APPENDIX B - FIELD DATA SHEETS

An Evaluation of the Effectiveness of Mitigation Banking in Florida: Ecological Success and Compliance with Permit Criteria

Kelly Chinners Reiss¹, Erica Hernandez², Mark T. Brown¹

¹Howard T. Odum Center for Wetlands University of Florida Gainesville, Florida 32611-6350

²Department of Environmental Protection Kissimmee Prairie Preserve Okeechobee, Florida 34972

Final Report

Submitted to the Florida Department of Environmental Protection Under Contract #WM881

United States Environmental Protection Agency Region Four Under Contract #CD 96409404-0

APPENDIX B - FIELD DATA SHEETS

FIELD ASSESSMENT DATA SHEETS FOR UMAM AND WRAP WITH FIELD DATA FROM FWCI AND HGM METHODOLOGIES. OVER VIEW MAPS OF EACH BANK WITH OUTLINES OF ASSESSMENT AREAS AND SITE PHOTOS INCLUDED.

Apper	ndix	Page
B-1	Barberville Mitigation Bank	B-2
B-2	Bear Point Mitigation Bank	B-21
B-3	Big Cypress Mitigation Bank	B-27
B-4	Bluefield Ranch Mitigation Bank	B-41
B-5	Boran Ranch, Phase I	
B-6	CGW Mitigation Bank	B-79
B-7	Colbert-Cameron Mitigation Bank	B-85
B-8	Corkscrew Regional Mitigation Bank	B-99
B-9	East Central Florida Regional Mitigation Bank	B-105
B-10	Everglades Mitigation Bank/Phase I (FPL)	B-115
B-11	Florida Mitigation Bank	B-134
B-12	Florida Wetlandsbank	B-140
B-13	Garcon Peninsula Mitigation Bank	B-154
B-14	Graham Swamp Mitigation Bank	B-160
B-15	Hole in the Donut/Everglades National Park	B-166
B-16	Lake Louisa and Green Swamp	B-180
B-17	Lake Monroe	B-186
B-18	Little Pine Island	B-211
B-19	Loblolly Mitigation Bank	B-226
B-20	Loxahatchee Mitigation Bank	B-236
B-21	Panther Island Mitigation Bank	B-250
B-22	Reedy Creek Mitigation Bank	B-277
B-23	R.G. Reserve Mitigation Bank	B-295
B-24	Split Oak Mitigation Bank	B-307
B-25	Sundew Mitigation Bank	B-328
B-26	TM-Econ Mitigation Bank	B-338
B-27	Tosohatchee Mitigation Bank	B-348
B-28	Tupelo Mitigation Bank	B-365

Appendix B-1. Barberville Mitigation Bank

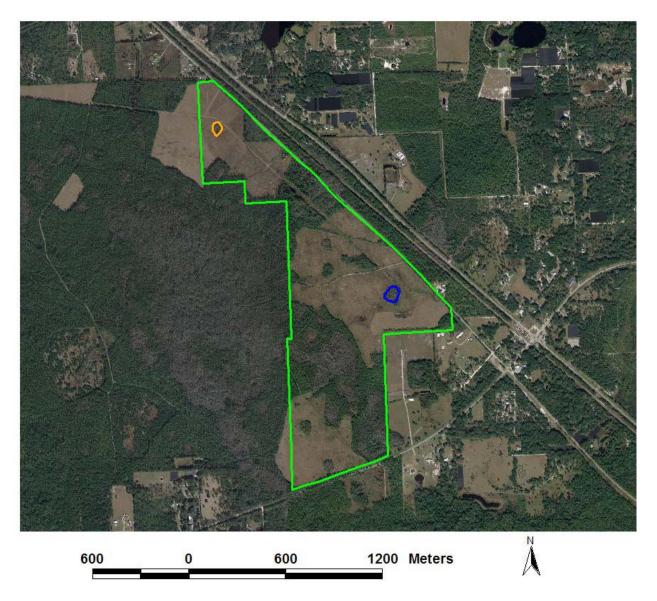
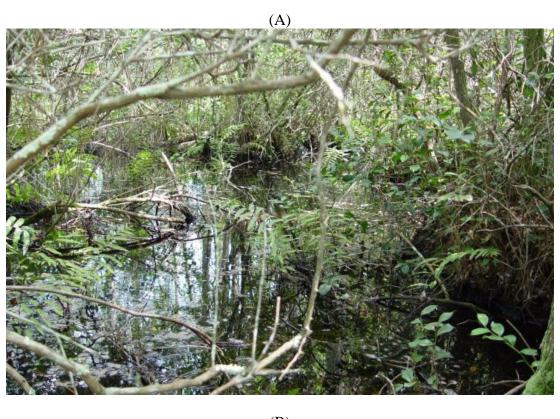



Figure B-1.1. Landscape location of Barberville Mitigation Bank (green line). Boundary of the wetland assessment areas Barb_CYP (blue line) and Barb_MAR (orange line) shown.

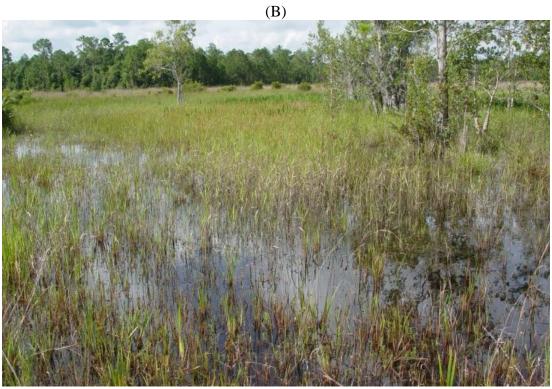


Figure B-1.2. Site photos of Barberville Mitigation Bank A) interior of Barb_CYP B) Barb_MAR looking west across the marsh.

Barb_CYP Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	Assessment Area Name or Number		or Number		
Barberville Mitigation Bank		NA		Barb_CYP			
FLUCCs code	Further classifica	ation (optional)		Impac	t or Mitigation Site?	Assessment Area Size	
2000 SJRWMD - 6210 Cypress	SJRWMD Soil - I	Basinger		Mitiga	ation	0.6 ha (1.5 ac)	
Basin/Watershed Name/Number 03080101 Upper St Johns River HUC Middle St Johns	Affected Waterbody (Clas	ss)	Special Classificati None	ion (i.e.(DFW, AP, other local/state/federa	I designation of importance)	
Geographic relationship to and hyd	rologic connection with	wetlands others	urface water unla	nde			
No direct hydrologic connection to rainfall and run-off from adjacent up	Outstanding Florida Wa		•		rface outflows, water in	flows limited to direct	
Assessment area description							
FWCC Priority Wetlands - 1-3 species, upland habitat. FWCC Strategic Habitat Conservation Areas - Priority Habitat. The edge of <i>Pinus elliottii</i> (slash pine) trees around this wetland was left during the recent timbering activity (1999 DOQQs show forested uplands, 2004 DOQQs show open uplands). Very thick and shrubby, highly fire suppressed.							
Significant nearby features			Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional	
No Outstanding Florida Waters within 1 mile buffer (ERA Tools). Near Lake George State Forest, Nine Mile Point, and Ocala National Forest (within approximately 10 miles). Barberville is in a critical linkage, high priority Ecological Greenway called Ocala National Forest.			Large conservation tracts in area, not unique considering. Scattered isolated depressional wetlands, but the conservation tracts have intact high quality wetlands based on remote sensing.				
Functions			Mitigation for previous permit/other historic use				
Wildlife habitat and refuge, in particular waterfowl, wading birds, and aquatic animals, which may depend on cypress swamps for breeding purposes; provide water storage by holding excess water and slowly releasing it into the water table; enhance water quality by absorbing nutrients from the water.			The support area has been harvested for timber - it was forested in the 1999 DOQQs.				
Anticipated Wildlife Utilization Base that are representative of the assesbe found)		•		T, SS	y Listed Species (List s C), type of use, and inte		
Odocoileus virginianus (white-tailed deer), Procyon lotor (raccoon), mar species of frogs, small fish, wading birds, butterflies, aquatic insects.			Mycteria americana (wood stork)E, Ursus americanus floridanus (Florida black bear)T, Alligator mississippiensis (alligator)T, Aramus guarauna (limpkin)SSC,				
Observed Evidence of Wildlife Utiliz	zation (List species dire	ectly observed, or	other signs such a	as trac	ks, droppings, casings,	nests, etc.):	
Deer tracks on sand pads for power poles just on eastern wetland/upland fringe. Very little observed wildlife - site visit was immediately preceding a heavy rain storm.							
Additional relevant factors:							
	Upland areas surrounding wetland had been harvested in last 5 years. Very thick and shrubby wetland. Difficult to walk through and especially difficult to enter wetland through fire suppressed edge.						
Assessment conducted by:			Assessment date	e(s):			
Erica Hernandez & Kelly Chinners Reiss			7/18/2005				

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

Barb_CYP Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation)

(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Are	a Name or Numbe	Æ
Barberville Mitigation Bank		NA	Barb_CYP			
Impact or Mitigation		Assessment conducted by:		Assessment date	ə:	
Mitigation Bank		Erica Hernandez, Kelly Chini	ners Reiss	18-Jul-05		
Scoring Guidance	Optimal (10)	Moderate(7)	l Mi	nimal (4)	Not Present	t (0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface water functions	Minimal le	evel of support of l/surface water unctions	Condition is insur provide wetland water functi	fficient to
.500(6)(a) Location and Landscape Support w/o pres or current with	from heavy equipment use. not obvious invasive exotics Some connection to offsite I of the wetland edge. Also, \$ 750-900m away. Wildlife wi large ruts. Sufficient quantit	area supplies much support for Invasive exotic species not progress we did not note any as we whabitat, but there is a 2-lane passer40 a much busier 2-lane patill be partially limited by these they and variety of adjacent habited is missing from the groundco	resent in the valked through the valued road to ved road is roads and the vats for some	e proximity of the a gh the wet prairie, the east of the pi to the south of the ne uneven nature e but not all wildlif	assessment area, of flatwood restoration roperty approximate property, approximate of the upland arease re species. Aristida	or at leas on area. tely 150m mately s with a stricta
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	oriate, we noted moss collars, I of the cypress wetland, so perf land structure (timbered). Son dcypress) trees with some tree is very shrubby. This is probal in on water surface with black	naps seasor ne soil subs as positioned bly the resul	nal highs are highe idence evidenced I high on hummoo It of past land mar	er than expected o by deep ruts arou cks. Zonation is so nagement practices	r more nd the mewhat s such as	
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	Plant cover by desirable spe dense vegetation). Age and dominant canopy species. I nothing in the support habita identified. There is some hi debris was at a much greate	ecies but the density is not need size class appears appropria Plants do appear healthy, but at that could currently carry a furman induced human impacts or density than expected. Landion in hydrology from surround a cypress wetland.	te for <i>Taxoo</i> at a high del ire to the we as cut sturn d managem	dium ascendens (pensity. When could be tland edge. No ir ips were found. Seent practices are gettern.	pondcypress) trees d a fire occur th nvasive exotic spec Snags, dens, and w generally appropria	s, the nere is cies were voody ate but
Score = sum of above scores/30 (uplands, divide by 20) current br w/o pres with 0.77	If preservation as mitigation adjustments Adjusted mitigation des	ent factor =	FL =	For impact asses delta x acres =	sment areas	
	If mitigation		F	or mitigation asse	essment areas	
Delta = [with-current]	Time lag (t-factor) =					
	Risk factor =		KFG	= delta/(t-factor x	115K) =	

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Barb_CYP Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: Barb_CYP, Barberville Mitigation Bank

Date: 7/18/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Depressional forested wetland - *Taxodium ascendens* (pondcypress) and mixed bays. Surrounded by 5-10m strip of *Pinus elliottii* (slash pine) and *Gordonia lasianthus* (loblolly bay) - serious fire suppressed fringe and wetland.

Wetland Assessment Area: 0.6 ha (1.5 ac)

FLUCCS Code/Description: SJRWMD 2000 - 6210 Cypress

2.5	Wildlife Utilization (WU)		
2.5	Wetland Cano	py (O/S)	
2.5	Wetland Groun	nd Cover (GC)	
2.5	Habitat Support/Buffer		
2.5	Field Hydrology (HYD)		
2.75	WQ Input & Treatment (WQ)		
15.3	SUM		
6	Count		
0.85	WRAP		

Barb_CYP Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Deer tracks on sand pad of power line pole. Adequate adjacent food source. Some human disturbance - logging ruts throughout "restored" flatwoods, 2-lane road (CR3) within 150m, power lines, fire suppression. Does have areas of offsite habitat support.

2.5 Wetland Canopy (O/S)

Overstory is primarily *Taxodium ascendens* (pondcypress) - some cut stumps but generally good age and size class distribution and evidence of recruitment and regeneration. Shrub layer is thick with *Lyonia lucida* (fetterbush) and *Gordonia lasianthus* (loblolly bay). In need of fire, but a decent fire could scorch the wetland due to the extreme shrub growth and vine cover. No visible invasive exotic species or undesirable species. Some snags and den trees, perhaps much more woody debris than appropriate because of the lack of fire.

2.5 Wetland Ground Cover (GC)

Less than 10% nuisance species, no exotic species. Not managed for periodic burns. Pretty shaded, so little ground cover throughout, mostly shrubs and vines.

2.5 Habitat Support/Buffer

Haoitat Support Barrer				
Greater than 300 ft all around wetland in restored	Buffer Type	(Score) x	(% of Area)	= Sub Total
flatwoods/more like wet prairie. Planted trees are <0.5m tall.	Disturbed	2.5	1	2.5
Does not provide for all of the needs for all wildlife species.				
Is connected to offsite wetlands for support (access through				
the restored flatwoods/wet prairie).				
			Total =	2.5

2.5 Field Hydrology (HYD)

No ditching apparent - could have been plugged, but ditches or plugs were not visible as we walked around the perimeter of the wetland. Hydrology adequate to maintain a viable wetland. Distinct hydrologic indicators such as adventitious rooting, moss collars, and lichen lines noted. Odd orange/black coating on water surface - oily by feel - left dark coating on vegetation (water level was currently lower than it had been recently).

2.8 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use	(0,)	(0/ CA)	= Sub
Category Restoration	(Score) x 2.5	(% of Area) 1.00	Total 2.5
			0.0
		LU Total =	2.5

PRETREATMENT CATEGORY (PT)

TRETRESTIMENT CHIEGORY (11)						
Pretreatment Category	(Score) x	(% of Area)	= Sub Total			
_ ,	` ′					
Undeveloped	3.0	1.00	3.0			
			0.0			
		PT Total =	3.0			

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

$Barb_MAR\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name Applicat		Application Number	er Assessment Area Name or Number		or Number	
Barberville Mitigation Bank	_	NA			Barb_MAR	
FLUCCs code	Further classifica	ation (optional)		Impac	t or Mitigation Site?	Assessment Area Size
6410 Freshwater Marsh (1995)	Soils - Smyrna; N	NWI - Palustrine e	mergent	Mitiga	ition	1.4 ha (3.5 ac)
03080101 Upper St. Johns River	Affected Waterbody (Clas	ss)	Special Classificat None	ion (i.e.C	DFW, AP, other local/state/federa	l designation of importance)
Geographic relationship to and hydr	ologic connection with	wetlands, other s	urface water, upla	ınds		
No direct hydrologic connection to C rainfall and run-off from adjacent up hardwoods forest approximately 150	land areas. In times o					
Assessment area description Drastic elevation change (perhaps 1 meter), dug out previously for cattle watering hole. Power line poles in proximity to wetland and running across mitigation bank's Eastern edge with access road with small ditch (<1 m deep) running along north/south direction. Soil is noted as Smyrna, not hydric, though wetland not delineated on soils coverage. Depressional marsh, vegetation zonation not intact. "Deep marsh" habitat with pickerelweed (<i>Pontederia cordata</i>) and spikerush (<i>Eleocharis</i> spp.) Some scattered swamp tupelo (<i>Nyssa sylvatica var. biflora</i>) throughout. Large tree island with slash pine (<i>Pinus elliottii</i>) and saw palmetto (<i>Serenoa repens</i>).						
Significant nearby features			Uniqueness (co	nsider	ing the relative rarity in	relation to the regional
No Outstanding Florida Waters within 1 mile buffer (ERA Tools). Near Lake George State Forest, Nine Mile Point, and Ocala National Forest (within approximately 10 miles). Barberville is in a critical linkage, high priority Ecological Greenway called Ocala National Forest.				vation tracts have		
Functions			Mitigation for pre	vious p	permit/other historic use	e
Water storage during droughts and Filter system, improving water qualit Essential breeding grounds for man wildlife habitat, especially as wintering	ty before water enters y species of amphibiar	rivers and lakes.	The support area has been harvested for timber and previously had cattle on it. There were ditches that have since been plugged connected to this wetland.			
Anticipated Wildlife Utilization Based that are representative of the assess be found)			1 '	T, SS	y Listed Species (List s C), type of use, and into	
Shallow depression marshes void of predatory fish are extremely important for several amphibian species that depend on seasonal wetlands for successful reproduction and provide breeding or foraging habitat for amphibians (including frogs, toads, and salamanders), reptiles (including snakes and alligators), wading birds, rodents, and mammals. Bird use includes forage and nesting: white ibis (<i>Eudocimus albu</i> SSC, sandhill crane (<i>Grus canadensis</i>) T, wood stork (<i>Mycteria americana</i>). Amphibian use includes cover, food, reproduction: gopher frog (<i>Rana caito</i>) SSC. Reptile use includes forage and nesting: white ibis (<i>Eudocimus albu</i> SSC, sandhill crane (<i>Grus canadensis</i>) T, wood stork (<i>Mycteria americana</i>). Amphibian use includes cover, food, reproduction: gopher frog (<i>Rana caito</i>) SSC. Reptile use includes forage and nesting: white ibis (<i>Eudocimus albu</i> SSC, sandhill crane (<i>Grus canadensis</i>) T, wood stork (<i>Mycteria americana</i>). Amphibian use includes cover, food, reproduction: gopher frog (<i>Rana caito</i>) SSC. Reptile use includes food, cover nesting: American alligator (<i>Alligator mississippiensis</i>) SSC				od stork (<i>Mycteria</i> bod, reproduction: cludes food, cover,		
Observed Evidence of Wildlife Utiliz	ation (List species dire	ectly observed, or	other signs such a	as trac	ks, droppings, casings,	nests, etc.):
Game trails throughout wetland and surrounding wet prairie (hydric pine flatwoods restoration planned). Land manager said sandhill crane pair had nested in wetland last season, did not see this firsthand. Many dragonflies and small fish in wetland. Audible frog calls. Speculation about area in center of marsh where alligator had taken large wading bird (perhaps blue heron), and areas with matted vegetation and what looked like a recent alligator nest.						
Additional relevant factors:	Additional relevant factors:					
Upland areas surrounding wetland had been in agricultural land use (cattle and timber). <i>Pinus elliottii</i> (slash pine) and <i>Pinus palustris</i> (longlea pine) have been planted for restoration efforts with limited success. Uplands were inundated with water at time of site visit, though elevation was uneven and some areas did not have standing surface water present.					, , ,	
Assessment conducted by:			Assessment date	e(s):		
Erica Hernandez & Kelly Chinners Reiss			7/18/2005			

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

Barb_MAR Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Ares	a Name or Number	
Barberville Mitigation Bank		NA		Barb_MAR		
Impact or Mitigation		Assessment conducted by:		Assessment date	<u>.</u>	
Mitigation Bank		Erica Hernandez, Kelly Chinr	ners Reiss			
Willigation Bank		Erica Fierrianaez, reiny Orinn	1013 110133	10 04. 00		
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	inimal (4)	Not Present (0)	
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	wetland	evel of support of l/surface water unctions	Condition is insufficient to provide wetland/surface water functions	
.500(6)(a) Location and Landscape Support w/o pres or current with	bottomland hardwood forest Cover and structure for wildl road at the edge of the wet p species are not apparent, th good, except for the presence	s wet prairie being restored as on the property and the uplan ife is provided by thick and tall prairie with truck traffic (dumpough there are some nuisance of the road, and there is supproved by the suppression of the provided by the powerline structure, grass roamost species.	d restoration (> 1m) growtrucks and comport habita	n is adjacent to ar und cover in wet p construction trucks asses in the wet p t for larger species	n offsite forested wetland. prairie. There is a 2-lane s observed). Invasive prairie. Wildlife access is s in the area. There is no	
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	riate considering seasonality a o sylvatica var. biflora) trees, to ors were apparent such as lich ort (Utricularia spp.) in bloom ore-existing water quality data no excess turbidity, etc. Wate re graded on south edge.	hough no lo en lines on with purple available in	oop roots present. swamp tupelo and flowers, no other v the field. No visib	Vegetation zonation not d adventitious roots at the water quality species ble signs of water quality		
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	e species, but question the occ ruitment and regeneration are is not distinct for depressional ted for an herbaceous marsh. spindly with many dead branch to plugs to restore hydrology than expected (more deeper poine (<i>Pinus elliottii</i>) and saw pare is a tall, thick patch of saw. However, it is unlikely that the or in the near future.	occurring. I marsh spe Herbaceounes. Land r and upland ools that ha almetto (Se palmetto the	No exotic species cies. Lots of cour is plants appear to management is prorestoration improved been dug out for the cour of the course of the	s observed in the se woody debris in o be in good condition, but obbably optimal for vements. Topographic r previous cattle ranching e islands in the north, etc.).		
	_					
Score = sum of above scores/30 (uplands, divide by 20)	if If preservation as mitig	gation,		For impact assess	sment areas	
current or w/o pres 0.77	Preservation adjustme Adjusted mitigation de		FL=	delta x acres =		
	If mitigation		F	or mitigation asse	ssment areas	
Delta = [with-current]	Time lag (t-factor) =			= delta/(t-factor x		
	Risk factor =				,	
- 00 045 000(0) F A O 1 W						

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Barb_MAR Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: Barb_MAR, Barberville Mitigation Bank

Date: 7/18/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Depressional herbaceous wetland. Vegetation zonation not intact.

