>
		=(1 EQUIPMENT V	OL = PUMP VOL	ft - UME + (TUBING	CAPACITY X	ft) X TUBING LEN	IGTH) + FLOW C	gallons/foot =				
(only fill out if ap		=		gallons + (gallons/foot X	·	feet)+	0_1	gallons	=	
DEPTH IN WEL			FINAL PUMP OF DEPTH IN WELI			PURGING INITIATED AT:	10.33	PURGING ENDED AT:	1038	TOTAL VOLUM	15 5	
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or 99 saturation)		COLOR (describe)	ORP (mV)	NOTES:
1635	4.2	(gallons)	3.1	NY	6.90	22.45	545	1.39	1.71	cless	115.0	
1038	9.3	15.5	3.1	NA	6.88	22.44	549	1.33	2.04	CLEAT	114.8	
						g. v. , 1	U		4,70	C VN	11111	
	Y (Gallons Per Fo		2; 1" = 0.04; = 0.0006; 3/16"	1.25" = 0.06; = 0.0014; 1/4"		0.37; 4" = 0.65 16" = 0.004; 3/			= 5.88 " = 0.016			
						PLING DA						
	PRINT) / AFFILIAT head/Geosyi			SAMPLER(S) SI	11141				SAMPLING INITIATED AT:	1439	SAMPLING ENDED AT:	1847
PUMP OR TUBI	NG DEPTH IN WE	ELL (feet):		1/1/	1114	_ per minute):	742	TUBING MATE				10 (0
FIELD DECONT	AMINATION:	N O	(pump)	FIELD-FILTERE	D: Y (N)	FILTER SIZE:	μm		DUPLICATE:	Y	D)	
S/	AMPLE CONTAIN	ER SPECIFICATI	ION			IPLE PRESERVA	TION		Ir inter-in-	ANIA! VOIC	SAMPLING	SAMPLE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA	TIVE USED		DDED IN FIELD	FINAL Ph		METHOD	EQUIPMENT CODE	PUMP FLOW RATE (mL per min)
GW	2	HDPE	125 mL	no	ne	2	50	6.88	PFAS	- 8321B	ESP	11,742
DEMA DIKO												
REMARKS:	9.3220	37,~82	.189510	the o	1912; SN	ruple ci	lected	direct	ly from	n pipe		
MATERIAL COL SAMPLING/PUR		Amber Glass; After Peristaltic Pi	CG = Clear Glass ump; B = Ba		nylene; PP = F adder Pump;	Polypropylene;	S = Silicone; T Submersible Pum	= Teflon; O = C	Other (Specify) taltic Purnp			
EQUIPMENT CO	DDES: RFPP=	Reverse Flow P	eristaltic Pump; of the information	SM = Straw M	ethod (Tubing Gr	avity Drain);	VT = Vacuum Tr		er (Specify)			

CODES: RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); VT = Vacuum Trap; O = Other (Specific Presents); The above do not constitute all of the information required by Chapter 62-180, F.A.C.

2 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: +0.2 units Temperature: +0.2 oC Specific Conductance: +5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2); optionally, +0.2 mg/L or +10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally +5 NTU or +10% (whichever is greater)

Form FD 9000-24

SITE NAME: Florida State Fire College						SITE LOCATION: 11655 NW Gainesville Rd, Ocala, FL			FL			
WELL NO:	Well #4				SAMPLE ID:	Well #	1			DATE: 6/	11/202	2
						RGING DAT					7	
WELL			TUBING			WELL SCREEN	INTERVAL		STATIC DEPTH	H TO WATER	PURGE PUMP	TYPE
DIAMETER (II	nches): ME PURGE: 1 WEI	II VOLUME - /T	DIAMETER (inch	nes):	SEDTH TO MATE	DEPTH:	feet to	feet	(feet):		OR BAILER:	COT'
(only fill out if		=(1 =(ft-	DEPTH TO WATE	ft) X	AFAOIT	gallons/foot =				
	VOLUME PURGE:	1 EQUIPMENT V	OL = PUMP VOL	UME + (TUBING	CAPACITY X	TUBING LEN	NGTH) + FLOW (CELL VOLUME				
(only fill out if		=	0,1	gallons + (gallons/foot X		feet)+	0.1		=	
INITIAL PUMP			FINAL PUMP OF			PURGING	1127	PURGING	1122	TOTAL VOLUM		•
DEPTH IN WE		CUMUL.	DEPTH IN WELI	(feet)	i	INITIATED AT:		ENDED AT:	1/32	PURGED (gallo	ons): 15-5	
TIME	VOLUME PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP, (^O C)	COND (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:
1130	13	9.3	3. (NA	7.13	23.96	472	4.99	2.73	Clear	208.3	
1132	4.2	15.5	3.(NA	Le.98	23,50	464	4,95	2.90	Clear	209.9	
								1				
Harmon												
	CITY (Gallons Per F DE DIA, CAPACITY					0.37; 4" = 0.65 16" = 0.004; 3/			= 5.88 8" = 0.016			
		, manual 1				IPLING DA						
	(PRINT) / AFFILIAT gshead/Geosy			SAMPLER(S) SI	GNATURES:	201			SAMPLING INITIATED AT:	1133	SAMPLING ENDED AT: (134
PUMP OR TH	IBING DEPTH IN W	FLL (feet):		SAMPLE PUMP		L per minute): (472	TUBING MAT	ERIAL CODF:		<u> </u>	
	NTAMINATION:	N Ox	(pump)	FIELD-FILTERE Filtration Equipm	D: Y (N)	FILTER SIZE:	μm	1,000,000	DUPLICATE:	Y	D	
	SAMPLE CONTAIN	IER SPECIFICAT	ION		785	MPLE PRESERVA	TION		INTENDE	O ANALYSIS	SAMPLING	SAMPLE PUMP FLOW
SAMPLE ID) # CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA	ATIVE USED		DDED IN FIELD nL)	FINAL Ph		METHOD	EQUIPMENT CODE	RATE (mL per min)
CM	2	HDPE	125 mL	no	one	2	50	6.28	PFAS	- 8321B	ESP	れなっつ
REMARKS:	#NO ad	ors; t	FRB5;	water	collecte	d from	, sink ,	ueat MA	Ntenauc	e apea		Mil
MATERIAL C	ODES: AG	Amber Glass;	CG = Clear Glass	PE = Polyet	nylene; PP = I	Polypropylene;	S = Silicone; T	= Tefion; O = 6	Other (Specify)			
SAMPLING/P EQUIPMENT		After Peristallic P = Reverse Flow P			adder Pump; lethod (Tubing Gr		Submersible Pum VT = Vacuum Ti		staltic Pump er (Specify)			

¹ The above do not constitute all of the information required by Chapter 62-160, F.A.C.
2 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2);
optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