Deeper marsh with *Pontederia cordata* (pickerelweed) and large *Eleocharis* sp. (spikerush), some scattered *Nyssa sylvatica* var. *biflora* (tupelo) trees and tree islands, some with *Pinus elliottii* (slash pine) and *Serenoa repens* (saw palmetto).

Wetland Assessment Area: 1.4 ha (3.5 ac)

FLUCCS Code/Description: SJRWMD 2000 - 6410 Freshwater Marshes

12.0	SUM Count			
2.5		reatment (WQ)		
2.5	Field Hydrology (HYD)			
2.5	Habitat Support/Buffer			
2.0	Wetland Grou	Wetland Ground Cover (GC)		
NA	Wetland Cano	py (O/S)		
2.5	Wildlife Utilization (WU)			

Barb_MAR Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Connected to off site forested wetland across wet prairie. Power lines and grass road right-of-way with small (<Im deep) ditch running through bank and across area in upland restoration/wet prairie. Game trails throughout wetland and surrounding wet prairie. Abundant wet habitat and cover. Manager said he saw a sandhill crane pair nest in this wetland last year, though we did not see any. Many dragonflies and heard frog calls. 2-land paved road with dump truck traffic could injure wildlife, so greater than negligible human disturbance is a factor within the adjacent lands. This could include the physical impact of being hit and the noise and pollution associated with such traffic. There is also an airport nearby, as planes were flying often low overhead and were noisy.

NA Wetland Canopy (O/S)

From the WRAP handbook (Miller and Gunsalus 1999) page 8, "this variable should be used when there is significant overstory/shrub canopy" ~ >20% of overall wetland acreage. The canopy did not fit that criteria. Hosted some *Nyssa sylvatica* var. *biflora* (tupelo) trees <6 m tall and mixed throughout the center - they appeared healthy though some of the branches are without leaves and the canopy is thin. Why are they throughout the marsh to begin with? And, why are they so abundant? Fire exclusion? Was it a forested system that had been logged many years ago? Is it becoming a bay head? Some recruitment of the tree species is apparent and there is a seed source from the forested wetland canopy within 150m.

2.0 Wetland Ground Cover (GC)

No clear zonation, though there is some distinction between the edge and the deeper marsh areas. The center has a mixed species composition including *Panicum hemitomon* (maidencane), *Eleocharis interstincta* (knotted spikerush), *Bacopa caroliniana* (lemon bacopa; blue waterhyssop), *Pontederia cordata* (pickerelweed). These are all "good" species, and no invasive or exotic species stick out throughout the marsh. There is a very distinct drop in elevation along most sides (more gentle slope to south) with *Serenoa repens* (saw palmetto) growing right at the edges. The wetland and upland lands did have cattle on it within the last 10 years, though it was unclear which year the cattle were removed. This wetland may have been dug out in areas to facilitate cattle watering.

2.5 Habitat Support/Buffer

Greater than 300 ft. vegetated buffer all around the marsh. Some connection to offsite wetlands across the wet prairie. The wet prairie hosts some undesirable species, mainly persistent pasture grasses (ie *Paspalum notatum*, Bahia grass). Wet prairie has been planted with *Pinus palustris* (longleaf pine) and *Pinus elliottii* (slash pine) for restoration to hydric flatwoods. These trees are currently < 0.5m tall. *Aristida stricta* var. *beyrichiana* (wiregrass) not apparent throughout upland areas, only one clump was identified on

	Buffer Type	(Score) x	(% of Area)	= Sub Total
	Disturbed	2.5	1	2.5
_			Total -	2.5

2.5 Field Hydrology (HYD)

Good water quality suggested by abundant blooms of *Utricularia* spp. (bladderwort). Plants healthy, no stress apparent in herbaceous species (some stress noted in *Nyssa sylvatica* var. *biflora* (tupelo) trees with thinned canopy). Hydroperiod probably altered by adjacent power line access road and ditch. Water depth altered from alterations associated with cattle land use, such as digging out patches of the wetland interior. Otherwise, water inflow from surrounding wet prairie restored as ditches on south side of wetland have been plugged. The catchment is probably close to its historic size. Hydrology is adequate to maintain a viable wetland, though there have been some external influences.

2.5 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total
restoration	2.5	0.75	1.9
grass rd. & lines	2.5	0.25	0.6
•	2.5		

PRETREATMENT CATEGORY (PT)

		(/	
Pretreatment Category	(Score) x	(% of Area)	= Sub Total
undeveloped	3.0	0.75	2.3
grass swales	1.0	0.25	0.3
		PT Total -	2.5

Barb_MAR Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Depressions Marsh

Assessment Team: KCR, ECH **Project Name:** Barb_MAR

Location: Barberville Mitigation Bank, Volusia County

Date: 7/18/05

Subclass: Depression Marsh

Function	FCI
Surface Water Storage	0.93
Subsurface Water Storage	0.94
Cycle Nutrients	0.96
Characteristic Plant Community	0.85
Wildlife Habitat	0.87

Variables	Measure	Units	Subindex
V CATCH	24	%	0.75
V upuse	66.45	%	1.00
V WETPROX	3032	meters	0.99
V WETVOL	8	%	0.92
V surout	0	%	1.00
V SUBOUT	0	%	1.00
V ZONES	1	number	0.50
V MAC	90	%	0.95
V SURTEX	L.S. and Sandy	100%	1.00
V HCOMP	50	%	0.50

Barb_MAR Hydrogeomorphic Approach, page 2

Vcatch

Size of original catchment 1.98 ha Size of current catchment 1.5 ha

Vupuse

cover type O.S. curve # 61 percent 5 cover type O.S. curve #80 percent 5 cover type Native curve # 55 percent 45 cover type Native curve # 77 percent 45

Vwetprox

Sector 1	Sector 2	Sector 3	Sector 4
500m	500m	500m	206m
Sector 5	Sector 6	Sector 7	Sector 8
212m	500m	124m	490m

Vwetvol loss of 1ft due to excavation

diameter	diameter	depth of	length of fill	width of fill	average
wetland	wetland	wetland	material	material	thickness of
north-south	east-west				fill material
80m	55m	3.5m	80m	55m	0.3048m

Vsurout no ditch

Vsubout no ditch

Vzones

shallow marsh on two of the transects

Vmac

3/30 points had no interception, 90% cover

Veurtex

sandy loam for for all zones except one sand

Vhcomp

shallow marsh zone 100% 30 *Panicum hemitomon*, 20 *Bacopa caroliniana* deep marsh 50 % 30 *Eleocharis spp.* 20 *Pontederia cordata*

Barb_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 1 *NOTE: field codes are different than reported codes, Barb_MAR = VOSAND

	75-80	70-75	65-70	60-65	55-60	50-55	45-50	40-45	35-40	30-35	25-30	20-25	15-20	10-15	5-10	0-5 m	Species	Date: July 18	Site:	
									V	J	V	1					Pontedorio cordato	0	Site: UOSAND	
	-	38				100			1	٧	1	1	1				Eleocharis interstanta	1-7	S	
	<u> </u>	1000		200				13.0 3.1		24	1	300		が高		V	Bacopo caroliniana	9	2	
	<u> </u>		-			100		15		大学	1	V	V	1499 (173) (213)			Nyssa L. flora	0.5		
	r	3815 3815 4016				000		583			1	J	1	V	V	1	Paricum hem-tomism			
	<u> </u>	322		252						55		V					Rhyhch. 8/ microces	helen	Biosun	
	<u> </u>							300				V					Tlex cossine		· ey Fie	
		:000 E81		10,00		1416 500		100		40		1		精			Mynea centera		eld Dat	
			T			100		100				J	V	1	,	1	Vaccineum corymborum		Biosurvey Field Data Sheet - Transects, Vegetation Presence - UF Center for Wetlands Transect Direction: Verification	
		100		146		減		143				1	V	党員	J		Utricularin purpuren	Data	et - Tr	
		14.0		Ar Ar		1.00		153		TE IN		160	1	V			Woodwardin virginia	Data Recorder:	ansect sect D	
		Alex New		542° 635		- M.,		101 201		123		172	V	V	7	V	Screno- ropens	rder:	s, Veç irecti	
		100				4		769 767		457		371 3949 371	1	V		ISSE.	Smilar laur folio		jetatio	
		125		100		100		100		Red Billion		200		V	1		Errocaulon decargular	Lun	n Pres	
		志		1		100		- AR-		100		1670		J	V	縣	Saratonnia minor	Con Durant	T cence	
		製金		10		12-15 0-25 1-15 1-15 1-15 1-15 1-15 1-15 1-15 1		100	-	3.65 2.66		38		J		1	xyour big jupicai	1	UF C	
		100		4		14.		39		100		216		V		1	Rheria meriano		enter	
		100		553						1		9 58		V		· 新	Rhexia alifanus	i	or We	
		1000		100		239		120		46		100		V	/	178	Pinus elliottii	Ì	tlands	
×		是		# 1 m		1757.5		334		施物		34		V	1	S. 15.5	Androposon virginizas	ì		
1	L	73		-10 39		极		10	100	32		12.00		1	V	1800 1800 1800	Amphicospor millerbeign	}		
id_	1	100	10	40		200	9	100 000 000 000 000	-	100		(大) (成)		1	1	3150 1237	wiregons Anshite?	1		
	-	100 AUG	100	142		100	7	G		100		50		だった	V	V	Proserpina ca partinon	1		
	L	500		133		35		39	4 000	Ė		100		15		1	Ilex glabra.			
	-	150	1.	36			1		L	100	L	9 c			L	V	Galactic sp.	1		

Barb_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 2 *NOTE: field codes are different than reported codes, Barb_MAR = VOSAND

75-85	70-75	85-70	60-65	55.80	50-55	45-50	6-45	35-40	30-35	3	20.25	1520	Ö Ü	510	05m	Species	Site: Vissand
			器		满		- AUS 1886				10 10	-			1	Setenoo replins	4 5
					30										1	Weekweichsk dirigonium	1 3
											7%				٧	Australia Chin	69
															1	Autopier wigories	î î
	70 de 2														٧	Revision 1 microscopad	F
			26d 943		4 LEC 2000								7	A	V	Mongrass waterored	Sacciole
	343 860		(報) (520)						1860 1880			,		J	1	Parana hamboning	
	358 32										J	1	1	V	L	Bacopin constituent	
							200							J	V	Friends scripinsta	
	iles Mo.						24							V	J	Respirance particular	Tran
			2				300						120		V	Sigithera, OD	Reco
		-	97 144				381 318						8	V	Z	Gratista pilosa	irecti
-	75.0 59.0				:00		ZN.				V	1	327	V	V	Whitevaluis pupuses	9 9
													S		V	XXXX [pra) Subject	0 8
	133 115				J.				34. 66.		\$18 Viv		J	./		Cudaga @	2 7
	414) Vg		3					,	9855 200		1	V	V	V	Y.	Elegations interstanta	1 8 ×
	38		583		112		300		MHC 200		Ý	V	1		3	Pointederia conduita	Q.
			3%			-							1900.5 2000 2000		187		
4						-	330		363		Ş					Resident microsephod Uning case the administration Consense he misomore Bacoper constitutions Friends, scriptedea Reservante process Control pilose Whitevaria proporter Xyris (bia) yellow Ludwigen CP Eleochnois interstructus Pontederia conductus Pontederia conductus	
	13.0						100										
	10 to		2				2:10		(2) (2)				155. 151		897 238		
	85. USA		(19) (18)		7885 -847		138		Said Said		24		Š			i na ina ina ina ina ina ina ina ina ina	
			92				316		32				8				
					30		540						Į.				
	10		- 100 - 100 - 100		120				Đặc Đặc		9 i.				33		

Barb_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 3 *NOTE: field codes are different than reported codes, Barb_MAR = VOSAND

3	05-70 70-75	8 8	55 55 55 55	85-40 65-60	35 35 35	52-02	15-20	10-15	5-10	25 ∋	Species Date: Anyrite carifero C. S. R.
	316 516			72.51 1556		100		編		ĺ	Myrito ceriféro E & & & & & & & & & & & & & & & & & &
			1885 1885			海海				¥	Rhama marino to &
	38- 34-5 31-5	120		700	125	205					Himmit (11) &
		700		1200					V,	V	Rhad microuple
					diği dis					V	Euthan a marnit
		\$80 \$80		4.6 35.7				類		V	Awhopagen spregiment
	蟾	100	9 S	200	386 337	(2) (2)				V	Advanced Data Sheet - Transacts, Vegetation Presence - UF Conter for Wetlands Transact Direction: June 12 - 27 Land X (1) Land X (2) Land X (2
	380			- 200 kg - 500 kg - 500 kg		28.98 28.29 28.29	- :	TO SERVICE SER		1	Xin to the corp of the Date of
		100	128 30		150 150 100 M			70 S. 45 S. 45 S. 45 S.	J	*	xyris wirey elliphi &
	195		13±1	100				V		1	Gostela Place Data
	35	#8 ##		986 985	100 100 100 100 100 100 100 100 100 100	954 958				V	Parituan (P) Recor
		521 835		· 公子 (2000)		521 <u>2</u> 523		V	V	1	Oxyepolis Alifornis de de les
		23						48.5		Z	Amphicarpum continued 5 5
		A. A. and		- 5470 - 1869		V	V	V		V	Pariser heartonin & & Per
			1323 134		100 H			13. 13.6	J	V	Constituted outlines &
	CSA: ()U.	33		155 :		186		V	V	1	Pluchen roten & 7 F
		0	133	- 1991 - 1981 - 1985		75		100 443	V	8	Fineren scienciales
	255				0654 0654				V	4	Xyruby supicai
,		38	- 196 196	1666 2304		38	V	1	V	V	Posterginator pections To
_		100		134 334	(\$6.) (48.)	94 34		V	V	٧	Think \$2 minorpas IN
	11.4 13.5	795) -372	1464	- 54 - 53 - 53	: 35 22	-59 833	1	1	V	## ##	Barofa torobring
	738		182						V	-28 -28 -28	Hyperials mystlem
	38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SVAL		305			V	X	Rhouse 93 wingont and
		188.5		1. 1.00 1.00 1.00	320	20		8	V	V	Centella asintina
	\$650 3310	265) 27.23	1014 53		333	2.7	J	V	1	128 Sec	Abject treey?

$Barb_MAR\ Florida\ Wetland\ Condition\ Index,\ macrophyte\ field\ data\ sheets,\ page\ 4$

*NOTE: field codes are different than reported codes, Barb_MAR = VOSAND

75-80	70-75	65-70	80 88	50-55	8	40.45	35-40	30.35	25-30	20-25	15 20	10-15	φ 10	05m	Species	Date: July 16, 25
			as.									1			Sakata battami	70
_	10		35					24	J	1	V	V			Cleocher's intention	30 8
	100	Г		100	-				_	v	J	V			tudiumer @ Pontederia cordata	S. F
			颛		-		V	V	J	7					Pontederia Lurdata	
								1					Γ			
														352		
			1000					(4) (4) (4)		440						
-	100	-	538		Г	000	-			(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)	-					Data Recorder: Tokky Danker 20
_	6			15.00 1816 728	-	100		7000 7000 7000 7000		137 137	-			10/5 10/5		
	15 45 45 45 45 45 45 45 4				-				1	400	-			la ser		Dat
•	18	-	93	1324	-		_		-	8		100				a Rec
-				1,280	-		-	120	-	1983 1973 1973		1396 1396 1481	-	1000		Data Recorder: Toky Develor
	(85) (85)				-		-		-	18H		50		38	 	F.
	725	-		(15)	-	2000 2000 2000 2000			-	1207	-	365	000000000000000000000000000000000000000	580		J
-	100	1	<u>133</u> 1.	- 150	-	188			<u> </u>			100	-	100		
	18	-		344	-	: Nga - 2888	-	33.5 1915	-	- S	-		_	22		\$ 1
	10	Ι.			_	100		10%	-	(A)	-	123	-	200	<u> </u>	
	120	- 5	(A)	086 386		199	-			48	L	197		28		
	36		98	4	8	188			<u> </u>		ļ.,			10		
	1	1	935 959				L	988 348	<u>_</u>	M	L	180				
_					_			100	L	3				30K 280		
								\$		100						
	3		3.02 4.5	190 190	1	183		150		34		S		130		
	359 319 433	1	116 E.G	22	5 5	100		ježi Ježi		53 53 1.53		30		100		
	148		35		i i	36		Ŕ				35		1000 1000		
	27		igle)			No		25		200				353		

Barb_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 5 *NOTE: field codes are different than reported codes, Barb_MAR = VOSAND

75-80	70-75	55-70	80-65	09-55	6 0-55	45-50	40-45	35-40	30.35	25-30	20-25	15/20	77.36		0-5 m	Species	Site: USSANIS
							100		304 213		V	J	V	V	V	Portedoni Leidate	J. 5 15 0 0
				-							V	J	J	1	¥	Elevelation intentactor	
	200											V	V	J	V	Bacopa constituino	e A
													V			Sagittain & P	
	75								ČS.		1000 1000 1000			V	V	Panican hemitanin	
-			15	out of the last							-316 -216		55 y	J		Uterataria proprier	
	380 883		- 15		3/4 (3/6)		100		400		-60				1	Woodwarks virginizar.	
	150				30,0		186		14-851 1404		2678 2612		450 384			Ludungin (Se)	
			100		- 100 m				VE 1			:			10000000	Muchen rosen	
		-			138		1 82						(100 m) (100 m) (100 m)		3.110	Screnon repens	Tran
	150		.53								100		27.0 15.0 15.0			Andropogen varganiers	Transect Direction: しかんの Data Recorder: んゅっこりかつ
	13. 15.		189				100		20		372		\$40 \$50			Osmunda cinomina	rder:
	150 150 150 150 150 150 150 150 150 150		130		25		35								J	Vaccineum cuymbosaum"	Transect Direction: West
						-	1 (tes		100		100				1	Gulactia (P.)	\$ 5
-	(8) (6)				195				785 40		Š.		225 1010		SAS		3 3
	(4) (4)						-80 -58		980 54		22 MJ		-84 24		1867 1867		¥ .
	92				. G.		3/3		01		245 245		27		(38) -110		
	NA.		100 100 163						WAY.		100						
,	3.		250 270 350		33		55 50 50 50 50 50 50 50 50 50 50 50 50 5										:
	200 300 300			ľ	750 110 395				24 58		2				, g.,		
and the same			32	-	18	-			50 50						#1. \$7.		
	353. 338		Ü		32		13 X		878 378						2401 220		
	1960 1960 1980		8		-03		S		100		372 592				.59C		
	120		3		23				3 Z.		, Š.S.	-			580		
	100	Г			633		100		0.33. 8.00		88		133		1000 3000		
			-	4	- t	÷	فيند والمر	Acres -	A	train or	مندنده	Sec. 100	dame.	Seed to the	da area	وأنوا للكنوان والمتناز والمتناز والمتاريخ والمتاريخ والمتاريخ والمتاريخ والمتاريخ	7

Barb_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 6

*NOTE: field codes are different than reported codes, Barb_MAR = VOSAND

Dopord Hole in Const - Darle Deboro
Cyperus haspaps = Rhynchospora sp. ondatoshat Leplochlon dubia cudurgia alata Bothown proceeding Vosand Codwigia Gradiola Pilosa 50133000 Hole in the convit (Elevelians Sp. (1 Apri) syphymch track Sagithacia graminae DRy. Microcephela Rhynch. microcarpa (2 of them) *3. Rhyn wrightiann Eleochurs generalatin orbins MRhyn A. ? Mero septeh Kyris elliothie (wiley) Xyiris Supien (big) (KV . Hel) - Holomas

Barb_MAR Florida Wetland Condition Index, macroinvertebrate list

List of macroinvertebrates identified to the genus taxonomic level Barb_MAR = VOSAND = WTLNDSTORET172

Aeshnidae

Bratislavia

Caenis

Callibaetis

Cambaridae

Chaoborus

Chironomini gen. 3 epler

Chironomus

Coenagrionidae

Dasyhelea

Dero

Endochironomus

Gomphus

Hydrocanthus

Hydrochus

Hydrodroma

Labrundinia

Larsia

Lestes

Libellulidae

Limnesia

Mesovelia

Monopelopia

Neargyractis

Orthotrichia

Oxyethira

Paratanytarsus

Pristina

Procladius (holotanypus)

Psectrocladius

Sigara

Synclita

Tanypus

Tanytarsus

Unionicola

Appendix B-2. Bear Point Mitigation Bank

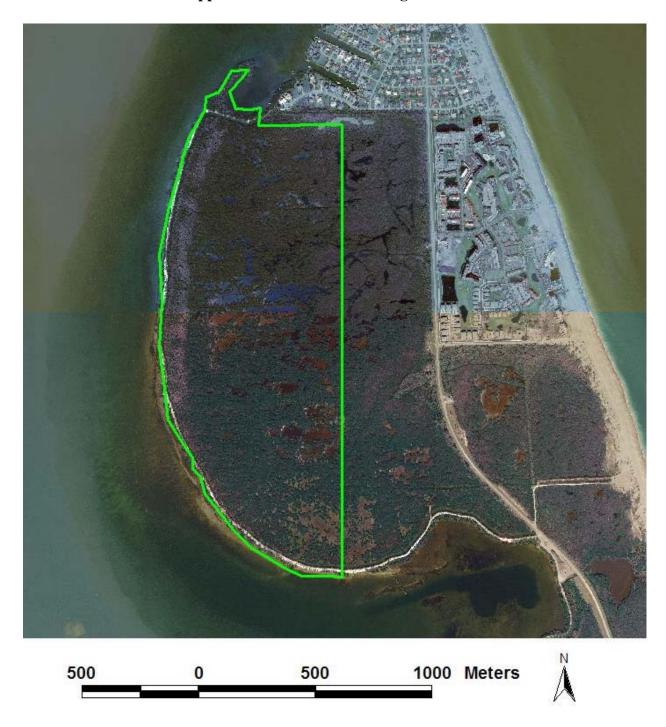


Figure B-2.1. Landscape location of Bear Point Mitigation Bank (green line). Boundary of the wetland assessment area Bear_MAN includes the entire wetland mitigation bank (green line).