Form FD 9000-24

SITE NAME:	Florida Stat	e Fire Colle	ge			SITE LOCATION: 11655 NW Gainesville Rd, Ocala, FL						
WELL NO:	ell#5 AC				SAMPLE ID:	Well #5 AC DATE: 6/11/2020						
	evi .o //				PUF	RGING DAT				-/-	70000	
WELL			TUBING			WELL SCREEN			STATIC DEPTI	H TO WATER	PURGE PUMP	TYPE
DIAMETER (incl			DIAMETER (inch			DEPTH:	feet to	feel	(feet):		OR BAILER:	.:3,>
(only fill out if ag	PURGE: 1 WEL oplicable)	L VOLUME = (1 =		TH - STATICE ft-	EPIH TO WATE	ft) X	APACITY	gallons/foot =				
EQUIPMENT VO	DLUME PURGE:			· ·	CAPACITY X		TUBING LENGTH) + FLOW CELL VOLUME					
		=		gallons + (gallons/foot X						
INITIAL PUMP OR TUBING DEPTH IN WELL (feet): DEPTH IN WELL (feet):					PURGING INITIATED AT:	1017	PURGING ENDED AT:	TOTAL VOLUME PURGED (gallons):				
DEFININ WEL	VOLUME	CUMUL.				INITIATED AT.	COND	OXYGEN (circle				
TIME	PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (slandard units)	TEMP (°C)	(µmhos/cm or µS/cm)	mg/ or % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:
1019	6.2	4.2	3.]	NA	7.10	24.83	480	3.08	22.7	Clear	211.4	
1022	9.3	15.5	13.1	NA	7.05	23.61	447	4.53	15.4	cter	202.0	
							_					
											-	
						ł						
-						-				-		
	1											
	Y (Gallons Per Fo		2; 1" = 0.04;	1.25" = 0.06;	2" = 0.16; 3" =	0.37; 4" = 0.65	5" = 1.02;	6" = 1.47; 12"	= 5.88			
TUBING INSIDE	DIA. CAPACITY	(Gal./Ft.); 1/8" =	0.0006; 3/16"	= 0.0014; 1/4"		IPLING DA		2" = 0.010; 5/8	" = 0.016			
SAMPLED BY (F	PRINT) / AFFILIAT	ION:		SAMPLER(S) SI	GNATURES:	I CINO DA	10		SAMPLING		SAMPLING	
JJ Hollings	head/Geosyi	ntec			1/1/1/				INITIATED AT:	1023	ENDED AT:	924
PUMP OR TUBI	NG DEPTH IN WE	ELL (feet):		SAMPLE PUMP	FLOW RATE (m	L per minute):	1,472	TUBING MATE				101
FIELD DECONT	AMINATION:	И	(pump)	FIELD-FILTERE	D: Y (N)	FILTER SIZE:	μm		DUPLICATE:	1 Y	٧	
SA	AMPLE CONTAIN	ER SPECIFICATI	ON	32787		IPLE PRESERVA	TION	3	(A)TEA IE	D ANALYSIS	SAMPLING	SAMPLE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA	TIVE USED		DDED IN FIELD nL)	FINAL Ph		D ANALYSIS R METHOD	EQUIPMENT CODE	PUMP FLOW RATE (mL per min)
1,w	2	HDPE	125 mL	no	ne	2	50	7.05	PFAS	- 8321B	ESP	11472
						-						
REMARKS:	No od	lors, for	tuple ci	lected	direct	(y Stor	itap					
			-					Table A	M (0.2224 2			
SAMPLING/PUR	RGING APP = /	After Peristaltic P		iler; BP = Bl	adder Pump;		Submersible Pum	p; PP = Peris	other (Specify) stallic Pump			
NOTES: 1	The above do n	Reverse Flow P			ethod (Tubing Gr		VT = Vacuum Tr	ap, 0 = Othe	er (Specify)			

¹ The above do not constitute all of the information required by Chapter 62-160, F.A.C.
2 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2);
optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

Form FD 9000-24

SITE NAME: Florida State Fire College						SITE LOCATION: 11655 NW Gainesville Rd, Ocala, FL						
WELL NO:	Dell #8				SAMPLE ID:	Well #9	<i>t</i>			DATE: 6/	15/2020	
					PUF	RGING DAT				1		
WELL		7	TUBING			WELL SCREEN	INTERVAL		STATIC DEPTH	TO WATER	PURGE PUMP	
DIAMETER (in WELL VOLUM	iches): IE PURGE: 1 WEI	LL VOLUME = (T	DIAMETER (inch		EPTH TO WATE	DEPTH: R) X WELL C	feet to APACITY	feet	(feet):		OR BAILER:	LC.)
(only fill out if a		=		ft -		ft) X		gallons/foot =				
	VOLUME PURGE:	1 EQUIPMENT V	OL. = PUMP VOL	UME + (TUBING	CAPACITY X	TUBING LEN	NGTH) + FLOW (CELL VOLUME				
(only fill out if a		=		gallons + (gallons/foot X		feet)+	0.1	gallons	(B)	
INITIAL PUMP			FINAL PUMP OF			PURGING	1158	PURGING	203	PURGED (gall	19	_
DEPTH IN WE	VOLUME	CUMUL,	DEPTH IN WEL			INITIATED AT:	COND	ENDED AT: OXYGEN (circle				
TIME	PURGED (gallons)	VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	(µmhos/cm or µS/cm)	mg(or%) saturation)	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:
1200	6.2	6.2	3.(NA	6.84	25.43	264	2.52	1.56	Clear	737.1	
1203	9.3	15.5	3.1	NA	6.82	25.46	289	2.55	2.31	1995	745 a	
, 400	100	15,10	<u> </u>	1001	9.000	BCO . 1 4	a. I	Wico	Sec. 1	CIUT	1000	
-	-											
_		-										
		9)										
11												
WELL CAPAC	ITY (Gallons Per F	oot): 0.75" = 0.0	2; 1" = 0.04;	1.25" = 0.06;	2" = 0.16; 3" =	0.37; 4" = 0.65	5" = 1.02;	6" = 1.47; 12"	= 5.88			
TUBING INSID	DE DIA. CAPACITY	(Gal./Ft.): 1/8":	0.0006; 3/16"	= 0.0014; 1/4				2" = 0.010; 5/	8" = 0.016			
SAMPLED BY	(PRINT) / AFFILIAT	TION:		SAMPLER(S) SI		IPLING DA	IA					
	shead/Geosy			DAME ELITION OF	MI				SAMPLING INITIATED AT:	1204	SAMPLING ENDED AT:	1205
DI IMP OR THE	BING DEPTH IN WI	FII (feet):		SAMPLE PLIMP	ELOW RATE (m)	L per minute):	472	TURING MAT	ERIAL CODE:	-		100 3
FIELD DECON		V N	(pump)	FIELD-FILTERE	D: Y (N)	FILTER SIZE:	μm	10010	DUPLICATE:		N	
,	SAMPLE CONTAIN	IER SPECIFICAT	ION	Filtration Equipm		IPLE PRESERVA	TION				04110	SAMPLE
					JAN				1	O ANALYSIS METHOD	SAMPLING EQUIPMENT	PUMP FLOW RATE
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA	ATIVE USED		DDED IN FIELD nL)	FINAL Ph	ANDION	THILL IT IOU	CODE	(mL per min)
Well #8	2	HDPE	125 mL	no	one	2	50	4.82		- 8321B	ESP	1452
1#8 Du	P 2	a	((61		"	(c		મ	CC	cı
									-			
-	 					-			-			
	1										-	
REMARKS:	14		-l. 615 c	4	l. 1	u + 1	1. 41	0 1	4.0			
	two oa											
MATERIAL CO SAMPLING/PU		Amber Glass, After Peristallic P	CG = Clear Glass ump; B = Ba		nylene; PP = I adder Pump;	Polypropylene; S ESP = Electric S	S = Silicone; T Submersible Purr		Other (Specify) staltic Pump			
EQUIPMENT (= Reverse Flow P	eristaltic Pump;	SM = Straw M	ethod (Tubing Gr	ravity Drain);	VT = Vacuum Ti		er (Specify)			