Figure B-2.2. Site photo of Bear Point Mitigation Bank looking east from the berm at Bear_MAN.

Bear_MAN Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		er	or Number						
Bear Point Mitigation B	ank		NA		Bear	_MAN			
FLUCCs code	Further classifica	ition (optional)		Impac	et or Mitigation Site?	Assessment Area Size			
6120 Wetland Hardwoods Forests, Mangrove Swamps		np; Terra ceia con ub shrub unconsol	•		Mitigation Bank	128 ha (317 ac)			
Basin/Watershed Name/Number Affe	cted Waterbody (Clas	ss)	Special Classificati	ion (i.e.	OFW, AP, other local/state/federa	Il designation of importance)			
Indian River Lagoon Drainage basin/South Indian River HUC id 41	Class I	III			none				
Geographic relationship to and hydrolo	gic connection with	wetlands, other s	urface water, upla	ınds					
Adjacent to and connected to Indian Ri Preserve Jensen Beach to Jupiter Inlet		W, by a series of լ	pumps and culver	ts. Co	onnected lagoon is also	a designated Aquatic			
Assessment area description Bank consists of a mangrove swamp ecosystem that is diked on the northern, western, and southern edges and connected to India Lagoon (IRL) through a series of culverts and pumps. A small portion of the bank is bordered by a residential area to the north. S adjacent to conservation land purchased by the county, about 13 acres. East is privately owned mangrove swamp. West is berm IRL. County hopes to get some of the land closest to the bank through mitigation for future lots built on A1A. Dominated by red m (Rhizophora mangle) and black mangrove (Avicennia germinans) and salt flats.									
Significant nearby features			Uniqueness (considering the relative rarity in relation to the regional landscape.)						
OFW and Aquatic Preserve - Indian Ri Inlet. A1A to the West.	ver Lagoon south o	f Fort Pierce	There are not many mangrove swamps that have not been conv to other land uses on this coastline. There is not much natural coastline in general.						
Functions			Mitigation for pre	vious	permit/other historic use	е			
Mangrove swamps are important in the success also trap sediments and recycle nutrients. Mang marine and estuarine fauna. Mangroves are nurs fish and shellfish. Breeding areas for birds. Pro web. Protect inlands from hurricanes.	rove roots provide impo sery grounds for comme	rtant shelter for ercial and recreational	Historically mosq exotic species int		npoundment with only 2 on.	culverts. Extensive			
Anticipated Wildlife Utilization Based or that are representative of the assessment be found)				T, SS	by Listed Species (List s C), type of use, and into				
Marsh snail, periwinkle, fiddler crab, sa osprey, marsh wren, fishes, sharks, ray			limited to Vol caerulea (little l	usia, E blue he	ta (Atlantic salt marsh s Brevard and Indian Rive eron (SSC)), Egretta tri Egretta thula (snowy eg	er Counties, Egretta color (tricolored heron			
Observed Evidence of Wildlife Utilization	on (List species dire	ectly observed, or	other signs such a	as trac	ks, droppings, casings,	nests, etc.):			
Numerous schools of mullet of differen (woodstork (E)), osprey, white ibis, nee	• , ,			ret, litt	le blue heron, <i>Mycteria</i>	a americana			
Additional relevant factors:									
Site was visited during draw down for n	nosquito control. F	unctioning at 80%	natural circulation	n. No	mosquitoes detected d	uring visit.			
Assessment conducted by:			Assessment date	e(s):					
Erica Hernandez, Kelly Chinners Reiss		7/5/2005							

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

Bear_MAN Uniform Mitigation Assessment Method, page 2
PART II – Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area Name or Number			
Bear Point Mitig	ation Bank	NA NA			Bear_MAN		
Impact or Mitigation		Assessment conducted by:		Assessment date	9:		
Mitigation	Bank	Erica Hernandez, Kelly Chin	ners Reiss		7/5/2005		
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present (0)		
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	Minimal le	evel of support of /surface water unctions	Condition is insufficient to provide wetland/surface water functions		
.500(6)(a) Location and Landscape Support w/o pres or current with	Indian River Lagoon. Thirtee end is residential. East buffe expected to be developed or upland support, no natural upland support, no natural uplandian River Lagoon has bee east of the bank. It is believe is not optimal for animal disp between the bank and A1A. has flow restrictions and is continuation.	rotected in this area. Adjacent acre St. Lucie County naturer same community type. Privin A1A. County hopes land clopland buffer, just a dike. Theren known to have water qualityed that a more natural hydrolo lersal but there is some natural Provides benefit to down streompletely controlled by human	al area puro ately owned sest to the b e is not a fu degradatio gic regime b al (though w am function n structures.	chased by FCT mediand on east edgeant will be present in problems. There has helped to kee ith signs of human, specifically sea of the sea of the signs of human, specifically sea of the signs of humans.	oney on south end. North le, one lot width homes rved for mitigation. No real ed associated habitats. The is still exotic vegetation p exotic species out. A1A in disturbance) habitat grass beds. This system		
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	for four months at 80% norm Hydrologic indicators include (<i>Avicennia germinans</i>) and paerators do cause some turb natural system due to manage	nd is controlled: for eight mon nal capacity. Aerator pumps a the presence of red mangrov protection of the pre- positive of the pre	re located ir es (<i>Rhizoph</i> sent and as Water leve a appropriate	n the middle of the nora mangle) and sociated with wetles and flow slightly e. When moving	e dike and at the south end. black mangroves lands. Pumps and y higher and lower than a		
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	freeze of 1989 and hurricane old ditches and linear feature grown in around them. Highl	vidence of recruitment. Success in 2004. Larger trees have se still visible but probably do rely managed system will have to tarea no exotic species seen. Vegetation looks healthy.	good size conot function to be pumpe	avities. Refugia a as ditches anymo ed and manipulate	available. There are some ore, as the vegetation has ed to maintain its level of		
	1			F			
Score = sum of above scores/30 (if uplands, divide by 20)	, , , , , , , ,	•		For impact asses	sment areas		
current or w/o pres 0.83	Preservation adjustme Adjusted mitigation del		FL =	delta x acres =			
	If mitigation			or mitigation asso	seemont aroas		
Delta = [with-current]	Time lag (t-factor) =			itigation assessment areas			
	Risk factor =		RFG	= delta/(t-factor x	risk) =		
Form 62-345.900(2), F.A.C. [effect	ctive date 02-04-2004]						

Bear_MAN Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: Bear_MAN - Bear Point Mitigation Bank

Date: 7/5/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: red mangrove forest - surrounded by berms - water flow

approximately 89-90% of historic flow through (exchange)

Wetland Size: 132 ha (326.6 ac)

FLUCCS Code/Description: 612 Mangrove Swamps

2.5	Wildlife Utilization (WU)		
3.0	Wetland Canopy (O/S)		
NA	Wetland Ground Cover (GC)		
2.45	Habitat Support/Buffer		
2.0	Field Hydrology (HYD)		
1.30	WQ Input & Treatment (WQ)		
11.3	SUM		
5	Count		
0.75	WRAP		

Bear_MAN Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Use by small mammals (i.e. raccoon). Managers have seen alligators and snakes. Visually identified *Egretta* caerulea (little blue heron), *Egretta tricolor* (tricolored heron), *Bubulcus ibis* (cattle egret), *Mycteria americana* (wood stork), *Phalacrocorax floridanus* (Florida cormorant), mullet, needle fish, small minnows, mullet had full size/age class distribution, many species of crabs. Adjacent area 13ac county owned property, parcel to E under development. No support from (missing) adjacent hammock forest, some fringe species, scored down because lack of upland support.

3.0 Wetland Canopy (O/S)

Canopy dominated by *Rhizophora mangle* (red mangrove). Approximately 50-60% cover. Some recruitment and regeneration. Effected by 2004 hurricane season, trees had lost all leaves. Only a few seedlings and seeds of the trees, but higher flower production for the *Avicennia germinans* (black mangroves) growing along the edge.

NA Wetland Ground Cover (GC)

Berm hosts weedy species (i.e. *Catharanthus roseus* - Madagascar periwinkle). Did not see any understory growing under the *Rhizophora mangle* (red mangrove) canopy, however access was limited to the deep interior. Manager plans to create marsh area to NE in future, not part of this assessment area.

2.5 Habitat Support/Buffer

S&W has Indian River Lagoon (IRL). N has urban development. E some habitat (slated for development), county trying to purchase adjacent lots for conservation. Berms full of culverts allowing species exchange. Water levels controlled for mosquitoes - so these are missing from the food chain, what effect does this have on the food chain, we do not know

Buffer Type	(Score) x	(% of Area)	= Sub Total
N-urban	1.0	0.20	0.2
S-IRL	3.0	0.20	0.6
W-IRL	3.0	0.30	0.9
E-<300ft	2.5	0.3	0.8
· ·		777 4 1	2 -

2.0 Field Hydrology (HYD)

Hydrology adequate for mangrove regeneration. Pneumatic roots (prop roots) show flood levels (though level is controlled). Nearly normal hydroperiod - receives 80-90% of historic flow volume. Controlled gradient from N to S - Indian River Lagoon (IRL) water enters in the south, this water body has historic water quality issues. Has 2 aerators that run 24hrs/7days at a cost of 1 gallon of fuel per hour each - runs while water is being controlled during mosquito season, otherwise free exchange allowed with IRL and no pumps running.

1.3 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
W-IRL	1.5	0.30	0.5
S-IRL	1.5	0.20	0.3
E-lots undev.	2.0	0.30	0.6
N-housing	1.5	0.20	0.3
		LU Total =	1.7

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
W-IRL	0.0	0.30	0.0
S-IRL	0.0	0.20	0.0
E-lots undev.	2.5	0.30	0.8
N-veg. buffer	1.0	0.20	0.2
		PT Total =	1.0

W&S - Indian River Lagoon (IRL) given 1.5 score for recreational lands

E given low volume highway because A1A a busy 2-land road is within 2 house lots away - road has swales.

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.



Figure B-3.1. Landscape location of Big Cypress Mitigation Bank (green line). Boundary of the wetland assessment areas BigC_FLA (blue line), BigC_MAR_1 (orange line), and BigC_MAR_2 (yellow line) shown. BigC_MAR_1 (orange line) is in Phase II, Phase II boundary not shown.

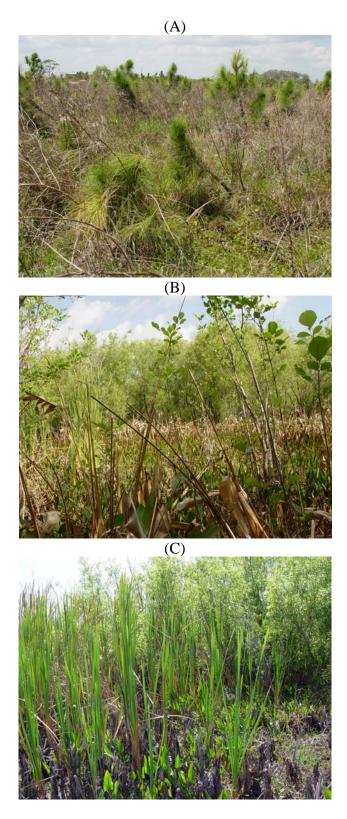


Figure B-3.2. Site photo of Big Cypress Mitigation Bank: A) BigC_FLA looking west; B) interior of BigC_MAR_1 looking north; C) interior of southern depression of BigC_MAR_2.

BigC_FLA Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	nber Assessment Area Name or Number			or Number
Big Cypress Mitigation Bank		NA		BigC_FLA		
FLUCCs code	Further classifica	ition (optional)		Impac	t or Mitigation Site?	Assessment Area Size
4110 pine flatwoods	None			Mitiga	tion Bank	~ 18 acres (~7.3 ha)
Basin/Watershed Name/Number	Affected Waterbody (Cla	ss)	Special Classification (i.e.OFW, AP, other local/state/federal designation of importance)			
Everglades West Coast	unaffected		FWCC priority ha	bitat		
Geographic relationship to and hydr This type of natural community in th are very slight and the differences b the Big Cypress Preserve. There an Assessment area description	is part of Florida would etween a marsh, swal	d normally sheet fl e or hydric flatwoo	ow very slowly from	m the	inches. This site grad	
This area in Big Cypress Mitigation failed attempts for planted <i>Pinus elli</i> wet for pine sapling survival. Some	iottii (slash pine) surviv	al the decision wa	as made to plant th	he pine	es in bedded rows beca	use the site was too
Significant nearby features Big Cypress National Preserve, Fak	ahatchee Strand State	Preserve	landscape.) Most natural commuses. Although We community of the Coverstory and undemaintenance by fire communities in the that support Florida	nunities et Flatv Coastal erstory, e are ra s SE. B	ing the relative rarity in in this area have been or woods may have been an Plain at one time, examp without exotics, and with are. One of the most florig Cypress preserve does bears and Florida pantheg, roads and off-road veh	onverted to agricultural abundant biological les with an intact the potential for future stically diverse be have intact flatwoods rs but it too is impacted
Functions			Mitigation for prev	vious p	permit/other historic use)
Provide habitat for flora and fauna. Nutrient cycling. Provide essential h especially large and mid-sized carni	nabitat for rare and end					
Anticipated Wildlife Utilization Based that are representative of the assesbe found)		•	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Oak toad, cricket frog, chorus frog, black racer, yellow rat snake, diamondback rattlesnake, pygmy rattlesnake, red-shouldered hawk, bobwhite, opossum, cottontail rabbit, cotton rat, cotton mouse, raccoon, striped skunk, bobcat, and white-tailed deer. In addition, many birds, butterflies, frogs, snakes, etc.			Florida black bear T (<i>Ursus americanus</i> floridanus), Florida panthel E (<i>Puma</i> (= <i>Felis</i>) concolor coryi), wood stork E (<i>Mycteria americana</i>), red-cockaded woodpecker E (<i>Picoides borealis</i>), Everglade snail kite E (<i>Rostrhamus sociabilis plumbeus</i>), bald eagl E (<i>Haliaeetus leucocephalus</i>), eastern indigo snake T (<i>Drymarchor corais couperi</i>), gopher tortoise SSC (<i>Gopherus polyphemus</i>), Big Cypress fox squirrel T (<i>Sciurus niger avicennia</i>), Sherman's fox squirrel SSC (<i>Sciurus niger shermani</i>), Bachman's sparrow SSC (<i>Aimophila aestivalis</i>), limpkin SSC (<i>Aramus guarauna</i>), southeastern kestrel T (<i>Falco sparverius paulus</i>), Florida sandhill crane T (<i>Grus canadensis pratensis</i>).			E (Mycteria oides borealis), olumbeus), bald eagle nake T (Drymarchon us polyphemus), Big n), Sherman's fox an's sparrow SSC uarauna),
Observed Evidence of Wildlife Utiliz	ation (List species dire	ectly observed, or	other signs such a	as tracl	ks, droppings, casings,	nests, etc.):
Small mammal burrows in the beds Eastern meadowlark, ground dove.				includi	ng boat tailed grackle,	red-shouldered hawk,
Additional relevant factors:						
Assessment conducted by:			Assessment date	e(s):		
Erica Hernandez, Tony Davanzo						3/21/2006

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

BigC_FLA Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name			Application Number		Assessment Are	ea Name or Numbe	er
Big Cypress			NA		BigC_FLA		
Impact or Mitigation			Assessment conducted to	oy:	Assessment dat	e:	
Mitigation Bank			Erica Hernandez, Tony D) Davanzo	3/21/2006		
Scoring Guidance The scoring of each indicator is based on w would be suitable for th type of wetland or surfa water assessed	ie	Optimal (10) Condition is optimal and fully supports wetland/surface water functions	Moderate(7) Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions		vel of support of urface water	Not Present (0) Condition is insuf provide wetland/s water functions	
.500(6)(a) Location and Landscape Support w/o pres or current 5	with	Areas outside the wetland a expected habitat support the and appropriate species. Bi invasive exotic and undesira areas in the landscape in cit Land use North, East, and V negative impact on the site of and fertilizing issues. The properties of the support of t	at a natural area would proig Cypress Preserve is Solable species in the area. The trus production that have a West include agricultural us through habitat loss and froceserve to the South of the tof native species.	wide for wildlife uth of the bank here are no main altered hydroses primarily in agmentation are bank may have	species in listed I and would provide ajor barriers to wild logy and act to im citrus that are hig id possibly other use some human in	Part I. It lacks hete optimal habitat. Idlife movement. Tupede sheet flow in hily altered and car ises such as transinacts but is being	erogeneity There are here are this area. have a portation
.500(6)(b)Water Enviro (n/a for uplands) w/o pres or current	with	Site visit was conducted dur moisture and standing water expectations for a flatwoods Some beds have an elevation may not be optimal for specin the troughs and species were some wetland species and facultative species present were generalist and dry season in a flatwoods control of the species of the spec	r between the wet and dry at this time of year. The son change of about 1 ft (0.) ies distribution in the lands ess tolerant of moisture or present that are indicative tent that may also be indicative in the indicative of a wetland	seasons. The site was bedde 3 m) others have cape and may the beds. Bed of early succeative of early su	site was not outsid to ensure better we a more subtle vencourage specied ding may also into ssion and disturbaticession and dist	de of the realm of survival of planted rariation/slope. The more tolerant of errupt sheet flow. ance and also man urbance. Fauna s	l pines. is effect moisture There y upland pecies
.500(6)(c)Community s 1. Vegetation at 2. Benthic Community s w/o pres or current 4	nd/or	Majority of the plant cover is comprise the canopy are pladensity is much higher than terebinthifolius (Brazilian pe (cattails) and Ludwigia peru has very low diversity for this elliottii (slash pine) by estabuntil pines are at a certain h the ground cover by helping intact. In its current state th supplemental planting or a cand are highly homogenous	anted in beds at a density to anticipated). There are papper) and Urena lobata (Civiana (Peruvian primroseves as community type. Land molishing beds for their groweight when they will not be to keep down the exotic se plant community may not different management strategers.	that may not be atches of invasicaesarweed) and willow). Ground nanagement protection as vulnerable pecies and encet improve for a tegy. Topografic	appropriate for a ve exotic species and nuisance special cover is indicativative and not using presto fire. Prescribed courage the seed by very long time with ohic features are not exotics.	flatwoods communiculuding Schinus es including Typha e of early successiting the planted Pinscribed fire in the lad fire could perhaps pank if indeed one thout not natural or appropriate including the second part of the second perhaps and it indeed one thout and the second part of the second part	nity (the a spp. ion and nus andscape s benefit is still
		_		_			_
Score = sum of above sco	ores/30 (if	If preservation as mitig	gation,	For	mpact assessmer	nt areas	
uplands, divide by 20) current		Preservation adjustme	ent factor =				
or w/o pres	with	Adjusted mitigation de	elta =	FL =	delta x acres =		
0.47		in a justice in a gallon do					
•	•	It mitigation		_			1
Dolto - fuith		If mitigation		For	mitigation assessr	ment areas	
Delta = [with-current]		Time lag (t-factor) =		REG	G = delta/(t-factor x	(risk) =	
		Risk factor =		INF C	- ueita/(t-iactol X	CHOK) —	
Form 62-345 900(2) F	Λ C Toffo	ctive date 02 04 20041	_				

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

BigC_FLA Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: BigC_FLA, Big Cypress Mitigation Bank 21-Mar-06

Evaluator(s): Tony Davanzo & Erica Hernandez

Date:

Hydric flatwoods. Pinus elliottii (slash pine) planted in Wetland Type/Description:

rows on beds. Low ground diversity. Weedy and early

successional species dominate.