¹ The above do not constitute all of the information required by Chapter 62-160, F.A.C.
2 STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3)
pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saturation (see Table FS 2200-2);
optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

Form FD 9000-24

SITE NAME:	Florida Stat	te Fire Colle				SITE LOCATION		11655 NW	Gainesville	Rd. Ocala	FL	
					CAMPIE ID: /							,
WELL NO:	C Sugals	well			SAMPLE ID: 6	C Supply	well -			DATE: 6/	11/2029	
WELL			TUBING		1 01	WELL SCREEN			STATIC DEPTH	H TO WATER	PURGE PUMP	TYPE
DIAMETER (incl		LVOLIME - /T	DIAMETER (inch		SERVICE MALE	DEPTH:	feet to	feet	(feel):		OR BAILER:	
(only fill out if ag		_L VOLUME = (1 =(OTAL WELL DEP	ft-	DEPTH TO WATE	ft) X	APACITY	gallons/foot =				
		1 EQUIPMENT V	OL, = PUMP VOL	UME + (TUBING	CAPACITY X	TUBING LEN	IGTH) + FLOW C	ELL VOLUME				
(only fill out if ap		=		gallons + (gallons/foot X		feet)+	0.1		=	
DEPTH IN WEL			FINAL PUMP OF DEPTH IN WELL			PURGING INITIATED AT:	1143	PURGING ENDED AT:	148	TOTAL VOLUM PURGED (gallo	77.	5
TIME	VOLUME PURGED (gallons)	CUMUL, VOLUME PURGED (gallons)	PURGE RATE (gpm)	DEPTH TO WATER (feet)	pH (standard units)	TEMP. (°C)	COND. (µmhos/cm or µS/cm)	OXYGEN (circle mg/ or % saturation)	TURBIDITY (NTUs)	COLOR (describe)	ORP (mV)	NOTES:
1146	9.3	15.5	3.(NA	6.91	23.61	578	1.57	2.10	Clear	123.6	
1148	6.2	15.5	3.6	NA	6.88	22.99	510	1,49	2.00	clear	126.3	
=									· · · · · ·			
			2; 1" = 0.04;							l .		
LIORING INSIDE	DIA. CAPACITY	(Gal./Ft.): 1/8" =	0.0006; 3/16"	= 0.0014; 1/4"		16" = 0.004; 3/		2" = 0.010; 5/8	° = 0.016			
	PRINT) / AFFILIAT head/Geosyi			SAMPLER(S) SI		hel			SAMPLING	1100	SAMPLING	احا
					-11/1	<i>ay</i> .		T-1-101410 144-7	INITIATED AT:		ENDED AT:	1151
FIELD DECONT	NG DEPTH IN WE AMINATION:	N N	(pump)	FIELD-FILTERE	FLOW RATE (ml	FILTER SIZE:	μm	TUBING MAT	DUPLICATE:	Y /	1	
				Filtration Equipm	ent Type:						ر ا	
s	AMPLE CONTAIN	ER SPECIFICATI	ON		SAN	IPLE PRESERVA	TION			ANALYSIS	SAMPLING EQUIPMENT	SAMPLE PUMP FLOW
SAMPLE ID CODE	# CONTAINERS	MATERIAL CODE	VOLUME	PRESERVA	ATIVE USED		DDED IN FIELD IL)	FINAL Ph	AND/OR	METHOD	CODE	(mL per min)
GW	24	HDPE	125 mL	no	one	2	50	6.88	PFAS	- 8321B	ESP	(1,472
REMARKS: +	M5/MSI	s; two	adars;	sample	collect	ed dirce	tly fee	ou trop				
MATERIAL COL			CG = Clear Glass			Polypropylene;			Other (Specify)			
EQUIPMENT CO	DDES: RFPP =	After Peristaltic Price Reverse Flow Price Constitute 20		SM = Straw M	adder Pump; ethod (Tubing Gr	avity Drain);	Submersible Pum VT = Vacuum Tr		taltic Pump r (Specify)			

CODES: RFPP = Reverse Flow Peristaltic Pump; SM = Straw Method (Tubing Gravity Drain); VT = Vacuum Trap; O = Other (Specific Action 1) The above do not constitute all of the information required by Chapter 62-160, F.A.C.

STABILIZATION CRITERIA FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: + 0.2 units Temperature: + 0.2 oC Specific Conductance: + 5% Dissolved Oxygen: all readings < 20% saluration (see Table FS 2200-2); optionally, + 0.2 mg/L or + 10% (whichever is greater) Turbidity: all readings < 20 NTU; optionally + 5 NTU or + 10% (whichever is greater)

Project/Site: FSFC Field Personnel: T Water Quality Meter - Model/Serial #: \S1 556MPS / 09G100115 Turbidimeter - Model/Serial # H#C (+ 2100 4 / 13050 C02 5380 Dissolved **DEP SOP** Temp Saturation Reading Reading **Pass** 0.1 - 10 NTU Reading Pass or Date Time Date FT 1500 Oxygen Std 10 NTU (°C) $(mg/L)^1$ (mg/L) (%) or Fail (NTU) Fail Acceptance Criteria: +/-0.3mg/L Acceptance Criteria: +/- 10% CAU ICV CCV 1125 31.06 ICV CCV 100.0 0 CAL 6/68/20 10.7 CAL ICV CCV 1950 52,38 1,26 7.39 P CAL ICV CCV 98.2 9.0 101/20 0 CAL ICV CCV 32.01 Ō 6/10/20 0855 CAL COV CCV 101.4 110/20 0 CAL ICV CCV CAL ICV CCV Р F P Specific DEP SOP Standard Standard Standard Reading Pass 11 - 40 NTU Reading Pass or Date Time Date Conductance FT 1200 (mS/cm) Exp. Date Std 2 CNTU Lot# (mS/cm) or Fail (NTU) Fail Acceptance Criteria: +/- 5% Acceptance Criteria: +/- 8% 9 GK 293 CAL ICY CCV 1.413 1129 CAL CCV 11/20 1.416 (P) CCV 20.9 P CAL ICY CCV MA 410 O CAL CV CCV CAL ICV CCV 0858 11 12 16 D) CAL (ICY CCV ø .418 110/20 20-9 CAL ICV CCV CAL ICV CCV Р Р DEP SOP Pass Standard Standard Standard Reading 41 - 100 NTU Reading Pass or рΗ Date Time Date Std (ONTU FT 1100 (SU) Lot# Exp. Date (SU) or Fail (NTU) Fail Acceptance Criteria: +/-0.2 SU Acceptance Criteria: +/- 6.5% CAL (CV) CCV 130 966000 CAL ICV CCV 7/202 7.13 P) F 68/80/ Ø 97.3 CAL ICV CCV 100/20 0956 7:12 PF CAL /ICV CCV 109/20 CAL CV CCV 0859 41 7.12 110/20 CAL LEV CCV 96.0 U 6/10/20 F 10/18/180 CAL 9GL804 12/2021 4.13 B CAL ICV CCV 1132 F POP CAL COV CCV 10/09/20 095 +1 4.15 CAL ICV CCV C CCV 16 CAL 110/20 Ci Ül 4,10 F CAL ICV CCV 090 CAL (ICV CCV 1133 10 9GF372 6/21 F CAL ICV CCV F P CAL ICV CCV 6/08/20 0958 10.00 CAL ICV CCV F CAL CY CCV 6/15/20 d " CAL ICV CCV 0902 u Р F Pass Std. mV @ Standard Standard Reading Pass or >100 NTU Reading ORP SOP N/A Date Time Date Temp °C Lot# Exp. Date (mV) or Fail Std WNTU Fail (NTU) Geosyntec Acceptance Criteria: +/- 5% Acceptance Criteria: +/- 5% 1134 CAL ICV CCV 8 240.00.25 11/2020 240.0 CCV CAL CAL (TCV) CCV (IC) 238.4 F CAL CCV F 1200120 6/84/20 784 DOD CAL CO CCV 10/10/20 0905 246.4 P F CAL (ICV) CCV 110 /20 780 F Disolved Oxygen membrane Changed? Yes No Specific Conductance Probe Cleaned? Yes 1. See Table FS 2200-2 on the back of this form Comments: CAL - Initial Calibration ICV - Initial Calibration Verification CCV - Continuino Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0,1 mS/cm then one standard of 0,1 mS/cm is acceptable)