Wetland Size: ~ 18 acres (~7.3 ha)

FLUCCS Code/Description: Formally citrus groves now hydric pine flatwoods is the

desired community type.

0.49			
6	Count		
8.9	SUM		
2.5	WQ Input & Treatment (WQ)		
2.0	Field Hydrology (HYD)		
1.4	Habitat Support/Buffer		
0.5	Wetland Ground Cover (GC)		
1.0	Wetland Canopy (O/S)		
1.5	Wildlife Utilization (WU)		

BigC_FLA Wetland Rapid Assessment Procedure, page 2

1.5 Wildlife Utilization (WU)

Hydric pine flatwoods would not have the same type of wetland dependant species that a wetland with a longer or less variable hydroperiod would have. Small herps would be expected in flatwoods though. The existing species in the hydric pine flatwood in its current state would seem to support generalist species. Human impacts are most evident in the planted rows of *Pinus elliottii* (slash pine). Natural upland resources with native species are not available immediately adjacent to the wetland assessment area because it is on the property line and next to a citrus grove. The areas of the bank adjacent to the wetland assessment area are also composed of early successional species and some exotic species.

1.0 Wetland Canopy (O/S)

Midstory is comprised of young planted *Pinus elliottii* (slash pine). *Sabal palmetto* (cabbage palm) and *Salix caroliniana* (coastalplain willow) were also present in the canopy layer. Slash pine was planted in rows in raised beds to ensure survival of the young trees. Young pines look healthy but have been impacted by hurricane winds and some of the trees are leaning. Pines appear to have been planted at a high density for a hydric pine flatwood community type.

0.5 Wetland Ground Cover (GC)

Species composition for hydric pine flatwood is not optimal. There are more woody shrubs than diversity in forbs or graminoids. Some exotic and nuisance species are present. The planted rows are not optimal for species composition and distribution.

1.4 Habitat Support/Buffer

To the North, South and East of the wetland assessment area is the rest of Big Cypress Mitigation Bank, further South of the mitigation bank is the Big Cypress Preserve. The bank has some undesirable species and some exotic species but will provide some food and cover and is utilized by Florida panthers. This area is a buffer in itself to the preserve. To the West is a citrus grove with some wetlands however their quality is unknown

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	1.5	0.25	0.38
South	1.5	0.25	0.38
East	1.5	0.25	0.38
West	1	0.25	0.25
		Total =	1.4

2.0 Field Hydrology (HID)

Bank manager reports that the wetland assessment area is very saturated during the rainy season. Site supports obligate species as well as many facultative species that may be more indicative of an early phase of succession. Bedded rows are not optimal for a natural sheet flow. A series of ditches have been back filled on the bank and hydrology is probably adequate to support this wetland but there may be some external factors.

2.5 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

LANDOSE CATE	CORT (EC)		
Land Use			= Sub
Category	(Score) x	(% of Area)	Total
citrus	2.0	0.30	0.6
undeveloped area	3.0	0.70	2.1
		LU Total =	2.7

PRETREATMENT CATEGORY (PT)

Duraturatura			
Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
dry detention/ditch	1.0	0.20	0.2
undeveloped	3.0	0.70	2.1
citrus no treatment	0.0	0.10	0.0
		PT Total =	2.3

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

$BigC_MAR_1\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name			Application Number	nber Assessment Area Name or Number		or Number		
Big Cypress Mitigation Bank			NA			BigC_MAR_1		
FLUCCs code		Further classifica	tion (optional)		Impac	et or Mitigation Site?	Assessment Area Size	
Freshwater marsh 6410 and mixed shrub 6172	d	None			Mitiga	ation Bank	~ 6 acres (~2.4 ha)	
Basin/Watershed Name/Number	Affect	ed Waterbody (Clas	ss)	Special Classificati	ion (i.e.	OFW, AP, other local/state/federa	Il designation of importance)	
Everglades West Coast	Unaf	fected		FWCC priority ha	bitat			
Geographic relationship to and hyd	drologi	c connection with	wetlands, other s	urface water, upla	ınds			
Small marsh on property line. Eas wetland feature during times of hig with canals returned to grade. Assessment area description		•				•	•	
Marsh has an outer edge of <i>Panic</i> (Carolina pop ash) on the inside of <i>cordata</i> (pickerelweed), <i>Typha sp</i>	f the m	naidencane. The i	interior of the wetl	and is dominated	by Th	alia geniculata (alligato	rflag), Pontederia	
Significant nearby features				Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional	
Big Cypress National Preserve sha Cypress Bank Mitigation Bank part citrus grove.			•	on the bank. Thi	s wetl	Big Cypress Preserve, and is not indicative of roons caused by anthropo	natural communities in	
Functions				Mitigation for pre	vious	permit/other historic use	е	
Provides water storage by holding the water table. Enhances water owater. Important breeding and for	quality	by absorbing nutr		Land was conver	ted to	a citrus grove in the ea	rly 1980s.	
Anticipated Wildlife Utilization Base that are representative of the asse be found)					T, SS	by Listed Species (List s C), type of use, and inte		
flatwoods salamander, mole salam salamander, striped newt, oak toad barking treefrog, squirrel treefrog, ornate chorus frog, narrowmouth t frog, white ibis, wood stork, sandhi	d, cric little g oad, e	ket frog, pinewood rass frog, souther astern spadefoot	ds treefrog, n chorus frog,	Mycteria america	na (E	oher frog), <i>Eudocimus a</i> ()(wood stork), <i>Grus car</i> amus quarauna (SSC)(I	nadensis pratensis	
Observed Evidence of Wildlife Util	izatior	(List species dire	ctly observed, or	other signs such a	as trac	ks, droppings, casings,	nests, etc.):	
Box turtle, crawfish chimneys, barr gnatcatcher, red shouldered hawk								
Additional relevant factors:								
None								
Assessment conducted by:				Assessment date	e(s):			
Erica Hernandez & Tony Davanzo				3/21/2006				

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

$BigC_MAR_1\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 2$

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number	1.	Assessment Are	a Name or Number	
Big Cypress Mitigation Bank		NA		BigC_MAR_1		
Impact or Mitigation		Assessment conducted by:		Assessment date	a·	
Mitigation Bank		Erica Hernandez, Tony Dava		3/21/2006	5.	
Willigation Bank		Linea Herriandez, Tony Dave	anzo	5/21/2000		
Scoring Guidance	Optimal (10)	Moderate(7)	Minimal (4)		Not Present (0)	
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	wetland/	vel of support of surface water nctions	Condition is insuffi provide wetland/s water function	urface
	1					
.500(6)(a) Location and Landscape Support w/o pres or current with	requirements because the biflatwoods. East of the wetla landscape, and the bank ma probably always be under a bank is connected to Big Cylpredators such as <i>Ursus am</i> There are no hydrologic imp	may be limited due to a reduce ank is currently in a state of each and assessment area is an inta anagers are working to control threat of exotic species and w press Preserve, there are no be pericanus floridanus (Florida be dediments on this wetland in the typress Preserve, there are citrality and lost habitat.	arly succession act flatwoods them on the rill always requarriers to will black bear) are landscape.	on and does not community. The bank. This area uire monitoring a dlife access, this d <i>Puma concolo</i> . This bank provi	function like a hydricere are exotic species of South Florida will and management. To bank supports larger coryi (Florida pantides a buffer to a pie	c pine es in the I This e ther).
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	assessment area. Water sta were mucky and inundated. a result of excessive dryness wetland. There is no upland species consistent with a ma Domination of Salix carolinia influences that have affected	riate for seasonality. There is ain lines and elevated lichen linter is no evidence of soil es. Vegetation was more wood species encroachment. No sarsh were detected at the wetlena (coastalplain willow) and it water quality or the water registed with the citrus grove. Observed.	nes appear of erosion. Their dy then expecting the expection of hydroland assessman aspolation. Typha spp. (of gimes. The hydroland assessman aspolation of the expection of the	onsistent on the re is no indication ted but species ologic stress or sent area includireattails) that may bydrology for this	woody vegetation. So of atypical fire sevent were appropriate for oil subsidence. Aning fish and amphibiar indicate anthropogearea was restored in	Soils erity as a mal ans. enic n 2001
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	influences including altered I are all wetland dependant sp open disturbed edge of the v primrosewillow) and vine spe where the water had receder species present were in flow	egetation than expected, which hydrology and fire suppression becies. One mid-sized Schinuwetland assessment area alonecies. The exotic species Sald. There is evidence of normal error fruit. Age and size distributions. Plants are in good conditionant growth looked healthy.	n. Species in us terebinthifong with some lyinia minima al regeneration appea	the canopy, micolius (Brazilian po Ludwigia peruvia (water spangles on and recruitme red normal. The	I-story, and ground of epper) was found on ana (Peruvian) was found on much nt. Many of the flora ere was no evidence	n an k areas a of
Score = sum of above scores/30 (if	If preservation as mitig	gation,	For im	pact assessmen	t areas	
uplands, divide by 20) current or w/o pres 0.7 with	Preservation adjustme Adjusted mitigation de		FL = c	lelta x acres =		
	If mitigation					
Delta = [with-current]	Time lag (t-factor) =		For m	itigation assessn	nent areas	
idelia = iwith-currenti	i ime iaq (t-tactor) =					

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

BigC_MAR_1 Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: BigC_MAR_1 Big Cypress Mitigation Bank

Date: 21-Mar-06

Evaluator(s): Tony Davanzo & Erica Hernandez

Wetland Type/Description: Small marsh on property line. East side natural pine flatwoods, to the West is the bank. Wetland assessment area is probably connected to other wetland feature during times of high water. Marsh is very woody probably due to lack of fire and previously altered hydrology.

Wetland Size: ~ 6 acres (~2.4 ha)

FLUCCS Code/Description: Freshwater marsh 6410 and mixed shrub 6172

2.0	Wildlife Utilization (WU)	
2.0	Wetland Canopy (O/S)	
2.0	Wetland Ground Cover (GC)	
2.375	Habitat Support/Buffer	
3.0	Field Hydrology (HYD)	
3.0	WQ Input & Treatment (WQ)	
14.4	SUM	
6	Count	
0.80	WRAP	

BigC_MAR_1 Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Evidence of wildlife utilization by small and medium sized reptiles and abundant macroinvertebrates, amphibians, and forage fish. Abundant birds in wetland assessment area. Native hydric flatwoods East of the wetland assessment area are in need of prescribed fire but provide good upland food sources. Upland forested oak and palm hammock on wetland assessment area edge. Some what weedy and overgrown but provides cover and forage areas. Patchy upland hammocks on the bank less than 0.5 miles from wetland assessment area. Immediately adjacent land on bank has been planted in *Pinus elliottii* (slash pine) to restore to hydric pine flatwoods after historically being converted to citrus groves. Ground cover is mostly early successional species and dominated by *Panicum repens* (torpedo grass) and *Andropogon* spp. (bluestem). Swamp buggy tracks into wetland has caused some ground disturbance on the wetland assessment area ecotone. There is abundant cover inside the wetland assessment area but woody vegetation is not characteristic for this type of marsh wetland type in a flatwoods mosaic, if prescribed fire was used in the landscape woody species would probably decrease. This wetland has probably benefited the most from hydrologic restoration on the bank which back filled drainage ditches.

2.0 Wetland Canopy (O/S)

Healthy live canopy, uneven age distribution ranging from mature to very young saplings. This wetland may be dominated by woody vegetation (*Fraxinus caroliniana* (Carolina pop ash) and *Salix caroliniana* (coastalplain willow)) because of historic fire suppression and hydrologic alterations. The overstory is providing good habitat support. There are few snags or den trees. One medium sized *Schinus terebinthifolius* (Brazilian pepper) was found in an open disturbed area on the edge of the wetland next to the upland oak and palm hammock. There is also some *Ludwigia peruviana* (Peruvian primrosewillow) growing here. This area was overgrown with vines. May have been disturbed from 2004/2005 hurricane activity.

2.0 Wetland Ground Cover (GC)

Large stand of *Typha* spp. (cattails) in the wetland assessment area center. Some *Ludwigia peruviana* (Peruvian primrosewillow) in a disturbed edge. The exotic species *Salvinia minima* (water spangles) found on muck under the *Fraxinus caroliniana* (Carolina pop ash). Native ground cover looks very healthy. Many herbaceous species are flowering or fruiting. Mats of *Utricularia* spp. (bladderwort) under *Fraxinus caroliniana* (Carolina pop ash) edge where standing water has drawn down exposing muck. Ground looks undisturbed in the interior but there are the swamp buggy tracks on the wetland assessment area ecotone edge. The hydrologic restoration probably benefited this wetland however prescribed burns are not planned until planted pine on the bank is older and taller.

2.4 Habitat Support/Buffer

Buffer around wetland assessment area is greater than 300 ft (~100 m) in width. Natural flatwoods with some human disturbance to the East. To the North is a larger marsh within the bank. West and South are areas of the bank that managers are trying to restore back to hydric flatwoods. There are some undesirable species in the landscape, and some exotics including *Schinus terebinthifolius* (Brazilian pepper), *Panicum repens* (torpedograss), and *Urena lobata* (Caesarweed). The area supports wildlife corridors and has no impediments to wildlife movement. This area supports the Florida panther.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North large marsh	2.5	0.25	0.63
East Natural flatwds	2.5	0.25	0.63
West restoration area	2	0.25	0.50
South restoration area	2.5	0.25	0.63
		Total =	2.4

3.0 Field Hydrology (HID)

Hydrologic regime is adequate to maintain a viable wetland. Plants look healthy with no stress. There is no encroachment of upland plant species. There are no canals or ditches remaining in the area, all ditches have been restored back to natural grade. Soils are mucky and organic. The wetland appears to exhibit a natural hydroperiod. The bank was in citrus, no baseline or current data exists for water quality of the wetland assessment area pre- or post- restoration.

3.0 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use Category		(Score) x	(% of Area)	= Sub Total
natural un	dev. Are	3.0	1.00	3.0
			LU Total =	3.0

PRETREATMENT CATEGORY (PT)

THE THE THE CHILD CONT (LT)							
Pretreatment Category	(Score) x	(% of Area)	= Sub Total				
natural undeveloped	3.0	1.00	3.0				
-		PT Total =	3.0				

$BigC_MAR_2\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	ation Number		Assessment Area Name or Number	
Big Cypress Mitigation Bank		NA			BigC_MAR_2	
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size
6410 freshwater marsh, graminoid prairie marsh	None			Mitiga	ition Bank	~6.5 acres (~2.6 ha)
Basin/Watershed Name/Number A	Affected Waterbody (Clas	ss)	Special Classificat	ion (i.e.0	DFW, AP, other local/state/federa	Il designation of importance)
Everglades West Coast u	inaffected		FWCC priority ha	abitat		
Geographic relationship to and hydro	ologic connection with	wetlands, other s	urface water, upla	inds		
Two shallow depressions connected Big Cypress Preserve.	through a swale and	connected to a se	eries of other shall	ow dep	oressions and basin ma	arshes that drain into
Assessment area description						
Two shallow depressions connected (cattails), Salix caroliniana (coastalp is benefiting from hydrologic restorat wading bird foraging (this has been or	olain willow) <i>, and Thali</i> tion done on the bank.	<i>a geniculata</i> (allig Ditch feature lef	atorflag). Low sp t on wetland asse	ecies ssmen	diversity but no exotic s t area edge probably to	species. This wetland provide habitat for
Significant nearby features			Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional
Big Cypress National Preserve			Much of the land north of Big Cypress Preserve has been converted for agricultural uses.			
Functions			Mitigation for pre	vious p	permit/other historic use	е
Provides water storage by holding exthe water table. Enhances water quawater. Important breeding and forag	ality by absorbing nutr		Bank was converted to citrus production in the 1980s.			
Anticipated Wildlife Utilization Based that are representative of the assess be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
flatwoods salamander, mole salama salamander, striped newt, oak toad, barking treefrog, squirrel treefrog, litt ornate chorus frog, narrowmouth toa frog, white ibis, wood stork, sandhill	cricket frog, pinewood tle grass frog, souther ad, eastern spadefoot crane	ls treefrog, n chorus frog, toad, gopher	Rana capito (SSC) (gopher frog), Eudocimus albus (SSC) (white ibis), Mycteria americana (E) (wood stork), Grus canadensis pratensis (T) (sandhill crane), Aramus quarauna (SSC) (limpkin)			
Observed Evidence of Wildlife Utiliza	ation (List species dire	ctly observed, or	other signs such a	as trac	ks, droppings, casings,	nests, etc.):
Rabbit tracks, deer tracks and scat, snakes, minnows, apple snail shells	raccoon tracks, possik	ole otter tracks. G	Game trails, crayfis	sh chin	nney, dead blue heron,	leopard frog, garter
Additional relevant factors:						
None						
Assessment conducted by:			Assessment date	e(s):		
Erica Hernandez & Tony Davanzo						3/21/2006

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

$BigC_MAR_2\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 2$

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area Name or Number		
Big Cypress Mitig	gation Bank	NA		BigC_MAR_2		
Impact or Mitigation		Assessment conducted by:		Assessment date	:	
Mitigation	Bank	Erica Hernandez, Tony D	avanzo		3/21/2006	
	Ontine of (40)				Not Book of A	(0)
Scoring Guidance The scoring of each	Optimal (10)	Moderate(7) Condition is less than	IVIII	nimal (4)	Not Present (<u>U)</u>
indicator is based on what	Condition is optimal and fully supports	optimal, but sufficient to		vel of support of	Condition is insuffic	
would be suitable for the type of wetland or surface	wetland/surface water	maintain most wetland/surface		/surface water inctions	provide wetland/su water function	
water assessed	functions	waterfunctions			water rametier	
	0					
	· ·	nay be limited due to a reduce ank is currently in a state of ea				,
.500(6)(a) Location and	flatwoods. There are exotic s	species in the landscape, and	the bank ma	anagers are worki	ng to control them or	n the
Landscape Support		orida will probably always be u t. This bank is connected to B			, ,	
		arge predators such as <i>Ursus</i>				
		ner). There are no hydrologic i				nk
w/o pres or current with		of the north boundary of Big Course localized affects to water q				
7		ed to other depressions and be	asin marshe	es that drain into E	Big Cypress Preserve	e, there
<u> </u>	are no impediments to these	connections.				
.500(6)(b)Water Environment	Wetland vegetation consists	of obligate (OBL) and facultat	ive wetland	(FACW) species.	Some herbaceous	
(n/a for uplands)		the wetland and into the eco			,	
		er was expected for the season istent hydrologic indicators inc				y in the
w/o pres or	inappropriate fire indicators v	vere noted. Historically the we	etland asses	ssment area was	mpacted by hydrolog	
current with		allowed <i>Typha</i> spp. (cattails) a tions have since been restored				nate
8	and welland, but these ditoral	aono navo cinco boch rectoro.	a to flatarar	nyarologio contait		
.500(6)(c)Community structure		ecies, <i>Typha</i> spp. (cattails) an		, ,	**	
1 Vegetation and/or		isturbances and anthropogeni w in diversity, are expected an				
Vegetation and/or Benthic Community	appears normal, open areas	in the groundcover are covered	ed in algal m	nats. This area is	probably covered in	
w/o pres or		ny season. Plant growth appe use do not appear to have cau				
current with		ng the hydrology. Prescribed				
7	composition in the wetland a	ssessment area.				
Score = sum of above scores/30 (if	If preservation as mitig	ation,		For impact asses	sment areas	
uplands, divide by 20) current	Preservation adjustme	nt factor =				
pr w/o pres with	Adjusted mitigation del	ta =	FL =	delta x acres =		
0.73]		<u> </u>			
	If mitigation					
Delta = [with-current]	Time lag (t-factor) =		F	or mitigation asse	ssment areas	
	Risk factor =		RFG	= delta/(t-factor x	risk) =	
Form 62-345.900(2), F.A.C. [effect	-tive dete 00 04 00041		<u> </u>			

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

BigC_MAR_2 Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: BigC_MAR_2, Big Cypress Mitigation Bank

Date: 3/21/2006

Evaluator(s): Tony Davanzo & Erica Hernandez

Wetland Type/Description: Two shallow depressions connected through a swale and connected to a series of other shallow depressions and basin marshes that drain into Big Cypress Preserve.