Calibrate pH using at least two standards (typ, pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e., pH > 7)

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

Project/Site: FSFC	Project #: FR3511C/04	Field Personnel: J. Holls washed
a months and w	The Activity	
Water Quality Meter - Model/Serial # 754 756 M	15/04810045	Turbidimeter - Model/Serial # HH HA 1900 13650002538

Water Quality Meter	- Model/Ser	556 MS	109610011	5	Turbidimeter - Model/Serial # HACH 2 1000 13656 C025390						
Dissolved Oxygen	DEP SOP FT 1500	Date	Time	Temp (°C)	Saturation (mg/L) ¹	Reading (mg/L)	Reading (%)	Pass or Fail	0.1 - 10 NTU Std (NTU	Date	Reading Pass or (NTU) Fail
CAL (C) CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	\$ 2 2	6/u/20	1400	29.18 33.88	7.66	7.01 7.01	eptance Criteria:	+/-0.3mg/L P F P F P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV	Accep la/iyba	0tance Criteria: +/- 10% 9-75 © F 9-89 © F P F
Specific Conductance	DEP SOP FT 1200	Date	Time	Standard (mS/cm)	Standard Lot #	Standard Exp. Date	Reading (mS/cm)	Pass or Fail	11 - 40 NTU Std	Date	Reading Pass or (NTU) Fail
CAL (C) CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	3	6/11/20	0849 1402	1413	96K373	11/20	Acceptance Crite	P F P F	CAL CO CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	io fichs	Ptance Criteria: +/- 8%
рН	DEP SOP FT 1100	Date	Time	Standard (SU)	Standard	Standard Evn Data	Reading (SU)	Pass or Fail	41 - 100 NTU Std / NTU	Date	Reading Pass or (NTU) Fail
CAL COV CCV CAL ICV CCV	, , , , , ,	6/11/00	0850 1903 0851 1405 0853 1407	7 	961804 01 961804 01	Golf Course	ce Criteria 7.14 7.13 4.11 4.15 10.05 9.95	:+/-0.2 SU F F F F F F F F F F F F F F F F F F F	CAL CO CCV CAL ICV CCV	Accept 6/4/30	tance Criteria: +/- 6.5% 0 2
ORP	SOP N/A	Date	Time	Std. mV @ Temp °C	Standard Lot #	Standard Exp. Date	Reading (mV)	Pass or Fail	>100 NTU Std SOONTU	Date	Reading Pass or (NTU) Fail
CAL CV CCV CAL ICV CCV	3	مداريا	1410	240.00.25	BGB1143	Geosyntec	Acceptance Crite 245.1 243.7	eria: +/- 5% P F P F	CAL IEV CCV CAL ICV CCV	Acce	ptance Criteria: +/- 5%
Specific Conductano 1. See Table FS 2200-2		CANCEL CONTRACTOR	No	Disolved Oxygo	en membrane Ch	anged? Yes N	10				

_					_				-
ı.	See	Table	FS	2200-	2 an	the	back	of this	form

CAL - Initial Calibration

ICV - Initial Calibration Verification

CCV - Continuing Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0.1 mS/cm then one standard of 0.1 mS/cm is acceptable) Calibrate pH using at least two standards (typ., pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7)

Comments:

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

Geosyntec[▷] consultants

fsfc Project #: FR 3511 C Project/Site: Field Personnel: RIL MATHIAS 15C 105287 Water Quality Meter - Model/Serial #: YSI 556 13060 C 026176 Turbidimeter - Model/Serial # HACH 2100 6 Dissolved DEP SOP Temp Saturation Reading Reading Pass 0.1 - 10 NTU Reading Pass or Date Time FT 1500 Date Oxygen (°C) Std 10 NTU $(mg/L)^{1}$ (mg/L) (%) or Fail (NTU) Fail Acceptance Criteria: +/-0.3mg/L Acceptance Criteria: +/- 10% 124 30.53 CAL (CV) 4.6.50 1.61 CAL 11 CAL ICV (CC) W CAL ICV -9-20 F CAL ICV æv 6.9.20 10.2 CAL ICV ള്ള E 10 10 25.05 . 24 CAL ICV 6.10.00 10-· 00. .11.20 Specific **DEP SOP** Standard Standard Standard Reading **Pass** 11 - 40 NTU Reading Pass or Date Time Date FT 1200 Conductance (mS/cm) Lot# Exp. Date (mS/cm) StdZO NTU or Fail (NTU) Fail Acceptance Criteria: +/- 5% Acceptance Criteria: +/- 8% 96 F944 .413 いる・る・ひ 1124 CAL (ICV) CCV 6 20 CAL (IC) 6-8-20 (P) F 1.413 CAL ICV 416 11 CAL ICV (CCV 20.2 CAL ICV 6-9-20 000 H 1.413 11 11 416 CAL ICV CC 20.5 6.9.20 CAL ICV CC 6.10.00 1.413 11 CAL ICV 20.1 6.10.20 -- 11 - 20 (0 11-20) 20.2 **DEP SOP** Standard Standard Standard Reading Pass 41 - 100 NTU Reading Pass or На Date Time Date FT 1100 (SU) Std PO NTU Lot# Exp. Date (SU) or Fail (NTU) Fail Acceptance Criteria: +/-0 2 SU Acceptance Criteria: +/- 6.5% 1128 (A) ICV CCV 6.8.20 **7.00** 7/2021 1.00 CAL (ICV) CCV 113 CAD ICV CCV 4.00 12/2021 00 CAL ICV CCV CAD ICV CCV 1134 10.00 21 10.0 CAL ICV/CCV CAL ICV CCV 7,00 966002 7/202 7.07 CAL 6.10.70 CAL ICV CCV 6-9.20 680° 966002 2021 CAL 7.00 7.00 ICV CCV CAL ICV 6.10.20 7.00 16600Z 200 F CAL ICV CCV F CAL ICV 9/26202 7/2021 CAL ICV CCV CAL ICV CCV F CAL ICV CCV Р F CAL ICV CCV CAL ICV CCV Р F Р F Std. mV @ Standard Standard Pass Reading >100 NTU Reading Pass or ORP SOP N/A Date Time Date Temp °C Lot# Exp. Date Std NTU (mV) or Fail (NTU) Fail Geosyntec Acceptance Criteria: +/- 5% Acceptance Criteria: +/- 5% ।(उठ 2400 CAL (ICY CCV 240.0 **P**) F LICY CCV % (1/20 CAL CAL ICV CCV 1834 240.0 11/20 239.6 F CAL ICV COV 6.5.20 CAL ICV CCV 6.9.20 11 CAL ICV CO 0813 (P)

240.2

F

Specific Conductance Probe Cleaned?	Yes
1. See Table FS 2200-2 on the back of this form	

CAL - Initial Calibration

ICV - Initial Calibration Verification

CCV - Continuing Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0,1 mS/cm then one standard of 0,1 mS/cm is acceptable) Calibrate pH using at least two standards (typ. pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7)

Disolved Oxygen membrane Changed? Yes

Comments:

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

Geosyntec^b consultants

6.10.20 796

				****	or equality inio	d dillett Callb	iation i oim					
Project/Site: FSF	С			Project #: FF	R3511C/04	Field Personne	E RIX	MATI	41AS			
Water Quality Meter	r - Model/Se	erial#: Y5]	556	15C 105	287		Turbidimeter -	Model/Seria	# HACH ZIOO	2 130	60C	2613
Dissolved Oxygen	DEP SOP FT 1500	Date	Time	Temp (°C)	Saturation (mg/L) ¹	Reading (mg/L)	Reading (%)	Pass or Fail	0.1 - 10 NTU Std (6 NTU	Date	Reading (NTU)	Pass or Fail
CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV		6-11-20	ଗ୍ରଚ	31.19		7.45	eptance Criteria:	+/-0.3mg/L P F P F P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Acce	9.98	ia: +/- 10% P F P F P F
Specific Conductance	DEP SOP FT 1200	Date	Time	Standard (mS/cm)	Standard Lot #	Standard Exp. Date	Reading (mS/cm)	Pass or Fail	11 - 40 NTU Std 2 NTU	Date	Reading (NTU)	Pass or Fail
CAL ICV CEV CAL ICV CCV CAL ICV CCV CAL ICV CCV		6.11-20	1514	1.413	94F9H	6 50	Acceptance Crit	P F P F	CAL ICV CCV CAL ICV CCV CAL ICV CCV CAL ICV CCV	Acc 6-[1-20	eptance Crite	P F P F P F P F
рH	DEP SOP FT 1100	Date	Time	Standard (SU)	Standard	Standard Fyn Date Golf Gourse	Reading (SU)	Pass or Fail	41 - 100 NTU Std 100 NTU	Date	Reading (NTU)	Fail
CAL ICV CCV	18	6-II-20 	1519	7.00	966402		ce Criteria	P F P F P F P F P F P F P F P F P F P F	CAL ICV CCV	Accep L·II·20	SA. 1	a: +/ 6.5% P F F F F F F F F F F F F F F F F F F F
ORP	SOP N/A	Date	Time	Std. mV @ Temp °C	Standard Lot #	Standard Exp. Date	Reading (mV)	Pass or Fail	>100 NTU Std 200 NTU	Date	Reading (NTU)	Pass or Fail
CAL ICV CCV CAL ICV CCV		6.11.20			0681143	11/20	Acceptance Crit	P F	CAL ICV CCV CAL ICV CCV	Acc	eptance Crite	P F P F
Specific Conductant	e Probe Cl	eaned? Yes	No	Disolved Oxyg	en membrane Ch	nanged? Yes N	No					

١,	See	Table	F5	2200-2	on the	back	of	this	forn
----	-----	-------	----	--------	--------	------	----	------	------

CAL - Initial Calibration

ICV - Initial Calibration Verification

CCV - Continuing Calibration Verification

Allow adequate time for the dissolved oxygen sensor to equilibrate during air calibration

Calibrate specific conductance using at least two standards that bracket the range of expected sample readings (unless readings < 0,1 mS/cm then one standard of 0,1 mS/cm is acceptable)
Calibrate pH using at least two standards (typ. pH 4 and 7) that bracket the range of expected sample readings; always start with pH 7; add a third calibration point if needed (i.e. pH > 7)

Comments:

If parameter fails to calibrate within SOP acceptance criteria then append sample results with a "J" qualifier

Geosyntec consultants

Date: 6/08/20	
Site Name: F5FC	
Weather (temperature/precipitation): hot & humid	

Please check all boxes that apply and describe any exceptions in the notes section below along with QA/QC methods used to assess potential sample cross-contamination as a result.

Field Clothing and PPE:

- No water- or stain-resistant clothing (e.g., GORE-TEX®)
- During collection of water and sediment samples, no water- or stain-resistant boots OR water- or stain-resistant boots covered by PFAS-free over-boots
- Field boots (or over-boots) are made of polyurethane, PVC, rubber, or untreated leather
- Waders or rain gear are made of polyurethane, PVC, vinyl, wax-coated or rubber
- Clothing has not been recently laundered with a fabric softener
- No coated HDPE suits (e.g., coated Tyvek® suits)
- Field crew has not used cosmetics, moisturizers, or other related products today
- Field crew has not used sunscreen or insect repellants today, other than products approved as PFAS-free

Field Equipment:

- Sample containers and equipment in direct contact with the sample are made of HDPE, polypropylene, silicone, acetate or stainless steel, not LDPE or glass
- Sample caps are made of HDPE or polypropylene and are not lined with TeflonTM
- No materials containing TeflonTM, VitonTM, or fluoropolymers
- No materials containing LDPE in direct contact with the sample (e.g., LDPE tubing, Ziploc® bags)
- No plastic clipboards, binders, or spiral hard cover notebooks
- No waterproof field books
- No waterproof or felt pens or markers (e.g., certain Sharpie® products)
- No chemical (blue) ice, unless it is contained in a sealed bag
- No aluminum foil
- No sticky notes (e.g., certain Post-It® products)

Decontamination:

Reusable field equipment (e.g., inner drill rods, samplers) decontaminated prior to reuse "PFAS-free" water is on-site for decontamination of field equipment

Alconox® or Liquinox® used as decontamination detergent

Food	and	Dri	in	٠.
TUUU	anu	ν	ш	Ν.