Wetland Size: ~6.5 acres (~2.6 ha)

FLUCCS Code/Description: 6410 - Freshwater marshes, graminoid prairie marsh

2.0	Wildlife Utilization (WU)		
2.5	Wetland Cano	py (O/S)	
2.0	Wetland Grou	nd Cover (GC)	
2.125	Habitat Support/Buffer		
2.5	Field Hydrology (HYD)		
3.0	WQ Input & Treatment (WQ)		
14.1	SUM		
6	Count		
0.78	WRAP		

BigC_MAR_2 Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

No standing water in wetland interiors, but puddles standing in ditch had some small fish. Wetland has habitat for medium sized reptiles and birds. Scat and tracks were seen of deer, raccoon, and probably an otter. Florida panthers utilize the bank but may not utilize this community type regularly. Feathers of a great blue heron found in the wetland assessment area, suggesting a large or medium sized mammal or reptile may have preyed upon it. Flatwoods community types are dominate in the bank but in their current state are not optimal for providing habitat. There are hammocks in the landscape. Direct human disturbance evident through swamp buggy tracks into wetland probably present from accessing wetland for *Typha* spp. (cattails) treatment. Crayfish burrows found

2.5 Wetland Canopy (O/S)

The only canopy species present in the wetland are clumps of *Salix caroliniana* (coastalplain willow). Willows may indicate fire suppression and previous disturbance to the hydrology in the system. The trees are healthy and regenerating. Woody debris was not detected. These trees do provide perches and shelter for roosting birds.

2.0 Wetland Ground Cover (GC)

Typha spp. (cattails) is present but at less then 25% cover. Some human induced impacts caused by swamp buggy usage. Species present are indicative of this community type and desirable.

2.1 Habitat Support/Buffer

The wetland assessment area is nestled in the interior of the bank. There is a greater than a 300 ft (100 m) buffer but vegetation is dominated by early successional and weedy species with some patches of exotic species. Just south of the wetland assessment area is a more intact wetland drainage system that flows into Big Cypress preserve where there are extensive intact natural communities.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North - restoration area	2	0.25	0.50
West - restoration area	2	0.25	0.50
East - restoration area	2	0.25	0.50
South- restoration area	2.5	0.25	0.63
and preserve			
		Total =	2.1

2.5 Field Hydrology (HID)

Flora species present are indicative of consistent wetland hydrology. Other hydrologic indicators include a mucky soil in the wetland interiors and the presence of crayfish chimneys. Algal mats are also consistent with an adequate wetland hydrology. There could be slight impacts in the reduction of sheet flow into this wetland because of the ditch on the wetland edge however the hydrology appears to be more than adequate to maintain this wetland system.

3.0 WO Input & Treatment (WO)*

LANDUSE CATEGORY (LU)

Land Use				= Sub
Category		(Score) x	(% of Area)	Total
undevelop	ed	3.0	1.00	3.0
			LU Total =	3.0

PRETREATMENT CATEGORY (PT)

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
undeveloped	3.0	1.00	3.0
		PT Total =	3.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Appendix B-4. Bluefield Ranch Mitigation Bank

Figure B-4.1. Landscape location of Bluefield Ranch Mitigation Bank (green line). Boundary of the wetland assessment areas Blue_BOT (blue line), Blue_FLA (orange line), and Blue_MAR (yellow line) shown.

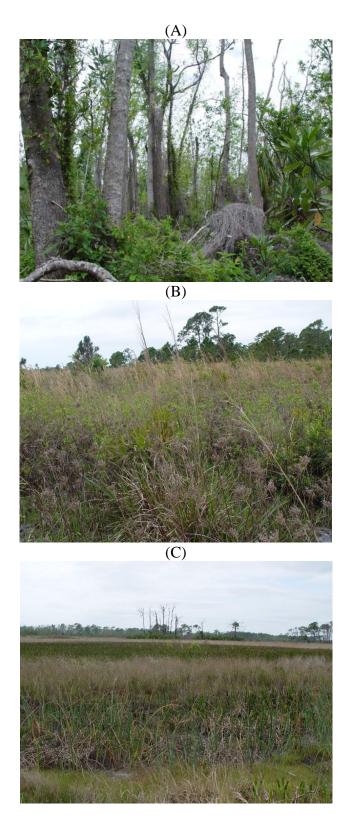


Figure B-4.2. Site photo of Bluefield Ranch Mitigation Bank: A) Blue_BOT interior with treated and re-sprouting Japanese climbing fern (*Lygodium japonicum*); B) groundcover in Blue_FLA; C) looking west across Blue_MAR, note there are shrubs in center of marsh.

. Blue_BOT Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number		Assessment Area Name or Number				
Bluefield Mitigation Bank			NA		Blue_BOT			
FLUCCs code		Further classifica	ition (optional)		Impad	ct or Mitigation Site?	Assessment Area Size	
1995 SFWMD 1650 Wetland Hard		l						
Forests, Stream and Lake Swamps (Bottomland)	S	NA			Mitiga	ation bank	~64 ac (26 ha)	
Basin/Watershed Name/Number	Affect	ed Waterbody (Clas	ss)			OFW, AP, other local/state/federa		
HUC Taylor Creek	NA					and FNAI bird rookery, i	mportant cultural	
,	<u> </u>			resources - Fort	rom S	Seminole Indian Wars		
Geographic relationship to and hyd	Irologi	c connection with	wetlands, other s	urface water, upla	ınds			
This wetland assessment area is c	onnec	ted to a series of	sloughs, creeks,	and bottomland ha	ardwo	od swamps that drain in	ito the bank from the	
north. These areas are in rural and								
to hydric pine flatwoods, and some							system Van	
Sweuringen Creek which connects	to wa	terways that even	itually flow into La	ke Okeechobee to	tne v	vest.		
Assessment area description Linear forested wetland system wit	h a cl	ough like drainage	nattern that flow	s into Lako Okoo	hohod	Some areas are mor	a anan and shrubby	
than forested because of impacts f								
the fern as well as impacts from re								
than 100 meters while others sprea		into a larger botto	mland hardwood	swamp. Species	comp	osition across the asses	ssment area was	
consistent. See notes for species	IIST.			Uniqueness (co	nsidei	ring the relative rarity in	relation to the regional	
Significant nearby features				landscape.)		,	· ·	
St. Lucie County Bluefield Ranch N	Jatura	l Area Orlando Pi	idae Allanattah			juality integrity for Lake		
Flats, Dupuis Reserve, Corbett Wil			•	feature is in a landscape that has been impacted by citrus cultivation, cattle, and other agricultural uses. Although it has experienced some				
within the "Western Corridor"		3	,	disturbances it is relatively intact and has nice species composition				
				which is rare for this area.				
Functions						permit/other historic use		
This natural forested area is extren	nely in	nportant for water	retention and	Historically grazed by cattle. Based on the age structure of the trees				
storage especially because of resto		•	•	this area probably was harvested for timber at some time in the past. Many of the bays look to be about the same age although they are				
ecosystem tied back to water stora cycling. Provides habitat for native			e. Nutrient	now mature. There are indications of older larger trees that were not				
			(1.1-1-6	cut.	- C I		and a Hadaland	
Anticipated Wildlife Utilization Base that are representative of the asses			•	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the				
be found)	3311101	it dica dila reasor	lably expected to	assessment area		o), type or use, and inte	monty of doc of the	
Marbled salamander, mole salama								
salamander, five-lined skink, ringne snake, cottonmouth, wood duck, re				Florida black bea	r T (L	Irsus americanus florida	nus), Florida panther	
cuckoo, screech-owl, great-horned				, , ,		olor coryi), wood stork E	` •	
acadian flycatcher, pileated woodp						SC (Aramus guarauna)), little blue heron SSC thula), tricolored heron	
yellow-throated warbler, opossum,	• •		irrel, raccoon,	` •		and white ibis SSC (Eu	* *	
mink, gray fox, bobcat, and white-to	alled c	leer.			,,	,		
Observed Evidence of Wildlife Utili	zation	(List species dire	ctly observed, or	other signs such a	as trac	cks, droppings, casings,	nests, etc.):	
L								
White eyed vireo, numerous insect in muck, small fish, little grass frog								
woodpecker.	, ісора	ard frog, kingiisrie	i, great crested in	ycatcher, silver sp	olled	skipper, tiger swallowtal	i, and pileated	
·								
Additional relevant factors:	Additional relevant factors:							
West side of the assessment area	has n	ot burned yet. Pro	esence and respre	outing of Japanes	e clim	bing fern (<i>Lygodium jap</i>	onicum) is patchy.	
Assessment conducted by:				Assessment date	e(s):			
Erica Hernandez, Tony Davanzo			22-Mar-06					

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

Blue_BOT Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Numbe	r l
Bluefield Mitigation Bank		''		Blue_BOT		
Impact or Mitigation		Assessment conducted by:		Assessment date:		
Mitigation bank		Erica Hernandez, Tony Dava	•			
9						
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Pre	sent (0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	wetland	evel of support of /surface water unctions		officient to provide water functions
.500(6)(a) Location and Landscape Support w/o pres or current with	pasture back to hydric pine fi private ranches and agricultuneeds more time to reach ful bank they are being monitore controlled because this drain wetland systems capacity for optimal habitat support for na	e the assessment area are in clatwoods, marshes, scrub, and ural lands outside the bank. Till functional capacity for provided and treated. There are no lage area connects to Lake Or water storage. The conversigative wildlife but may not be as and this assessment area and water the same this assessment area and water the same this assessment area.	d sandhill con hese areas ling habitat. noted barrie keechobee on of land continues intense as	ommunities. Ther will provide habita There are some ears to wildlife move but also probably outside the bank to other types of devenance.	e is public land ea at for most species exotic species in the ement. Downstrea greatly benefits fro pasture and citru velopment. Down	st of the bank and to but the area the vicinity, on the term benefits are the thin this intact is groves is not stream habitats
adventitious roots, buttressing trunks, the presence of muck and facultative wetland and obligate wetland plants are all consistent with expected hydrologic conditions. Soil moisture was appropriate, there is no evidence of subsidence or desiccation. No problems with soil erosion or inappropriate deposition patterns. No atypical fire history. Vegetation zonation is normal. Fish were present in areas of standing water as were some birds associated with water such as the kingfisher. Some frogs were also seen. There were some patches of cattails (<i>Typha</i> spp.) and Peruvian primrosewillow (<i>Ludwigia peruviana</i>), but they were not dominant and may be more of an indication of disturbance to the wetland canop and not an altered or disturbed hydrology. Direct standing water did not exhibit characteristics of water quality degradation. There may be some upstream effects to this system in the agricultural areas. This wetland has probably benefited by					osidence or //egetation er such as the primrosewillow wetland canopy ality degradation.	
w/o pres or current with 8	bridge. Other hydrologic wol providing a more natural hyd	erts to connect the system und rk on the bank to remove ditch roperiod in the landscape. Mo	es for othe	r wetlands has pro	bably also benefit	ed this system by
.500(6)(c)Community structure	sprouting of Japanese climbinot be characterized as mini	the groundcover, mid-story, a ing fern (<i>Lygodium japonicum</i> mal, but is greatly reduced froution of some tree species esp), but it is b m the mass	eing monitored an infestation from s	nd managed for reserveral years ago.	moval; cover could There is
Vegetation and/or Benthic Community	were in flower or fruit. There though there have been temperopriate and will continue	e is no indication of a permane porary deviations due to exotic to benefit and improve the ex	nt deviation species artisting cond	from normal succeed the following from normal succeeds the following from the following f	cession and morta nd management p nd. There are ma	lity patterns even ractices are ny examples of
w/o pres or current with	refugia in this area including hummocks, creek channels, and ponds. Dens and cavities are optimal in some of the older mature trees, but there is an excess of woody debris due to hurricanes and exotic species disturbances. Groundcover is probably benefiting from the open canopy and looks very healthy. Trees look like they are recovering from the disturbances they have experienced, but it may be some time before the functional capacity of a closed canopy bottomland hardwood returns.					
Score = sum of above scores/30 (if uplands, divide by 20)	If preservation as mitig	ation,		For impact assess	sment areas	
current	Preservation adjustme	nt factor =		dalta v assas —		
or w/o pres with	Adjusted mitigation del	ta =	FL =	delta x acres =		
	If mitigation		F	or mitigation asse	ssment areas	
Delta = [with-current]	Time lag (t-factor) =		r or magazon assessment areas			
	Risk factor =		RFG	= delta/(t-factor x	risk) =	
Form 62-345.900(2), F.A.C. [effect	tive date 02-04-20041					

Blue_BOT Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: Blue_BOT, Bluefield Ranch Mitigation Bank

Date: 22-Mar-06

Evaluator(s): Tony Davanzo & Erica Hernandez

Wetland Type/Description: Forested and shrubby open slough like drainage system drains to Lake Okeechobee, has experienced disturbances from hurricanes and exotic species. Was infested with Japanese climbing fern (*Lygodium japonicum*).

Wetland Size: ~ 64 acres (26 ha)

FLUCCS Code/Description: 1995 SFWMD 1650 Wetland Hardwood Forests, Stream

and Lake Swamps (Bottomland)

2.0	Wildlife Utilization (WU)		
1.5	Wetland Ca	nopy (O/S)	
2.0	Wetland Gro	ound Cover (GC)	
2.3	Habitat Support/Buffer		
2.5	Field Hydrology (HYD)		
1.7	WQ Input &	Treatment (WQ)	
12.0	SUM		
6	Count		
0.67	WRAP		

Blue_BOT Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Small and medium sized mammal and bird tracks seen in muck. Small fish found where there was standing water, two frogs also seen. Some migrant birds seen and heard. Probably a good stop over for migrants. Lots of insects. Adequate adjacent food sources as the surrounding area is in different phases of restoration. Human disturbance is most evident from the intense effort to remove Japanese climbing fern (*Lygodium japonicum*) from the wetland system, a process that began in 2001. The treatment is moving into a maintenance phase now. There is abundant cover and habitat. Some areas are oven grown with muscadine (*Vitis* spp.) and have a lot of woody debris, both from human disturbance and even more so from hurricane activity in 2004 and 2005. Removing the Japanese climbing fern in combination with the hurricanes has probably greatly increased light penetration into this system and is encouraging ground cover and native vine growth.

1.5 Wetland Canopy (O/S)

Japanese climbing fern (*Lygodium japonicum*) is still present and is being treated (less than 25% cover). Historically this exotic species has caused a lot of damage to this system. Canopy has also suffered damage from hurricane activity. There is a high abundance of snag and den trees. Living trees look healthy, some are mature and very large. There is some evidence of natural recruitment of the bay trees and other flowering shrubs. Red maple (*Acer rubrum*) seedlings were seen in some areas. Overstory species are desirable tree species. Canopy is very open. The habitat support provided by the canopy should improve with time.

2.0 Wetland Ground Cover (GC)

Less than 25% exotic species present. Japanese climbing fern (*Lygodium japonicum*), Peruvian primrosewillow (*Ludwigia peruviana*), and cattail (*Typha* spp.) are all being monitored and treated. Slight impacts to ground cover from equipment access to system for exotic species treatment. Native species present are desirable wetland species. Ground cover looks very healthy. Increased light penetration to the system has probably diversified the ground cover.

2.3 Habitat Support/Buffer

North of wetland assessment area is a larger connected drainage system and series of bottomland swamps. These areas are surrounded by rural and agricultural areas. Land immediately north of the assessment area is inside the bank and is in different phases of restoration and is a greater than 300 meter buffer. Various pasture grasses may still exist in some areas but are being restored back to natural areas. East and south of the assessment area are various upland and wetland habitats and some remnant pasture that is under restoration, these areas are greater than 300 meters wide. North and south of the assessment area still has some remnant patches of Japanese climbing fern that are being treated. Upper west side of assessment area is also buffered by the bank and is being restored but will have pasture grasses. The lower west side is adjacent to an improved pasture in private ownership and is also greater than 300 meters wide.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	2.0	0.13	0.26
East	2.5	0.38	0.95
South	2.0	0.12	0.24
West upper	2.5	0.15	0.38
West lower	2.0	0.22	0.44
		Total =	2.3

2.5 Field Hydrology (HID)

Plants look healthy with no stress from improper hydroperiod. Wetland species present, loop roots, adventitious roots, high water lines, and the presence of muck are all consistent with an adequate hydrology. Wetland is not near canals or ditches near the assessment area however upstream there could be restrictions in the agricultural areas outside the bank. There is no evidence of soil subsidence. This area has probably benefited from the hydrologic restoration that has occurred on the bank increasing sheet flow to this area and extending its hydroperiod. Cattails (*Typha* spp.) were not present in a way that would indicate excessive nutrients. Young red maple (*Acer rubrum*) were not dominant of the recruited vegetation.

1.7 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
natural undeveloped	3.0	0.13	0.4
rangeland	2.5	0.65	1.6
improved pasture	1.0	0.22	0.2
		LII Total -	2.2

PRETREATMENT CATEGORY (PT)

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
natural undeveloped	3.0	0.13	0.4
rangeland	1.0	0.65	0.7
improved pasture	1.0	0.22	0.2
•	•	PT Total =	1.3

Blue_FLA Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name Application Number		er	Assessment Area Name or Number		or Number		
Bluefield Mitigation Bank	Bluefield Mitigation Bank NA				Blue_FLA		
FLUCCs code		Further classifica	ation (optional)		Impad	ct or Mitigation Site?	Assessment Area Size
Being restored from 2120 unimprove pasture to 6250 Hydric pinelands	eing restored from 2120 unimproved asture to 6250 Hydric pinelands			Mitiga	ation bank	~ 13 ac (5.3 ha)	
Basin/Watershed Name/Number	Affect	ed Waterbody (Clas	ss)	Special Classificat	ion (i.e.	OFW, AP, other local/state/federa	Il designation of importance)
HUC Taylor Creek	NA			FWCC priority ha	abitat,	FNAI bird rookery	
Geographic relationship to and hyd	rologi	c connection with	wetlands, other s	urface water, upla	ands		
This area will sheet flow along a ve Okeechobee. The other side of the							
Assessment area description							
Previously unimproved pasture is b began and is due to burn again this communities and is next to a slough	year.	Assessment are	ea is in a matrix of	improved and un Private pastures a	impro are we	ved pastures being rest est of the assessment a	ored back to natural rea.
Significant nearby features				Uniqueness (co landscape.)	nside	ring the relative rarity in	relation to the regional
St. Lucie County Bluefield Ranch Natural Area, Orlando Ridge, Allapattah Flats, Dupuis Reserve, Corbett Wildlife Area, Jones/Hungryland W.E.A., within the "Western Corridor"			Pine flatwoods are declining in the Southeastern United States. Most in this area have been converted to agricultural uses or urban development.				
Functions				Mitigation for previous permit/other historic use			
Provide habitat for flora and fauna. Nutrient cycling. Provide essential							
Anticipated Wildlife Utilization Base that are representative of the asses be found)			•	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Oak toad, cricket frog, chorus frog, black racer, yellow rat snake, diamondback rattlesnake, pygmy rattlesnake, red-shouldered hawk bobwhite, opossum, cottontail rabbit, cotton rat, cotton mouse, raccoon, striped skunk, bobcat, and white-tailed deer. In addition, many birds, butterflies, frogs, snakes, etc.			Florida black bear T (<i>Ursus americanus floridanus</i>), Florida panther E (<i>Puma</i> (=Felis) concolor coryi), wood stork E (<i>Mycteria americana</i>), red-cockaded woodpecker E (<i>Picoides borealis</i>), Everglade snail kite E (<i>Rostrhamus sociabilis plumbeus</i>), bald eagle E (<i>Haliaeetus leucocephalus</i>), eastern indigo snake T (<i>Drymarchon corais couperi</i>), gopher tortoise SSC (<i>Gopherus polyphemus</i>), Sherman's fox squirrel SSC (<i>Sciurus niger shermani</i>), Bachman's sparrow SSC (<i>Aimophila aestivalis</i>), limpkin SSC (<i>Aramus guarauna</i>), southeastern kestrel T (<i>Falco sparverius paulus</i>), Florida sandhill crane T (<i>Grus canadensis pratensis</i>).			teria americana), red- glade snail kite E daliaeetus non corais couperi), erman's fox squirrel SSC C (Aimophila aestivalis), strel T (Falco sparverius	
Observed Evidence of Wildlife Utiliz	zation	(List species dire	ectly observed, or	other signs such a	as trac	cks, droppings, casings,	nests, etc.):
Palamedes swallowtail butterfly (Paarea (Grus canadensis), rabbit or c		,,	,	,	,	,	,,
Additional relevant factors:							
Chuck Olson, the bank land manag	jer, th	inks this area of t	he bank is nearing	g restoration succ	ess, 8	0% at his estimate.	
Assessment conducted by:				Assessment date	e(s):		
Erica Hernandez, Tony Davanzo				3/22/2006			