No food or drink on-site, except within staging area
Food in staging area is contained in HDPE or stainless steel container

Notes:
Field Team Leader Name (Print): 13. Gallingshad Field Team Leader Signature:
Field Team Leader Signature:
Date/Time: <u>8942</u>

Date: 6/09/20
Site Name: FSFC
Weather (temperature/precipitation): Lat & hunisd
Please check all boxes that apply and describe any exceptions in the notes section below along with QA/QC methods used to assess potential sample cross-contamination as a result.
Field Clothing and PPE:
No water- or stain-resistant clothing (e.g., GORE-TEX®) During collection of water and sediment samples, no water- or stain-resistant boots OR water- or stain-resistant boots covered by PFAS-free over-boots Field boots (or over-boots) are made of polyurethane, PVC, rubber, or untreated leather Waders or rain gear are made of polyurethane, PVC, vinyl, wax-coated or rubber Clothing has not been recently laundered with a fabric softener No coated HDPE suits (e.g., coated Tyvek® suits) Field crew has not used cosmetics, moisturizers, or other related products today Field crew has not used sunscreen or insect repellants today, other than products approved as PFAS-free
Field Equipment:
Sample containers and equipment in direct contact with the sample are made of HDPE, polypropylene, silicone, acetate or stainless steel, not LDPE or glass Sample caps are made of HDPE or polypropylene and are not lined with Teflon TM No materials containing Teflon TM , Viton TM , or fluoropolymers No materials containing LDPE in direct contact with the sample (e.g., LDPE tubing, Ziploc® bags) No plastic clipboards, binders, or spiral hard cover notebooks No waterproof field books No waterproof or felt pens or markers (e.g., certain Sharpie® products) No chemical (blue) ice, unless it is contained in a sealed bag No aluminum foil No sticky notes (e.g., certain Post-It® products)
Decontamination:
M Davashla field assignment (a.g. inner deill made gammlens) descentaminated major to reves

Reusable field equipment (e.g., inner drill rods, samplers) decontaminated prior to reuse "PFAS-free" water is on-site for decontamination of field equipment Alconox® or Liquinox® used as decontamination detergent

Food and Drink:
No food or drink on-site, except within staging area Food in staging area is contained in HDPE or stainless steel container
Notes:
Field Team Leader Name (Print): Johnson
Field Team Leader Signature:
Date/Time: 16/09/20 0825

Date: 6/10/20
Site Name: F5FC
Weather (temperature/precipitation): botter is more hunid than yesterday
Please check all boxes that apply and describe any exceptions in the notes section below along with QA/QC methods used to assess potential sample cross-contamination as a result.
Field Clothing and PPE:
No water- or stain-resistant clothing (e.g., GORE-TEX®) During collection of water and sediment samples, no water- or stain-resistant boots OR water- or stain-resistant boots covered by PFAS-free over-boots Field boots (or over-boots) are made of polyurethane, PVC, rubber, or untreated leather Waders or rain gear are made of polyurethane, PVC, vinyl, wax-coated or rubber Clothing has not been recently laundered with a fabric softener No coated HDPE suits (e.g., coated Tyvek® suits) Field crew has not used cosmetics, moisturizers, or other related products today Field crew has not used sunscreen or insect repellants today, other than products approved as PFAS-free
Field Equipment:
Sample containers and equipment in direct contact with the sample are made of HDPE, polypropylene, silicone, acetate or stainless steel, not LDPE or glass Sample caps are made of HDPE or polypropylene and are not lined with Teflon™ No materials containing Teflon™, Viton™, or fluoropolymers No materials containing LDPE in direct contact with the sample (e.g., LDPE tubing, Ziploc® bags) No plastic clipboards, binders, or spiral hard cover notebooks No waterproof or felt pens or markers (e.g., certain Sharpie® products) No chemical (blue) ice, unless it is contained in a sealed bag No aluminum foil No sticky notes (e.g., certain Post-It® products)
Decontamination:
Reusable field equipment (e.g., inner drill rods, samplers) decontaminated prior to reuse "PFAS-free" water is on-site for decontamination of field equipment Alconox® or Liquinox® used as decontamination detergent

rood and Drink:
No food or drink on-site, except within staging area Food in staging area is contained in HDPE or stainless steel container
Notes:
Field Team Leader Name (Print): 11. Hallwes lund
Field Team Leader Signature:
Date/Time: 6/10/20; 0838

Date: 6/11/20
Site Name: F5FC
Weather (temperature/precipitation): hot & hund
Please check all boxes that apply and describe any exceptions in the notes section below along with QA/QC methods used to assess potential sample cross-contamination as a result.
Field Clothing and PPE:
No water- or stain-resistant clothing (e.g., GORE-TEX®) During collection of water and sediment samples, no water- or stain-resistant boots OR water- or stain-resistant boots covered by PFAS-free over-boots Field boots (or over-boots) are made of polyurethane, PVC, rubber, or untreated leather Waders or rain gear are made of polyurethane, PVC, vinyl, wax-coated or rubber Clothing has not been recently laundered with a fabric softener No coated HDPE suits (e.g., coated Tyvek® suits) Field crew has not used cosmetics, moisturizers, or other related products today Field crew has not used sunscreen or insect repellants today, other than products approved as PFAS-free
Field Equipment:
Sample containers and equipment in direct contact with the sample are made of HDPE, polypropylene, silicone, acetate or stainless steel, not LDPE or glass Sample caps are made of HDPE or polypropylene and are not lined with Teflon™ No materials containing Teflon™, Viton™, or fluoropolymers No materials containing LDPE in direct contact with the sample (e.g., LDPE tubing, Ziploc® bags) No plastic clipboards, binders, or spiral hard cover notebooks No waterproof or felt pens or markers (e.g., certain Sharpie® products) No chemical (blue) ice, unless it is contained in a sealed bag No aluminum foil No sticky notes (e.g., certain Post-It® products)
Decontamination:
Reusable field equipment (e.g., inner drill rods, samplers) decontaminated prior to reuse "PFAS-free" water is on-site for decontamination of field equipment Alconox® or Liquinox® used as decontamination detergent

Food an	nd Drink:
X	No food or drink on-site, except within staging area Food in staging area is contained in HDPE or stainless steel container

Notes:
Field Team Leader Name (Print): JJ belluyelusd Field Team Leader Signature: Date/Time: Le (11/20; D810
Field Team Leader Signature:
Date/Time: 6/11/20: D810