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

Blue_FLA Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Number	
Bluefield Mitigation Bank		NA		Blue_FLA		
Impact or Mitigation		Assessment conducted by:		Assessment date:		
Mitigation bank		Erica Hernandez, Tony Dava	nzo	22-Mar-06		
Cooring Cuidones	Ontimal (40)	Madauto/7	NA:	nim al (4)	Not Decome 10	
Scoring Guidance The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Optimal (10) Condition is optimal and fully supports wetland/surface water functions	maintain most wetland/surface water provide wetland			Condition is insuffici provide wetland/sur water functions	ent to
.500(6)(a) Location and Landscape Support w/o pres or current with	There are some natural area the bank these species are b barriers. There are no limita	nent area are in various stage is in the landscape as well. The leing treated. Wildlife accessitions to the function provided lee bank to pasture and citrus ger types of development.	here are sor to and from by this site t	me exotic species habitats is not lin o downstream fisl	in the landscape, with nited by distance or h and wildlife. The	nin
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	obligate wetland plant species appear consistent throughout the site. Soil moisture is appropriate. No atypical fire frequency. Vegetation does not show signs of hydrologic stress. Plant community is indicative of a hydric pine flatwoods community and is not characterized by species tolerant of water quality degradation or alterations. As					
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	noted in the wetland assessr began restoration two years different flora species assem were planted and are unever pines (<i>Pinus elliottii</i>) become features like hummocks from Numerous shrubs and groun indication of the possibility for restoration and current prescription in the possibility for the possib	desirable in the canopy, shrub ment area. There is a high div prior. This community type wi iblages, these were present al nily aged and randomly spaced e more mature there will be men in fallen trees. There are matured d cover species were noted to renatural regeneration. Land is stribed fire. This hydric pine flatar healthy and are in good cor	rersity of ground from the subtant of the subtant o	ound cover and shalle micro-topograp or the area. Treeses are still immatanity for snags and the edge of the ang or fruiting and the practices include	nrubs for a site that on hic variations that cau es in the assessment ure. Over time as the dens and eventually ssessment area. here was a strong e past hydrologic	ly se area
Score = sum of above scores/30 (if	If preservation as mitig	ation,		For impact asses	sment areas	
uplands, divide by 20) current pr w/o pres with		nt factor =	FL = delta x acres =			
			FL =	delta x acres =		
current	Adjusted mitigation del		FL =	delta x acres =		
current pr w/o pres with				delta x acres =	essment areas	

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Blue_FLA Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: Blue_FLA, Bluefield Ranch Mitigation Bank

Date: 22-Mar-06

Evaluator(s): Tony Davanzo & Erica Hernandez

Wetland Type/Description: Hydric pine flatwood, was unimproved pasture, on bank NW edge. Next to private pastures and drains via sheetflow towards slough that flows into

Lake Okeechobee.

Wetland Size: ~ 13 acres (5.3 ha)

FLUCCS Code/Description: This area is being restored to 6250 hydric pine flatwoods.

2.5	Wildlife Utiliz	cation (WU)		
2.5	Wetland Cano	py (O/S)		
3.0	Wetland Groun	Wetland Ground Cover (GC)		
2.4	Habitat Support/Buffer			
3.0	Field Hydrology (HYD)			
1.6	WQ Input & Treatment (WQ)			
14.9	SUM			
6	Count			
0.83	WRAP			

Blue_FLA Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Hydric pine flatwoods seasonally function as both a wetland and upland, this therefore allows for a high diversity of flora and fauna. Species associated with standing water would not be expected in this wetland at this time. Upland food sources are abundant. Human disturbance is minimal in the bank with minor disturbances from the installation of fire breaks. Adjacent land use is pasture and is also relatively low impact. There is abundant cover within the wetland and upland areas in the landscape. Evidence of older hog damage in the Carolina redroot (*Lachnanthes caroliana*) patches. Hogs are being removed by the land managers.

2.5 Wetland Canopy (O/S)

Canopy consists of unevenly aged randomly distributed planted slash pines (*Pinus elliottii*). Trees are still immature and are not large enough to provide cavity habitat but provide perches and other nesting habitat. Trees are old enough to survive prescribed fire. No evidence of species recruitment yet, but it is unknown whether trees have produced cones yet. There are very young trees planted in the assessment areas with older trees in the immediate area. We do not know if some of the trees in the vicinity have had natural recruitment into the assessment area. No snags or dens were noted in the assessment area, due to restoration activities they would probably have to be purposefully installed because the land was in pasture prior to restoration and probably did not maintain snags. Trees look healthy. No evidence of disease or insect damage. No exotic species.

3.0 Wetland Ground Cover (GC)

No exotic species noted. Minor disturbance to groundcover in the form of hog rooting looks older, young Carolina redroot (*Lachnanthes caroliana*) is growing into this area and is limited to very small patches. No human disturbances. This area is maintained with prescribed fire. Site exhibits nice species diversity for a newly restored area.

2.4 Habitat Support/Buffer

Buffer west of assessment area includes an area of mature slash pines (*Pinus elliottii*) and then an adjacent property being maintained as pasture. North, east and south of the assessment area is the rest of the bank in various stages of restoration. These areas have some exotic species that are being managed. These areas do provide cover, food, and roosting. These areas have no barriers and are contiguous with offsite wetlands.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	2.5	0.20	0.50
South	2.5	0.20	0.50
East	2.5	0.30	0.75
West	2	0.30	0.60
		Total =	2.4

3.0 Field Hydrology (HID)

Plants appear healthy and not stressed. There are no negative impacts of the assessment areas hydrology in the landscape. Appropriate species are present for a hydric pine flatwoods ecosystem. Wetland indicators like sphagnum moss and other obligate wetland species are present. The hydrology appears appropriate to maintain a hydric pine flatwoods.

1.6 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

ENVESE CHIEGORY (EC)						
Land Use Category	(Score) x	(% of Area)	= Sub Total			
improved pasture	1.0	0.33	0.33			
rangeland	2.5	0.35	0.88			
natural undeveloped	3.0	0.32	0.96			
		LU Total =	2.2			

PRETREATMENT CATEGORY (PT)

PRETREATMENT CAT	LOGILI (I		
Pretreatment Category	(Score) x	(% of Area)	= Sub Total
none	0.0	0.33	0.0
none	0.0	0.35	0.0
natural	3.0	0.32	1.0
		PT Total =	1.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Blue_MAR Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

ite/Project Name Application		Application Numbe	er Assessment Area Name or Number		or Number	
Bluefield Ranch Mitigation Bank	gation Bank NA			Blue_MAR		
FLUCCs code	Further classification (optional)			Impact or Mitigation		Assessment Area Size
6410 freshwater marsh	SSURGO soil: W	aveland and Imm	okalee fine sand	Mitiga	ation bank	~1.3 ac (0.5 ha)
Basin/Watershed Name/Number HUC Taylor Creek and Southeast Florida coast, line is on wetland.			Special Classificati GEOPLAN priorit	,	OFW, AP, other local/state/federal	I designation of importance)
Geographic relationship to and hydrologi STPONT is an isolated depression mars There are other isolated depressions, for small isolated depressions.	chment and is sur	rounded by an up	land b	•	•	
Assessment area description Small isolated depression dominated by pickerelweed (<i>Pontederia cordata</i>). Marsh interior lacks open water and instead has a dense floating m of <i>Pontederia cordata</i> supporting small wax myrtle (<i>Myrica cerifera</i>), Brazilian pepper (<i>Schinus terebinthifolius</i>), and climbing fern (<i>Lygodium</i> spp.) Wetland vegetation zones from wet meadow to deep marsh are not always well defined. Some areas are distinct but other edges had <i>Pontederia cordata</i> growing up into the wet meadow with out any maidencane (<i>Panicum hemitomon</i>). This could be a result of fire suppression					ng fern (<i>Lygodium</i> tother edges had	
Significant nearby features			Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional
Larger basin marsh to the east has had documented use by snail kites. This bank is adjacent to protected St Lucie County land to the east. Part of the bank drains into the Taylor Creek watershed which drains into Lake Okeechobee.			There many isolated depressions in the landscape. Small depressions have important functions that are different than larger more permanent wetlands. It is difficult to find small marshes that have not been impacted by cattle or pasture activities.			
Functions			Mitigation for previous permit/other historic use			
Important breeding and forage habitat. Provides water storage by holding excess water and slowly releasing it into the water table. Enhances water quality by absorbing nutrients from the water.			Historic use for cattle grazing, area converted to pasture.			
Anticipated Wildlife Utilization Based on that are representative of the assessment be found)			classification (E, assessment area	T, SS(by Listed Species (List s C), type of use, and inte	ensity of use of the
Odocoileus virginianus (white-tailed deer), Procyon lotor (raccoon), Lynx rufus floridanus (bobcat), Sciurus caroliniensis (gray squirrel), many species of salamanders, frogs, small fish, wading birds, butterflies, aquatic insects.			Mycteria americana (wood stork) ^E , Aramus guarauna (limpkin) ^{SSC} , Egretta thula (snowy egret) ^{SSC} , Egretta caerulea (little blue heron) ^{SSC} , Eudocimus alba (white ibis) ^{SSC} , Grus canadensis pratensis (Florida sandhill crane) ^T , Alligator mississippiensis (alligator) ^T			
Observed Evidence of Wildlife Utilization	(List species dire	ectly observed, or	other signs such a	s trac	ks, droppings, casings,	nests, etc.):
Heard meadowlark in area, mocking bird, bobwhite, spiders, damselflies, game trails, oak toad, sedge wren, bluebird, common yellow throat, black racer, pileated woodpecker in area, deer or rabbit scat, leopard frog, snipe, red-winged blackbirds, green anole, otter scat and trail banded water snake. Could see movement in the water - might have been small fish, macroinvertebrates or amphibians.						
Additional relevant factors:						
NA						
Assessment conducted by:			Assessment date	e(s):		
Erica Hernandez & Tony Davanzo						22-Mar-06

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

Blue_MAR Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name Application Number Assessment Area Name or Numb			r			
Bluefield Ranch M	itigation Bank	NA			Blue_MAR	
Impact or Mitigation		Assessment conducted by:	y: Assessment date:		e :	
Mitigation	Mitigation bank			Erica Hernandez & Tony Davanzo 22-Mar-06		
Scoring Guidance	Optimal (10)	Moderate(7)	l Mi	nimal (4)	Not Prese	ent (0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	Minimal le wetland	vel of support of /surface water unctions	Condition is in provide wetland/	sufficient to surface water
.500(6)(a) Location and Landscape Support w/o pres or current with	of restoration. Outside of the groves. There are exotic sp are no limitations or barriers benefits. Immediately adjace back to natural communities communities to agricultural I landuse is rural and passive		nas been deg c species on sessment ar the wetland are some ar optimal for v	graded and more the bank are beir ea to the landsca assessment area eas that have bee wildlife; however, i	ranches, pastures ng monitored and to pe for wildlife or do as degraded land en converted from much of the surrou	, and citrus reated. There ownstream s are restored natural unding
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	(n/a for uplands) levels appeared appropriate. Species associated with deep marsh were growing up into the wet meadow, which calls into question water level consistency. Soils were inundated and mucky. No evidence of excessive dryness or soil erosion. Vegetation zonation was not consistent as there was no deep marsh zone and variation of species between wet meadow, shallow marsh, and deep marsh were not always obvious. Vegetation in the wetland looked robust. There was evidence of or direct observation of birds, mammals, reptiles, frogs, and amphibians, all associated with wetlands. There were no species present that are associated with water quality degradation. Standing water looked clear cool					Previously this vater. Water which calls or soil as between robust. There vith wetlands. clear, cool,
transition to a new water availability and management strategy. Nearly all of the plant cover is by appropriate and desirable species. Some vaseygrass (<i>Paspalum urvillei</i>) was noted in the wet meadow edge. The wetland interior supported wax myrtle (<i>Myrica cerifera</i>), Brazilian pepper (<i>Schinus terebinthifolius</i>), and climbing fern (<i>Lygodium</i> spp.), which are neither desirable or appropriate in this system. There is evidence of near normal regeneration. Age and size distribution is normal. Native flora look healthy and robust. Although past land management practices may have negatively affected this wetland, current practices are optimal for long-term viability of the community. Algal growth does not appear to be impeding any other plant growth. Topographi features are normal for this wetland, elevation changes represented by a gradual slope.					Schinus tem. There is obust. e optimal for	
Score = sum of above scores/30 (if	If preservation as mitig	gation,		For impact assess	sment areas	
uplands, divide by 20) current or w/o pres with	Preservation adjustment factor = Adjusted mitigation delta = FL = delta x acres =					
0.73 Delta = [with-current]	If mitigation Time lag (t-factor) =		F	or mitigation asse	essment areas	
	rime ad (t-factor) =	RFG = delta/(t-factor x risk) =				

Blue_MAR Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: Blue_MAR, Bluefield Ranch Mitigation Bank

Date: 22-Mar-06

Evaluator(s): Tony Davanzo & Erica Hernandez

Wetland Type/Description: Small herbaceous marsh in a landscape being converted from

pasture back to native flatwoods

Wetland Size: ~ 1.3 acres (0.5 ha)

FLUCCS Code/Description: 6410 freshwater marsh

2.0	Wildlife Utilization (WU)			
N/A	Wetland Cano	py (O/S)		
2.0	Wetland Grou	Wetland Ground Cover (GC)		
2.5	Habitat Support/Buffer			
2.5	Field Hydrology (HYD)			
3.0	WQ Input & Treatment (WQ)			
12.0	SUM			
5	Count			
0.80	WRAP			

Blue_MAR Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Previous management of this area was not optimal for natural conditions of this marsh. The dense vegetation mats were difficult to walk through, but perhaps are not an issue for some wildlife. The lack of an open water center is probably not optimal for some wetland dependant species that may need that type of habitat. There was recent evidence of this wetland being utilized by an otter. There were also visible game trails throughout the wetland. Many birds were in the marsh as well as a water snake. There were things moving in the water, but there was no absolute identification and they may have been anything from macroinvertebrates to small fish or amphibians. Surrounding upland habitats are in various phases of restoration and will provide some habitat and food resources.

N/A Wetland Canopy (O/S)

2.0 Wetland Ground Cover (GC)

Most of the ground cover species in the marsh are appropriate. Some vaseygrass (*Paspalum urvillei*) was found on the wet meadow edge of the wetland. The area around the marsh was utilized as pasture. The wetland edge had been continuously mowed to increase pasture surface into the wetland. This area is now being restored back to a natural community. Species present in the wetland are desirable but the zonation of the plant species, wet meadow, shallow marsh, and deep marsh is not always distinguishable based on the composition. The interior of the wetland is a dense vegetative mat and has inappropriate and exotic species starting to grow on it including some small climbing fern (*Lygodium* spp.), Brazilian pepper (*Schinus terebinthifolius*), and wax myrtle (*Myrica cerifera*) bushes. Management of this area with fire should help reduce the vegetative build up in this wetland and have a more natural vegetation distribution.

2.5 Habitat Support/Buffer

Surrounding habitats around the wetland assessment area are in various stages of restoration back to natural upland and wetland habitats. There are some exotic species on the landscape that are being monitored and treated as well as some remnant pasture grasses that may still be in the upland restoration areas but are being phases out and converted back to areas of native vegetation.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	2.5	0.25	0.63
South	2.5	0.25	0.63
East	2.5	0.25	0.63
West	2.5	0.25	0.63
		Total =	2.5

2.5 Field Hydrology (HID)

Hydrology seems viable for continued support of this wetland. The landscape has had hydrologic restoration in the form of ditch filling and plugging that has increased the water table for this wetland by at least 4 inches according to the land manager. This wetland is not adjacent to negative impacts to hydrology and it does not appear that the wetlands catchment size has changed much. The plant community appears healthy. Algae is present but not impeding plant growth. There is potential that this wetland has been impacted by excessive nutrients from previous cattle use. However, species present are not indicative of excessive nutrients.

3.0 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total
natural undevel.	3.0	1.00	3.0
		LU Total =	3.0

PRETREATMENT CATEGORY (PT)

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
natural undevel. area	3.0	1.00	3.0
		PT Total =	3.0

^{**} surrounding landuse has been converted from pasture back to native plants and is in the process of being restored back to a natural pine flatwoods community. This area is also being managed as a flatwoods community. Although it is not yet an optimal restored community type and may have remnant pasture grasses, the fact that it is in the process of being restored and no longer has cattle on it and is being managed as flatwoods made it more appropriate to say the landuse category is natural undeveloped instead of rangeland.

Blue_MAR Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Depressions Marsh

Assessment Team: TD, ECH

Project Name: Bluefield Mitigation Bank Blue_MAR

Location: N 27 degrees 13' 52.51"/W 80 degrees 38' 35.04"

Date: March 22, 2006 Subclass: herbaceous marsh

Function	FCI
Surface Water Storage	1.00
Subsurface Water Storage	0.98
Cycle Nutrients	0.97
Characteristic Plant Community	0.79
Wildlife Habitat	0.76

Variables	Measure	Units	Subindex
V CATCH	0	%	1.00
V UPUSE	78.5	%	1.00
V WETPROX	3384	meters	0.70
V WETVOL	0	%	1.00
V surout	0	%	1.00
V subout	0	%	1.00
V ZONES	2	number	0.25
V MAC	95	%	1.00
V SURTEX	100 muck	%	0.90
V нсомр	33.33	%	0.33

Blue_MAR Hydrogeomorphic Approach, page 2

Vcatch 0% change in catchment size Size of original catchment 1.58 ha Size of current catchment 1.58 ha

Vupuse

pasture cover type curve # 80 percent 50 native range cover type curve # 77 percent 50

Vwetprox 3384m Sector 1 Sector 2 Sector 3 Sector 4 500m 500m 500m 199m Sector 5 Sector 6 Sector 7 Sector 8 500m 184m 500m 500m

Vwetvol No change

diameter depth of length of width of fill average thickness of wetland wetland fill material material fill material

north-south east-west

Vsurout no ditch

Vsubout no ditch

Vzones 2

change in shallow marsh - wet meadow grades into deep marsh no open water, dense floating mat

Vmac

57/60 95% cover

Vsurtex 100% muck

Vhcomp

wet meadow zone
0%
shallow marsh zone
Pontederia cordata 0%
deep marsh
Pontederia cordata 100%

Blue_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 1 *NOTE: field codes are different than reported codes, Blue_MAR = STPONT

Site name: STONT Description: Stone		D Tra	ate: nsect:	S (otto) Nove	idiy He •	T	,	Stre	am:- nty:	M.
Species	90	\$ 10,	10,750	2500	25.	35	S. 18	S. S	to the same	35
Walterest Bayon Wicrosephila	TV.		1 1 1					1/		
Martiner Grand Process	14/	4								
contain as-adica	3/	1					1	W		
Chapter control sampallata.	3,0	1	1				3/	V	V	
Pastecheron uvvelki	V						*			
Village Elegions hillow		N	:						:	
Perception President	···	- Sp.						17/		
Ton Fally Sal Carleton		1./	V	5/	1	V	1/2	V		37
any punction		107			1	*********				
Pan Coop Kempowish		1		v/			:			
Gring Levels in Middle		1	-		1		18.70			
Rosermana technology				1	1	-	1			
Erichtike Hieroscilosa	-	1		 	 		1	12	17	_
Congression Compagnitudes	s\			<u> </u>	1		12/	1	7	
And soon almoster				-	-		1	1		-
hasains microphilan		-	 	-				15%		
	-	+		-	1	-	-	1		\vdash
Alexandria seriega		-	-		· ·	1	-	-¥	-	1
Mark Certera		-	-	-	-	1-	-	147	7	-
Medical Conflora		+	1	-	-	-	-	1 /	1	+-
Thorten in cap lafolism	1	+		+	-	-	-	1	. X	+
	-		-	-	-	-			-	-
			-				+		1 .	╁
		+	-	+		-	-			-
	1	+		-		+	-	+		╀
		-	-	-	-	-	-	-	1	-
	ļ		1				1			-
	-	+	ļ.,,	 						+
	-	-	-	-	-	-		-	-	+
	1		-	-		-	+-	-	-	1
	ļ.,	-	1-	-	-					-
	-	-	1_	-	-		-		-	1
<u> </u>										-
										_
										1