State of Florida Department of Environmental Protection															
				Cha	ain of Cust	ody Re	cord	i ≆							Pageof
Project Name Florida State		# B O	B Analyses												
Project Name Florida State Sampled by J. H. Wyghad) 6 h	T		13-1	$ \downarrow $										
RQ# RQ-2020-06-08-30	Site i	vame	m State	KireColl	lege	E S	100	2424	1						
Field ID	Matri	K	Date	Time	Bottle Group		3				_		_		Comments
FSFC Supply Well Pre-Siller	G	ω	6/4/20	0915	A	2	X				1				
FSFC Supply Well (Post-filter)	1		41/20	0909	A	2	-								
FSFC Fire Well	4	4	6/11/20	0936	A	a				4	-95				
Well #1			6/11/20	1039	A	a									
well #4		-	6/11/20	แอง	A	a					A	Ī			
Well #5AC			6/0/20	1023	A	a						4			
Well #8		400	6/11/20	1204	A	a					_	1			-
CC Supply Well	M	1.13	6/11/20	1158	A	*24				y		1			MS/MSD
Well #8 Dup		y and	6/4/20	1204	A	2				1		7			
FRB5	Gl	U_	6/11/20	1122	B	2	X		7	New	1				
				NF						w)					
			\sqrt{z}	100			فنسر								
Relinquished by:			Date/Time	Method of D	Method of Dispatch		Received by:							Date/Time	
Relinquished by: Date			Date/Time	Date/Time Method of Di			ch Received by:						Date/Time		
Relinquished by:			Date/Time		ispatch		Receiv	ed by:				Date/Time			
Remarks:			<u> </u>				· wale								

Preservative Sticker 1

Preservative Sticker 2

Preservative Sticker 3

Preservative Sticker 4

Cooler Packing Worksheet for Request: RQ-2020-06-08-30 Florida State Fire College-Drinking Water/Production Wells June

Ship Cooler On: 6/5/2020 Customer/Project: SIS/FC-MARION Assigned To: MCCOY_I Requester: David Meyers

Priority: 5

727.262.8268

19321 U.S. Highway 19 North

Building C, Suite 200 Tallahassee, FL 32764

Attn: Olivia Cain Geosyntec

Comments:

No preservatives needed.

→Please include 6 liters PFAS free water

Please send a minimum of two coolers (samples may be collected in seperate weeks)

Rease include Fed-Ex shipping labels for cooler return

Bottle Group A- Supply Wells, DUPs,

Bottle Group B- FRBs

Requested Analyses:

Bottle Group: A

(2-bagged)

of Sites: 15

Container ID: P-125ML HDPE PFAS

Qty: 34 Preservation: ICE

Description: 125ml HDPE bottle for PFAS

Affix BLUE dot to container.

Lot# 1269099(9) (625207(25)

Analysis

W-PFAS-MS

Description

Perfluorinated alkyl substances in water matrices by HPLC/MS/MS

Bottle Group: B

of Sites: 2

Container ID: P-125ML HDPE PFAS

Qty: 4

Preservation: ICE

Lot # 12690

Description: 125ml HDPE bottle for PFAS

Affix BLUE dot to container,

(2-bagged)

Analysis

W-PFAS-MS

Description

Perfluorinated alkyl substances in water matrices by HPLC/MS/MS

Printed: 5/29/2020 9:33:05 AM

Sample Packaging/Shipping Checklist for FDEP SIS/SOL PFAS Projects

Objective: Ensure sample kits are received and samples are packaged and shipped properly. Instructions: Please answer each question and provide your name and the date the question was answered.

For any question with a No answer, please provide details/justification below the question. A copy of this checklist should be saved to the project folder, accompany the sample kit, and be returned to the lab with the

sam	DIE	es.

Project Name: Florida State Fire College
Project Number: Florida State Fire College
Project Name: Florida State Fire College
Project Name: Florida State Fire College
Project Number: Florida State Fire College

Date:

Item

Sample dates, times, IDs on field notes, COC, bottle labels (in Sharpie) Match

No

Heavy-Duty Garbage Bag Place in Cooler and Ice in **Bottom of Bag**

No

Bagged Samples Placed on Ice (Photo)

No

Additional Ice (Not Bagged) Placed on Samples (Photo)

No

Bag Sealed and COC, RQ, Checklist in Ziplock Bag Taped to Cooler Lid (Photo)

No

FDEP Notified of Shipping Date, Method, Expected **Arrival**

No

State of Florida Department of Environmental Protection														
			Cha	ain of Cust	ody Re	ecord							3	Page of3
Project Name Flavida State 1		# B O	1											
Sampled by Jo Hollingshord, Rik Mathias Module#							FAS-145	/						
RQ# RQ-2020-06-08-29	Site Name	la State F	ge	E S	13	-/	1							
Field ID	Matrix	Date	Time	Bottle Group		1 3		//			_	 		Comments
CCMW-3(60-96)	GW	6/09/20	1601	A	2	X								
CCDW-1 (90-95)		6/09/20	1725	A					\					
DEPMW-1 (100-120)	14	6/10/20	1234	A					À.	,	1			
DEP MW-2 (35-55)	1	6/10/20	1031	A										
DEPMW-3(100-120)		6/10/20	1123	· A										
DEPMW-4 (100-120)		6/9/20	1251	A										
DEPMW-5 (50-70)		6/9/20	1049	A		1								
DEPMW-6 (100-120)		6/08/29	1813	A					1					
DEPMW-7(30-50)	V	6/08/20	1451	A		1			ř -,	٠,				
DEPMW-8 (100-120)		6/10/20	1546	A				1	7	1				
DEPMW-9 (40-60)		6/10/20	100	A	1	1		7	9	1				
DEP MW-10 (100-120)	GW	6/08/20	1803	A	2	X			A STATE OF THE STA					
Relinquished by: Date/Time			me	Method of D	ispatch	P.	Received by:							Date/Time
Relinquished by:		Date/Time	Date/Time N		Method of Dispatch			ved by:			Date/Time			
Relinquished by:		Date/Time		Method of D	ispatch		Recei	ved by:	:		98/			Date/Time
Domarke:														

Remarks:

Preservative Sticker 1

Preservative Sticker 2

Préservative Sticker 3

Preservative Sticker 4

State of Florida Department of Environmental Protection														
			Cha	ain of Cust	ody R	ecord								Page_2_ of _3_
Project Name Florian State F		# B O	/											
Sampled by	T		SH-Su-NS	1										
RQ# RQ-2020-06-08-29	Site Name	ida State	Ere C	E S	To see the second		1							
Field ID	Matrix	Date	Time	Bottle Group					-					Comments
DEPMW-11 (30-50)	GW	6/08/20	1647	A	2	χ		1		1				
DEPMN-12 (100-100)	1	6/09/20	1649	A	4	1								MS/ASD
DEPINW-13 (40-60)	114	6/09/20	1117	A	4				Α		\			M5/M5D
DEP MW-14 (100-120)	1	6/11/20	1453	A	2									
DEPMUL 15 (35-55)		6/11/20	1325	A	T					y				
DEPMW-16 (30-50)		6/11/20	1034	A.										
DEPMW-17 (100-120)	1	6/11/20	1203	A						-				
DEP MW-18 (100-120)	1	6/08/20	1441	A							1			
DEPMW-19 (55-75)	4 -	6/88/20	1423	A					/ × 34					
DEP MW-20 (35-55)	1	6/10/20	1640	A				1	1	1				
DEPMW- It (EQB)		6/08/20	1245	A	1			-	w.	p.				
EQB 2 Relinquished by:	GW	6/08/20	1244	A	7	X		·]	1					
Relinquished by:	Date/Time Method of			1	p 1	Received by:							Date/Time	
Relinquished by:		Date/Time	The Real Property lies	Method of D	Method of Dispatch			ed by:		Date/Time				
Relinquished by:	· *	Date/Time		Method of D	ispatch		Receiv	ed by:						Date/Time
Pomarke:														