Blue_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 2 *NOTE: field codes are different than reported codes, Blue_MAR = STPONT

ite name: St. Tool Teacher the secretary and the		Tra	ate: nsect:	\$ [8] \$ day	Hev In	72			nty: 🥞	r.Sunay
Species	O.S.	\$ 70,00	10,5%	S. C.	20 S	S. S	Sy Sy	s of	40 ASW	\$5.00 M
Portic John a condutive	V		V	1	V.	4	V	1.1	V.	
Varieties Limbertonich		V.	:V	V	V.	V.			,	
Prostrationa with mask	.V	V	V	V					S	
DECEMBER SEE SEE VERNER	1/	W.	32	1						
SAN COMA DOVERNMENT			w							
DELECTION PRODUCTION BUT THE SERVICE AND ADDRESS OF THE PARTY.			1/					12.112.2		
Frankling Store Only 1889	· V	V	V			- 1				
Andropogo virgostus.	· · · ·	ļ,.	12/						:	
Annah William mill albega	u V	W.	W.		_					-
Who lose ago.		W		<u> </u>	1					
Elisabled the charles	-W	¥	-		<u> </u>					
School of the mention	. Y								:	
· · · · · · · · · · · · · · · · · · ·		-		-	-		i., .,		-	-
			ļ		-	-				-
***************************************	-		ļi	 		-				
			-	-	-	 	-		·	-
·	-	-	-		+	+	-			-
			+	-	-		1	1		
	-				†		1			
	<u> </u>		1	+	-					
		1	1		1	1		1		
		1	-	-	-	1	1	1		
						1	1	1		
	12, 1									
			1 :		1					
			:				1			
							:		1	:
			:							
							1			-
			:		-			4	1	
										1
						1		1: \		1

Blue_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 3 *NOTE: field codes are different than reported codes, Blue_MAR = STPONT

Site name: Description: Spinory			ate: [%] nsect:			em; inty: 🕬	levie:			
Species	S.	£10,	70. Sm	S. Com	S. S	S. S. S.	S. S.	S. Sall	ST. ST.	45
Controlly They were to their	<i>3</i> 2									
Embrandus annoscissama	W.	. :				1 111				
Liberta asian in	V									
a maranet a terror a de la lace	327									
visitionium timby force.	3/									
VILLAGUA Electronis belle	*V									
Ponteriam cardula	4	11	1	1	Y.	V.	14/1			
Tubscriptorious prestations in	W.	14/					:			
Unitro & Some as B Elevisions	V.						: '		,	
Second collegion uns	N.	N.			:					
Junior Mous		1								
Fullena Scroposca		1								
\$46000 591		W								
SHAPHANDE GRANDER		3/2	1				:			
Painter Samphon house		V	1	V						
Palma insulate perchasion					V					
					=					
						1				1 /
		-								
				:						
						-				
	· · · · ·									
	1,1									
					l					
						:				
					1					
	Ι,									
								* .		7.

Blue_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 4 *NOTE: field codes are different than reported codes, Blue_MAR = STPONT

Site name: Description:	145	Tra	ate: nsect:	W64)	-7	4		–Stre Cou	am: inty:	ā Ļ
Species	80	\$.70m		15.23			S. S. S.	N. S.	S. C. C.	
Ponteria issue	42	U.	V	1	TV.	1	1/	W/		_
Thirty an hamping in	1	V.								-
Ormore Engrouse mile residence	x 36	¥						-		_
Ormonicarrown misclescope	1				-		:			-
Timeson Louistate	V									-
Palicanian municipalities	327						:			-
Polisonnum punctation. This cha solvinosea.	W									-
San Versien Risannia, microtrophilia										-
Vistoria Vicheliais butto.										
Gistella #43.647ca	V							· · · · ·		-
								-		
		-								-
										-
										-
										<u> </u>
		-						-,		<u> </u>
	<u>. </u>									-
					. :					_
	·	-	· ·	-						i
		-								_
										
										_
		ļ								
									,	
								·		
						-				
						-				
					1					
							·	E a		
				77.00						+

Appendix B-5. Boran Ranch, Phase I

Figure B-5.1. Landscape location of Boran Ranch Mitigation Bank, only the outline of Phase one is shown. Phase two is to the east.

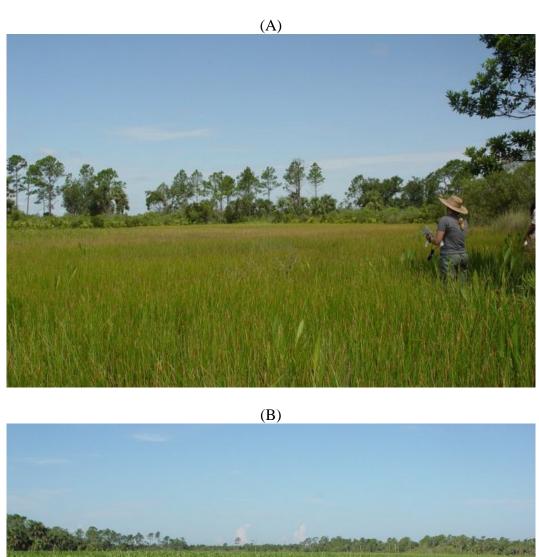


Figure B-5.2. Site photos of Boran Ranch Mitigation Bank Phase I (A) Looking north from eastern edge of Bora_MAR_1 (B) Looking southwest across Bora_MAR_2 towards willow head with a wading bird rookery.

$Bora_MAR_1\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name	/Project Name Application Numb					Assessment Area Name	or Number	
Boran Ranch Mitigation Bank			NA			BORA_MAR_1		
FLUCCs code		Further classification	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size	
SWFWMD 2000 - 6410 Freshwater Marshes	SWFWMD 2000 - 6410 Freshwater NWI - palustrine emergent semi flooded				mitiga	ation	1.1 ha (2.7 ac)	
Basin/Watershed Name/Number	Affect	ed Waterbody (Clas	Special Classificati	on (i.e.C	DFW, AP, other local/state/federal	designation of importance)		
HUC - Peace River 03100101	Class	; 111		none				
Geographic relationship to and hyd	rologio	c connection with	wetlands, other su	ırface water, uplar	nds			
WAA is an isolated depressional he artificially flooded through an artesi- depression, except in times of high marshes and flatwoods ecosystems Assessment area description	ian we water	II for duck hunting	/habitat purposes.	The well has been	en plu	gged, and now this wetla	and acts as an isolated	
•	alona	the NW/SE line T	The vegetation zon	nation was somew	hat in	tact with 3 primary zon	as including the	
WAA is kidney shaped, elongated a shallow water maidencane (<i>Panicu</i> (<i>Bacopa</i> spp.), pickerelweed (<i>Pont</i>	ım hen	mitomon), spikerus	sh (<i>Eleochari</i> s sp	p.), arrowhead (Sa	agittari	ia spp.) zone; the deepe	-	
Significant nearby features				Uniqueness (consider	ering the	e relative rarity in relation to the	ne regional landscape.)	
Phase II of the Boran Ranch Mitigation Bank will be restored wetlands and hydric flatwoods and is immediately adjacent to the east. L. Longino Pr an RV Griffin Resv (GDC) state lands to SW.				Much of the surrounding landscape is in pasture and row crops (as this area had been until restoration work was done). The housing demands are increasing in this area, and much of the agricultural lands are expected to become urban lands, leaving little room for preservation and protected lands				
Functions				Mitigation for pre-	vious p	permit/other historic use		
Important breeding and foraging ha support different assemblage of sp wetlands. Flood storage, aquifer re	ecies	than larger more p	permanent	s Support area had been drained. This particular marsh had been flooded with an artesian well.				
Anticipated Wildlife Utilization Base that are representative of the asses be found)				Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)				
Mole salamander, tiger salamander frog, pinewoods tree frog, barking f narrow mouth toad, eastern spade bobcat	frog, s	quirrel frog, southe	ern chorus frog,	Sandhill crane (T), Woodstork (E), Gopher Frog (SSC), White Ibis (SSC)				
Observed Evidence of Wildlife Utiliz	zation	(List species direct	ctly observed, or o	ther signs such a	s track	s, droppings, casings, r	nests, etc.):	
osprey, towhee, cricket frog, comm	sh, grasshoppers,	dragonflies.						
Additional relevant factors:								
FNAI Bird Aggregation Areas - Bird Ro around during sampling, which shorten	6 Focal Species Ov	erlap -	with 1 mile boundary. Sto	orm came up and all				
Assessment conducted by:				Assessment date	e(s):			
Erica Hernandez, Kelly C. Reiss				14-Jul-05				

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

$Bora_MAR_1\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 2$

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

gation Bank	Application Number NA	1	BORA_MAR_1		
	Assessment conducted by:	Assessment dat	Assessment date:		
bank	EH, KCR	7 toodoomont dat	7/14/2005		
24	2.1, 1.0.1				
Optimal (10)	Moderate(7)	Minimal (4)	Not Present (0)		
Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface water functions	Minimal level of support of wetland/surface water functions	Condition is insufficient to provide wetland/surface water functions		
wetland, but lots of corrid downstream barriers, as	lors to high quality uplands and this wetland has been restore	d wetlands exist. No identified to a hydrologically isolated	ed landscape barriers. No wetland. Some areas on		
because of inundation (no s restored, so ditches wer herbaceous vegetation. Als hydrologic requirement degradation. <i>Utricularia</i> sp	signs of soil erosion or deposit e plugged at NW and SE side o observed fish, osprey, frogs s. No indicators of hydrologic (bladderwort) with yellow flow and are now floating on the si	ion). Ditch plugs look intact s of wetland). Saw evidence, and dragonflies as indicator stress visible. No species in ver throughout wetland. Also urface of the water throughout	and solid (wetland hydrology of marsh rat nests in the rs of appropriate species with ndicative of water quality o, floating dried mats of algae		
a nuisance species. Woody are optimal for long term, s depressional herbaceous regime, versus the historic	debris appears appropriate. I upport uplands burned on a 3 wetland. Zonation appears sl ally artificially flooded conditio	Plants are in good condition. yr. cycle. Refugia and open ightly off, as the marsh equil n. In some areas topograph	Land management practices water pool appropriate for a ibrates to the current water y off, as Pontederia cordata		
If preservation as mitiga	ation	For impact asses	ssment areas		
·					
		FL = delta x acres =			
Adjusted mitigation delt	ta =				
If mitigation					
		For mitigation ass	essment areas		
Risk factor =		RFG = delta/(t-factor >	(risk) =		
	Condition is optimal and fully supports wetland/surface water functions Wildlife habitats adjacent to wetland, but lots of corric downstream barriers, as adjacent area (Phase II, not support of the su	Condition is optimal and fully supports wetland/surface water functions Wildlife habitats adjacent to wetland are optimal. Agricult wetland, but lots of corridors to high quality uplands an downstream barriers, as this wetland has been restore adjacent area (Phase II, not yet restored) has exotic specific because of inundation (no signs of soil erosion or deposit restored, so ditches were plugged at NW and SE side herbaceous vegetation. Also observed fish, osprey, frogs hydrologic requirements. No indicators of hydrologic degradation. Utricularia sp. (bladderwort) with yellow flow that have been hydrated and are now floating on the sappropriate, water is a nuisance species. Woody debris appears appropriate. All groundcover appears appropriate. Edge area in marsh a nuisance species. Woody debris appears appropriate are optimal for long term, support uplands burned on a 3 depressional herbaceous wetland. Zonation appears si regime, versus the historically artificially flooded condition (pickerelweed) and Sagittaria spp. (arrowhead) groundcover appears among the state of the preservation adjustment factor = Adjusted mitigation delta = If mitigation Time lag (t-factor) =	Condition is less than optimal, but sufficient to maintain most water functions Wildlife habitats adjacent to wetland are optimal. Agricultural farm to the south past a wetland, but lots of corridors to high quality uplands and wetlands exist. No identific downstream barriers, as this wetland has been restored to a hydrologically isolated adjacent area (Phase II, not yet restored) has exotic species, though should provide a Water levels and flows appear appropriate. Hydrologic indicators appear appropriate because of inundation (no signs of soil erosion or deposition). Ditch plugs look intact restored, so ditches were plugged at NW and SE sides of wetland). Saw evidence herbaceous vegetation. Also observed fish, osprey, frogs, and dragonflies as indicator hydrologic requirements. No indicators of hydrologic stress visible. No species it degradation. *Utricularia* sp.* (bladderwort) with yellow flower throughout wetland. Also that have been hydrated and are now floating on the surface of the water throughout appropriate, water is clear, no turbidity. All groundcover appears appropriate. Edge area in marsh ecotone had a little Ludwigit a nuisance species. Woody debris appears appropriate. Plants are in good condition. are optimal for long term, support uplands burned on a 3 yr. cycle. Refugia and open depressional herbaceous wetland. Zonation appears slightly off, as the marsh equil regime, versus the historically artificially flooded condition. In some areas topograph (pickerelweed) and Sagittaria spp. (arrowhead) growing into Serenoa repens (If preservation as mitigation, Preservation adjustment factor = Adjusted mitigation delta = For imitigation ass		

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Bora_MAR_1 Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: BOR_MAR_1, Boran Ranch Mitigation Bank

Date: 7/14/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Depressional herbaceous wetland. WAA is kidney shaped, elongated along the NW/SE line. The vegetation zonation was somewhat in tact, with 3 primary zones, shallow marsh with predominantly grasses and sedges, deeper marsh with arrowhead and pickerelweed, and a small open water pool.

Wetland Assessment Area: 1.1 ha (2.7 ac)

FLUCCS Code/Description: SWFWMD 2000 - 6410 Freshwater Marshes

3.0	Wildlife Utilization (WU)				
NA	Wetland Cano	Wetland Canopy (O/S)			
3.0	Wetland Grou	nd Cover (GC)			
3.0	Habitat Support/Buffer				
3.0	Field Hydrology (HYD)				
2.9	WQ Input & T	reatment (WQ)			
14.9	SUM				
5	Count				
0.99	WRAP				

Bora_MAR_1 Wetland Rapid Assessment Procedure, page 2

3.0 Wildlife Utilization (WU)

Osprey, towhee, cricket frog, common yellow throat, ibis overhead, fish, grasshoppers, dragonflies. Nice upland buffer and zonation. To the E and S are areas slated for restoration (previous agricultural fields). To the S the area is within approximately 300ft, or just over. Marsh is surrounded by Phase I of the bank, which has upland restoration. To the SE is wet prairie. There is some transitional land in the proximity, though these areas are providing an abundant upland food source and adequate and appropriate cover.

NA Wetland Canopy (O/S)

Depressional herbaceous marsh.

3.0 Wetland Ground Cover (GC)

Panicum hemitomon (maidencane), Utricularia spp. (bladderworts - both yellow and purple flowering species), Sagittaria spp. (arrowheads), Eleocharis spp. (spikerushes), Bacopa spp. (waterhyssops), Rhynchospora spp. (beakrushes), Hydrochloa carolinensis (southern watergrass), Pontederia cordata (pickerelweed). Desirable groundcover throughout marsh. Managed environment. No human induced impacts. No exotics within wetland assessment area. After we completed the assessment, and only upon completing the more intense biological sampling Typha spp. (cattails) was found growing throughout the deeper areas, considered a nuisance species.

3.0 Habitat Support/Buffer

Greater than 300 ft of buffer with predominantly desirable	Buffer Type	(Score) x	(% of Area)	= Sub Total
species. Less than 10% undesirable or nuisance species in this				
buffer area. Wildlife corridors are connected to off-site	All	3.0	1	3.0
wetlands.				
			Total =	3.0

3.0 Field Hydrology (HYD)

Not adjacent to negative impacts. Plants appear healthy and in good condition. Natural hydroperiod expected.

2.9 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total
Restoration	2.5	0.3	0.8
Pine Flatwoods	3.0	0.7	2.0
•	•	LU Total =	2.8

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
undeveloped	3.0	1.0	3.0
·	·		0.0
•		PT Total =	3.0

Once this wetland had been artificially flooded from an artesian well and had an overflow ditch connected to another wetland downstream. The ditch is now blocked, and the well has been plugged. The marsh had been dominated by *Typha* spp. (cattails) prior to restoration, and now has a more diverse and appropriate groundcover composition.

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Bora_MAR_1 Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Depressions Marsh

Assessment Team: KCR, ECH **Project Name:** DEBORA

Location: 27 degrees 8m 40s / -82 degrees 2m 1.33s

Date: 7/14/05

Subclass: Depression Marsh

Function	FCI
Surface Water Storage	0.99
Subsurface Water Storage	0.98
Cycle Nutrients	0.98
Characteristic Plant Community	0.85
Wildlife Habitat	0.87

Variables	Measure	Units	Subindex
V CATCH	7	%	0.93
V UPUSE	100	%	1.00
V WETPROX	3008	meters	1.00
V WETVOL	0	%	1.00
V surout	0	%	1.00
V subout	0	%	1.00
V ZONES	1	number	0.50
V MAC	90	%	0.95
V SURTEX	loamy sand	100%	1.00
V HCOMP	50	%	0.50

FCI 1 Surface Water Storage FCI = {Vwetvol*[(Vcatch+Vupuse/2)+Vsurout/2]}½

FCI 2 Subsurface Water Storage FCI = [(Vcatch+Vupuse/2)+(Vsubout+Vsurtex/2)/2]

FCI 3 Cycle Nutrients FCI = [Vsurtex+Vmac+(Vcatch+Vupuse+Vsurout/3)/3]

FCI 4 Characteristic Plant Community FCI = {[Vmac+Vhcomp/2)*(Vsurtex+Vsubout/2)}½

FCI 5 Provide Wildlife Habitat $FCI = \{[(Vsubout+Vzones/2)+(Vupuse+Vwetprox/2)/2]*[(Vmac+Vhcomp/2)+Vsurtex/2]\}$

Bora_MAR_1 Hydrogeomorphic Approach, page 2

Vcatch

Size of original catchment 2.3 ha Size of current catchment 2.14 ha

Vupuse

100%

forest cover type curve # 55 percent 50 native range cover type curve # 75 percent 50

Vwetprox

Sector 1	Sector 2	Sector 3	Sector 4
500m	500m	500m	30m
Sector 5	Sector 6	Sector 7	Sector 8
100m	498m	380m	500m

Vwetvol

diameter	diameter	depth of	length of fill	width of fill	average
wetland	wetland	wetland	material	material	thickness of
north-south	east-west	0.61m	none	none	fill material
127m	93m				none

Vsurout no ditch

Vsubout no ditch

Vzones

1

deep marsh species growing up to edge where wet meadow species would be expected.