Remarks:

Preservative Sticker 1

Préservative Sticker 2

Preservative Sticker 3

Preservative Sticker 4

		Stat	te of Florida	Department of	of Enviror	nment	al Prote	ction							
			Ch	ain of Cus	tody R	ecor	t							Page 3 of 3	
Project Name						Analyses									
Florida State Fire Callege					B O			1				/ /			
Sampled by Sampled by List Wathias Module#							SUN SUNS AUS								
RQ#	Site Name	1 1		0 .0	E S	1 4	1			/	/	/	/		
60-3030-01-08-30		dastat		Acceptance		13		10		/	/		/		
Field ID	Matrix	Date	Time	Bottle Group		8-	1	-	-		├—	\leftarrow		Comments	
FRB3	GW	6/08/20	1515	₿	*Ba	X				- 3					
FRB4	11	6/08/20	1500	B	ABJ	1			\	0					
DEPMW-16(30-50) Dup		6/11/20	1034	A	a				1	politic.					
DEPNW-17(100-120) Dup	GW	6/11/20	1203	A	2	X									
											1				
	1								IJ	-	1				
				1	IN I				J	Shoul	1				
	13			NFE.				7-1-	1.	U.	1				
	1	2.							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1					
	1	N X							1	1)	
		100					Name of the last	~	1						
Relinquished by:		Date/Time		Method of Dispatch			Received by:							Date/Time	
Relinquished by:		Date/Time		Method of Dispatch		Received by:							Date/Time		
Relinquished by:		Date/Time		Method of Dispatch			Received by:							Date/Time	
Remarks:		d.	Preser	vative Sticker	1	^k rėsėry	rative St	ticker 2	\bigcap	Prese	rvative	Sticker	3	Preservative Sticker 4	

.

Cooler Packing Worksheet for Request: RQ-2020-06-08-29 Florida State Fire College June 8 GW Sampling

Ship Cooler On: 6/5/2020 Customer/Project: SIS/FC-MARION Assigned To: KLUG_K
Requester: David Meyers

Priority: 5

727.262.8268

19321 U.S. Highway 19 North

Building C, Suite 200 Clearwater, FL 33764

Attn: Meg Simms/Olivia Cain GEOSYNTEC

Comments:

No preservatives needed.

Please include 8 liters PFAS free water-

20 Mg 1 1 2

Please include Fed-Ex shipping labels for cooler returns.

Bottle Group A - Ground Water, Duplicate, EQB Samples

Bottle Group B - Field Reagent Blanks

Requested Analyses:

Bottle Group: A

of Sites: 28

Container ID: P-125ML HDPE PFAS

Qty: 62

Preservation: ICE

Lot # 1269699

Description: 125ml HDPE bottle for PFAS

(2-bagged)

Affix BLUE dot to container.

Analysis W-PFAS-MS **Description**

Perfluorinated alkyl substances in water matrices by HPLC/MS/MS

Bottle Group: B

of Sites: 2

Container ID: P-125ML HDPE PFAS

Qty: 4 Pres

Preservation: ICE

Lot # 12690 99

Description: 125ml HDPE bottle for PFAS

(2-bagged)

Affix BLUE dot to container.

Analysis W-PFAS-MS Description

Perfluorinated alkyl substances in water matrices by HPLC/MS/MS

Printed: 5/29/2020 9:45:19 AM

Sample Packaging/Shipping Checklist for FDEP SIS/SOL PFAS Projects

Objective: Ensure sample kits are received and samples are packaged and shipped properly.

Instructions: Please answer each question and provide your name and the date the question was answered. For any question with a No answer, please provide details/justification below the question. A copy of this checklist should be saved to the project folder, accompany the sample kit, and be returned to the lab with the samples.

Project Name: Florida State Fire College Project Number: FR3511C/04		
Checked by: 17. Hollingshead		
Date: 6/11/2020		
Item		
Sample dates, times, IDs on field notes, COC, bottle labels (in Sharpie) Match	(es	No
Heavy-Duty Garbage Bag Place in Cooler and Ice in Bottom of Bag	(es)	No
Bagged Samples Placed on Ice (Photo)	Yes	No
Additional Ice (Not Bagged) Placed on Samples (Photo)	Yes	No
Bag Sealed and COC, RQ, Checklist in Ziplock Bag Taped to Cooler Lid (Photo)	®	No
FDEP Notified of Shipping Date, Method, Expected Arrival	Yes	No

ATTACHMENT B

Photolog

Client: FDEP Project Number: FR3511C/04

Site Name: FSFC Site Location: Ocala, FL

Photograph 1

Date: 8 June 2020

Direction: E

Comments: View of groundwater sampling equipment set-up and sampling activities at DEPMW-10 (100-120').

Photograph 2

Date: 8 June 2020

Direction: SE

Comments: View of Geosyntec staff unloading purge water into investigation-derived waste (IDW) drums.

Client: FDEP Project Number: FR3511C/04

Site Name: FSFC Site Location: Ocala, FL

Photograph 3

Date: 9 June 2020

Direction: N

Comments: View of groundwater sampling equipment set-up and sampling activities at DEPMW-13 (40-60').

Photograph 4

Date: 9 June 2020

Direction: N

Comments: View of electric submersible pump decontamination following groundwater sampling at DEPMW-13 (40-60').

Client: FDEP Project Number: FR3511C/04

Site Name: FSFC Site Location: Ocala, FL

Photograph 5

Date: 11 June 2020

Direction: N

Comments: View of purging activities at the post-filter area of FSFC Supply Well. The YSI probe cluster is installed in a container attached to the tap for the collection of groundwater quality data.

Photograph 6

Date: 11 June 2020

Direction: N

Comments: View of purging activities at the FSFC Fire Well. The YSI probe cluster is installed in a container attached to the fence for the collection of groundwater quality data. The groundwater sample was collected directly from the 6-inch pipe.

Client: FDEP Project Number: FR3511C/04

Site Name: FSFC Site Location: Ocala, FL

Photograph 7

Date: 11 June 2020

Direction: E

Comments: View of 10, 55-gallon IDW drums filled with purge water and staged near wastewater treatment area.

Photograph 8

Date: 11 June 2020

Direction: SE

Comments: View of the extra 15, 55-gallon IDW drums staged in the wastewater treatment area.

GEOSYNTEC CONSULTANTS Photographic Record Client: FDEP Project Number: FR3511C/04 Site Name: FSFC Site Location: Ocala, FL

Photograph 9

Date: 11 June 2020

Direction: NA

Comments: View of ice placed in trash bag in cooler prior to placing samples in cooler.

Photograph 10

Date: 11 June 2020

Direction: NA

Comments: View of samples placed in cooler

on top of ice.

GEOSYNTEC CONSULTANTS Photographic Record Client: FDEP Project Number: FR3511C/04 Site Name: FSFC Site Location: Ocala, FL

Photograph 11

Date: 11 June 2020

Direction: NA

Comments: View of ice placed on top of samples.

Photograph 12

Date: 11 June 2020

Direction: NA

Comments: View of Ziploc bag with chain of custody, RQ, and cooler checklist taped to cooler lid.