Vmac

18/20 90%

Vsurtex

100 % loamy sand

Vhcomp wet meadow 50%

shallow marsh zone

deep marsh

30 Eleocharis cellulosa

20 Sagittaria spp.

15 Pontederia cordata

Bora_MAR_1 Florida Wetland Condition Index, macrophyte field data sheets, page 1 *NOTE: field codes are different than reported codes, Bora_MAR_1 = DEBORA

98-08	75-86	70-75	66-70	650-65	55-88	50-55	45-50	40-45	35-40	30-36	25-90	20.25	15-20	10.15	9	05 m		Site:
J	1		V	V,		1975 1973	1									V	Sogittasin lancefilien Politicelerin cocidata Uturunlarin st.	FX
/	J	J	V	4	1	1		38						基础			Pottederin cordata	1 60
ļ	1	1	V	J							V		Į.			100	Whichleria st.	22
j	√	ď	Ţ	4	J	V	V	V	J	V	V	J	12				ceratollyllum? de	nersum
1	√	1		2	V	/	V	J	V	V	V	٧	✓	V	J		Eleocharis cellulum	
-							✓					436 787			4		deptochlor- Unk	Data Recorder: Por Owares
-						加工		HAR.				201 201				V	Proserpinate palustis	
Ì		496 496		- 54		98						534) 284)		5		1	Parision hemitanism	٠,
į		95A)										17 256 454		1005 335 335		1	Bacopa carolinana	
		94 100		345 345		:236		-8,3 -5,8				7/d 2/d				ď	Screnon repens	Tran
L	_			.20% .000		980 385						186 186		\$6 12		100	Mikania searchers	Transect Direction: North T
ļ				37						160		775 284		1480 1485		V.	Leersia hexandra)irecti
l		750										778				V	Ludwigin repens	3 911
į	-											.8X .9X		\$82 11-72		V	Mynica georgera	26
	_					1876 1939		(4) (4)		1807 1807				(46) (86)		y	Ladwid - M. T.	3.
-								976 139				202 382				386 86	hudulgia alata.	Š ,
1		9.						307:				975 975		20				P. Hardening
		399 2		Ü						180 J. 1822 1832 1632				1000 1000 1000 1000				
-	2					illy es				90) 440				in Is.		ogr)		
and the second		250 282		300 650		30		.1880 438		#8. 88					-	020 200		
1		29		95						900 2001		đ.		100 151		120 284		
į				80 83		700				200		1296 1394		36 33				
1	-	YES VALUE		25 25 15 15		200 200 200		100 120 200		40		300		155 155 166				
-				Š		23		900										
			WINDOWS CO.					24) 181		44		3 11 1 - 0						

 $Bora_MAR_1 \ Florida \ Wetland \ Condition \ Index, macrophyte \ field \ data \ sheets, page \ 2$

*NOTE: field codes are different than reported codes, Bora_MAR_1 = DEBORA

75-80	70-75	65-70	80-85	55-60	55 55	45-50	40.45	35.40	30-35	25-30	20-25	15.20	10.16	5-10	05m	Species	Bios Site: Jeste Joseph DEBORA Date: July 14, 05
-				L			100						383 225		V	Cerenon ciepens	뒤를
						L			ed		68A 62S				8	Angelosis melonen	Y Town
											Ŷ.				V	Cuphen coethaugueusis	5
					14.5	L					1.				1	Henrocotyle Co.	N 22
			E S		200 A				繡		928	L	V	V	1	Bacapa tardiniana	&
	50.5 300.5	_	200 2000	_			180			L			3169 804		1	Milania jeundars	Hosun
_						_									٧	ladurga pepers?	vey Fig
					Ý,8	_								V	1	Diodia: purginiaria	id Dat
	88				100	-			(Single Vent				1	1	V	Polygonin panetodom	hydrop pero of
	52% 1800		÷			,	-6:0 3001								V	Bacopa moneri	et-Tr Trans Data
			-000 -000		1894. 1857				Ý	Ŋ						Pontedera Cordota	ansec Sect D
_							V	V	1	V	V	1	1	1	V.	Eleacharis cellulusa	ts, Veg irecti
			.:1		38				8					V	1	teerson hexandra.	jetato an: (=
_	Š.		.:.X.						83				\$		V	Propromis policies	The state of the s
				L.			V	√	1	V	V	V	V	Ų:		Cerator Lather 7 demen	ichice.
	\$2.5 \$2.5 \$4.5				30						Ų			-		deptachloa? Unk	E 25
			6 				V	V	\checkmark	V						Sogrithmin lancedated	Leptocolinoc
-											34						for We
			23. 33.		167g 315X		1838									Bacopi cardinana Mikania seardus Ludwiga pepens; Diodia virginiaria Polygonia ponattum Bacopa moneri Pontederia cordata Elpechinis celtalisas Leersaa hexandra. Ricorrania palvatus Cerateriatishin demen Sogithicia lancedatad	stlands
			+11 680 707				11110 2007 2007		25		535 390		798 200				
	11.00 1974 196	_	.24		1446 1822 1844		34 34 15 M		1000 1000 1000		19) 33) 300		254 2002 2002				
		-	98		: (\$) -7,24		133	_									
_			36% 5-9				388 388 388		312.1 2007		. j/s . y						
							\$15 \$000 \$000		4.90								
1		_									* .						

 $Bora_MAR_1\ Florida\ Wetland\ Condition\ Index, macrophyte\ field\ data\ sheets,\ page\ 3$

*NOTE: field codes are different than reported codes, Bora_MAR_1 = DEBORA

75-80	70-75	65-70	80-85	55-60	55 55	45-50	40.45	35.40	30-35	25-30	20-25	15.20	10.16	5-10	05m	Species	Bios Site: Jeste Joseph DEBORA Date: July 14, 05
-				L			100						383 225		V	Cerenon ciepens	뒤를
						L			ed		68A 62S				8	Angelosis melonen	Y Town
											Ŷ.				V	Cuphen coethaugueusis	5 5
					14.5	L					1.				1	Henrocotyle Co.	N 22
			E S		200 A				繡		928	L	V	V	1	Bacapa tardiniana	&
	50.5 300.5	_	200 2000	_			180			L			3169 804		1	Milania jeundars	Hosun
_						_									٧	ladurga pepers?	vey Fig
					Ý,8	_								V	1	Diodia: purginiaria	id Dat
	88				100	-			(Single Vent				1	1	V	Polygonin panetodom	hydrop pero of
	52% 1800		÷			,	-6:0 3001								V	Bacopa moneri	et-Tr Trans Data
			-000 -000		1894. 1857				Ý	Ŋ						Pontedera Cordota	ansec Sect D
_							V	V	1	V	V	1	1	1	V.	Eleacharis cellulusa	ts, Veg irecti
			.:1		38				8					V	1	teerson hexandra.	jetato an: (=
_	Š.		.:.X.						83				\$		V	Propromis policies	The state of the s
				L.			V	√	1	V	V	V	V	Ų:		Cerator Lather 7 demen	icnce
	300				30						Ų			-		deptachloa? Unk	E 25
			6 				V	V	\checkmark	V						Sogrithmin lancedated	Leptocolinoc
-											34						for We
			23. 33.		167g 315X		1838									Bacopi cardinana Mikania seardus Ludwiga pepens; Diodia virginiaria Polygonia ponattum Bacopa moneri Pontederia cordata Elpechinis celtalisas Leersaa hexandra. Ricorrania palvatus Cerateriatishin demen Sogithicia lancedatad	stlands
			-11 680 707				11110 2007 2007		25		535 390		798 200				
	11.00 1974 196	_	3		1446 1822 1844		34 34 15 M		1000 1000 1000		19) 33) 300		254 2002 2002				
		-	98		: (\$) -7,24		133	_									
_			36% 5-9				388 388 388		312.1 330.7		. j/s . y						
							\$15 \$000 \$000		4.90								
1		_									* .						

Bora_MAR_1 Florida Wetland Condition Index, macrophyte field data sheets, page 4 *NOTE: field codes are different than reported codes, Bora_MAR_1 = DEBORA

75-80	70-75	65-70	80-85	55-60	50-55	45-50	40.45	35.40	30-35	25-30	20-25	15.20	10.16	5-10	05m	Species	Bios Site: Jessis Joseph DEBORA Date: July 14, 05
-				L			100						383 225		V	Serenon sepens	선호 -
						L			ed		68A 62S				2	Augelaus mebnen	X .
													100		V	Cuphen coethauguseusis	
											1				1	Haydrocotyle Co.	N 22
	77.0		E S		湖沿				盟		878		V	N	1	Bacapa tardiniana	&
	100 100 100 100 100 100 100 100 100 100	_	200 2000	_			180			L			3169 804		1	Milania seardars	Nusok
_	100 100 100 100 100 100 100 100 100 100					_									٧	Ludwigh pepens?	vey Fig
					Ý,8	_								V	1	Diodia purginiaria	d Dat
	Š				100	-			(Single Vent				1	1	V	Polygonin practicion	hydrop pero of S
	5250 1800 128					,	500				13		32 53		Ý	Become moneri	et - Tr Trans
	20		40	_	1894. 1877				X,	Ą.	34		30 39		Y	Pontedera cordata	ansed sect D
			4				V	V	1	V	V	√	1	1	V	Eleschmit cellulusa	s, Veg irection
					3%									V	/	teersm hexandra.	jetatio an: (E
_									X.				\$		1	Propromain polyates	1 Pres
				L			V	√.	1	V	V	V	V	Ų:		Ceratorialist 7 demen	ence.
-					30.7	-					V			-	- W.) 2005	septachlow? (mk	F 935
	12.1	_	400		34 <u>.</u>		V	V	\checkmark	V						Significant proceeded	PERTOC STOCK
-											30						for We
-			.85 .88		1874		1000										etlands
			-91 088 394				11160 2252 2300				505 200		(VA) 1200			Bacapa cardinana Mikania seardus Ludanga pepers? Diodia jurginiaria Polyganum punatdom Bacapa moneri Pontadera cordata Elouchuri cellalusa Leers na hexandra Practica palvides Cerataria lain ? demen Leptachloun? Mika Singiblicia Jancestafial	
	1000 1974 196						\$# :g.v		0.000 0.000 0.000		13) 33) 33)		200 2002				
-		-	1868		: \$7 7.24		100	_		·				_			
4		_	36% 5-3				348 348 348		2001 2007		. j/k . y		×			·	
1							\$15 \$000 \$000		1.00			_			j		
1											* .						

Bora_MAR_1 Florida Wetland Condition Index, macrophyte field data sheets, page 5 *NOTE: field codes are different than reported codes, Bora_MAR_1 = DEBORA

Hole in Const - Dade Deboro
Cyperus haspaps = Rhynchospora sp. ondotoshat Leplochlon dubia Cudurgia alara Borhama profiberation Starph Alexa Budnesa (1000)
Grass - sacoologis Voland Cudwigia Grahala Pilosa 5013 Bark 102 Hole in the cornel syphymich troop (elevolians sp. (1 Aur.)

Sagirlaina graminae 2 Rhy. Microcephela Rhynch, microcarpa (2 of them) *3. Ryn wrightiann Eleochurs geniculatur orkurs MRhym of ? Mosto replach Xyris elliotrie (wier) xyiris Jupien (bin) (Kristell . The Stand

Bora_MAR_1 Florida Wetland Condition Index, macroinvertebrate list

List of macroinvertebrates identified to the genus taxonomic level Bora_MAR_1 = DEBORA = WTLNDSTORET171

Ablabesmyia

Berosus

Bratislavia

Caenis

Chironomus

Cladotanytarsus

Corixidae

Dasyhelea

Dero

Enchytraeidae

Haemonais

Hyalella

Larsia

Palpomyia/bezzia

grp.

Parachironomus

Parakiefferiella

Polypedilum

Pristina

Tanypus

Tanytarsus

Tyrrellia

Bora_MAR_2 Uniform Mitigation Assessment Method, page 1 PART I - Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name	Application Number			Assessment Area Name or Number		
Boran Ranch Mitigation Bank		NA			BORA_MAR_2	
FLUCCs code	Further classific	ation (optional)		Impac	t or Mitigation Site?	Assessment Area Size
SWFWMD 2000 - 6410 Freshwater Marshes				Mitiga	ation Bank	21 ha (52 ac)
Basin/Watershed Name/Number	Affected Waterbody (Cl	ass)	Special Classificati	on (i.e.C	DFW, AP, other local/state/federal	designation of importance)
HUC - Peace River 03100101	Class III		none			
Geographic relationship to and hydro	ologic connection with	n wetlands, other su	ırface water, uplar	nds		
WAA is a large basin marsh which h wetland has been restored from pas						tures. This area of
Assessment area description WAA is a large basin marsh elongat bank. Approximately one-fourth of t marsh has been receiving channeliz inflows of water.	he marsh occurs off-s	site and is surround	led by cattle land ι	ise ac	tivities through an adjac	ent landowner. This
Significant nearby features			Uniqueness (conside	ering the	e relative rarity in relation to the	ne regional landscape.)
Phase II of the Boran Ranch Mitigati hydric flatwoods and is immediately RV Griffin Resv (GDC) state lands to	Much of the surrounding landscape is in pasture and row crops (as this area had been until restoration work was done). The housing demands are increasing in this area, and much of the agricultural lands are expected to become urban lands, leaving little room for preservation and protected lands.					
Functions			Mitigation for prev	vious p	permit/other historic use	
Important breeding and foraging hat and nutrient cycling.	pitat. Flood storage, a	aquifer recharge,	Support area had been drained. This marsh had been receiving channelized water inflows from other marsh wetlands.			
Anticipated Wildlife Utilization Based that are representative of the assess be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Mole salamander, tiger salamander, frog, pinewoods tree frog, barking fr narrow mouth toad, eastern spade fobobcat	og, squirrel frog, sout	hern chorus frog,	Mycteria americana (wood stork - E), Aramus guarauna (limpkin - SSC), Egretta thula (snowy egret - SSC), Egretta caerulea (little blue heron - SSC), Alligator mississippiensis (alligator - SSC), Grus canadensis (sandhill crane - T), Eudocimus alba (white lbis - SSC)			
Observed Evidence of Wildlife Utiliz	ation (List species dir	ectly observed, or o	ther signs such as	s track	s, droppings, casings, r	nests, etc.):
woodpecker, cormorant, black swallowtail butterfly, grasshoppers, egg sacks on vegetation (unidentified), dragonflies, damselflies, red winged blackbirds, great egret, fly by of Florida mottled duck, cattle egret, meadowlark calling nearby, cricket frogs calling, small fish in water. Wading birds, fish, and habitat structure for small mammals were observed. In SW a Salix caroliniana (Carolina willow) head creates a bird rookery.						
Additional relevant factors:						
FNAI Bird Aggregation Areas - Bird	t with 5-6 Focal Sp	oecies	Overlap - with 1 mile bo	oundary.		
Assessment conducted by:			Assessment date	(s):		
Erica Hernandez, Kelly Chinners Reiss						14-Jul-05

$Bora_MAR_2\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 2$

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Number	er
Boran Ranch Mit	NA	BORA_MAR_2				
Impact or Mitigation		Assessment conducted by:		Assessment date:		
Mitigation	Bank	Erica Hernandez, Kelly Chini	ners Reiss		7/14/2005	
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Prese	nt (0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than	Minimal le	evel of support of /surface water unctions	Condition is ins provide wetlan water fund	ufficient to d/surface
.500(6)(a) Location and Landscape Support w/o pres or current with	there is part of this wetland the are no apparent barriers for withe mitigation bank with rest further away (off the bank is Some exotics species were wildlife by providing water,	ere is some agriculture (row croat does not belong to the mitiwildlife. The W edge is suppor ored lands. The N and E haves agricultural land uses). Most found in the wetland and adjaction food, and cover. This wetland is a buffer/filter for agricultural composition in the area do	gation bank rted by cont e nice habita wetland de cent upland d is not limit waters runn	, this area is approint of the control of the contr	eximately 300 ft was the S edge is surport less ideal haboure probably well sinimal. Provides a discharges. The	ride). There rrounded by itat support supported. support for e wetland
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	Sesbania sp. No abnormal moisture appeared appropr indicator of nutrient poor wa A few tolerant species wer (Columbian waxweed-exot	ar appropriate. Obligate plant evidence of vegetation wrack-iate. <i>Utricularia</i> sp. (bladderw ter quality. Wading birds, fish, e found, including <i>Diodia virgir</i> tic), but these were minor compropriate. Some epiphytic alg	s, soil erosid ort) with a y , and habita niana (Virgin ponents of t	on, or soil depositing the structure for smania buttonweed) are the vegetation con	on. Soil was inun found flowering, p all mammals were and <i>Cuphea cartha</i> nmunity. Water c	dated, soil erhaps an observed. genensis
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	cative of cattle impacts. Speci ligate wetland species present No evidence of disease, chlo intenance. Topographic relief ght berm, no change in vegeta Epiphytic algae present, not in	Regeneral rotic leaves is appropriation though	ition appears aded , or spindly growth ate, though center slight change in v	uate, based on the control of the co	ne size of nagement act in very	
Score = sum of above scores/30 (if	If preservation as mitig	ation		For impact assess	sment areas	1
uplands, divide by 20)	Preservation adjustmen					1
current pr w/o pres with 0.93	Adjusted mitigation del		FL =	delta x acres =		
	J					
	If mitigation		F	or mitigation asse	ssment areas	1
Delta = [with-current]	Time lag (t-factor) =		<u> </u>	or mugation asse	oomon arous	-
Risk factor =		RFG = delta/(t-factor x risk) =		rick) =	I	

Bora_MAR_2 Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: BORA_MAR_2, Boran Ranch Mitigation Bank

Date: 7/14/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Large basin herbaceous wetland. WAA is elongated along the N/S line. Hydrologically restored. Exit ditch was plugged with passive control structure. A large area of this wetland has been reclaimed from pasture (had been severely drained). All species are recruits, no planting were done.

Wetland Assessment Area: 21 ha (52 ac)

FLUCCS Code/Description: SWFWMD 2000 - 6410 Freshwater Marshes

3.0	Wildlife Utilization (WU)				
NA	Wetland Cano	Wetland Canopy (O/S)			
2.5	Wetland Ground Cover (GC)				
2.5	Habitat Support/Buffer				
3.0	Field Hydrology (HYD)				
2.9	WQ Input & T	reatment (WQ)			
13.9	SUM				
5	Count				
0.93	WRAP				

Bora_MAR_2 Wetland Rapid Assessment Procedure, page 2

3.0 Wildlife Utilization (WU)

Abundant cover within wetland. Matted vegetation nests of small mammals found (?rice rats). Bird rookery on *Salix caroliniana* (Carolina willow) head to the south. Evidence of woodpeckers, cormorants, black swallowtail butterflies, grasshoppers, egg sacks on vegetation, dragonflies, red winged blackbirds, great egrets, meadowlarks on nearby fence post, cattle egrets, Florida mottled duck fly-by, cricket frog calls, small fish in the water.

NA Wetland Canopy (O/S)

Some Salix caroliniana (Carolina willow) and Cephalanthus occidentalis (buttonbush) but mostly less than 1-2 meters tall and cover less than 20% of the area. No canopy score.

2.5 Wetland Ground Cover (GC)

Less than 10% nuisance species, some exotic species. Exotic grass growing in the water estimated less than 5% cover. *Cuphea carthagenensis* (Columbian waxweed), *Diodia virginiana* (Virginia buttonweed), *Paspalum urvillei* (vaseygrass), and a few other listed tolerant species according to FWCI for marshes. Priori to 1996 had cattle actively grazing on drained marsh turned pasture.

2.5 Habitat Support/Buffer

Offsite wetland connections. This wetland is larger than the property boundary. Buffer >300 ft on all sides. Some exotic pasture grass in adjacent uplands. Connection to wildlife corridors.

		Total =	2.5
exotics	2.5	1	2.5
nat. undev. Some			
Buffer Type	(Score) x	(% of Area)	= Sub Total

3.0 Field Hydrology (HYD)

Algae growing in vegetation but not excessive overgrowth. *Utricularia* sp. (bladderwort) in flower (yellow). Plants healthy. Not adjacent to negative impacts. Surface also has some *Azolla caroliniana* (Carolina mosquito fern) covering.

2.9 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total
off site wetland	2.5	0.17	0.4
pine flatwoods	3.0	0.67	2.0
restored uplands	2.5	0.17	0.4
		LU Total =	2.8

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
natural			
undeveloped.	3.0	1.0	3.0
			0.0
			0.0
		PT Total =	3.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Appendix B-6. CGW Mitigation Bank

Figure B-6.1. Landscape location of CGW Mitigation Bank (green line). Boundary of the wetland assessment area in yellow is CGW_MAN, it includes 19 ha of saltwater marsh and mangroves.

Figure B-6.2. Site photo of CGW Mitigation Bank naturally recruited mangroves and high marsh vegetation in the foreground looking northwest across assessment CGW_MAN.

$CGW_MAN\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name	Application Number			Assessment Area Name or Number		
CGW Mitigation Bank			NA		CGW_MAN	
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size
612 Mangrove Swamps & 642 Saltwater Marshes	Small parce	ls are 6420 Saltwa	ater Marshes		Mitigation Bank	19 ha
Basin/Watershed Name/Number Affec Central Indian River Lagoon SJRWMD	ss) III	Special Classificati	on (i.e.C	DFW, AP, other local/state/federa	I designation of importance)	
Geographic relationship to and hydrologi	ic connection with	wetlands, other su	ırface water, uplar	nds		
Bord	lers Indian River L	agoon on east wh	ich is an Outstand	ing Flo	orida Water	
Assessment area description						
Located in Indian River County. Border overgrown patches of vegetation, area multi-family residential. App	to northwest appe	ears to be slated for	or development. L	and to	west has been newly o	developed high density
Significant nearby features			Uniqueness (collandscape.)	nsideri	ing the relative rarity in	relation to the regional
Adjacent on east to the Indian River Lagoon, an OFW. Across the Inc River Lagoon is the Inidan River-Malabar to Vero Beach Aquatic Reso			Noted as FNAI Bird Rookery; FNAI Manatee Aggregation Site; FWCC Biodiversity Hotspots with 7+ focal species overlap; FWCC Priority Wetlands listed 1-3 species; FWCC Strategic Habitat/Priority Habitat			
Functions			Mitigation for prev	vious p	permit/other historic use	<u>)</u>
trap and cycle organic materials with detrital export to estuaries; provide important food chain resources with high rate of primary production; provide habitat and nursery grounds for many species; offshore protection by buffering wind and wave action including sediment stabilization; provides habitat for many transient and resident fish and wildlife species.			previously ditched and drained for mosquito control purposes.			
Anticipated Wildlife Utilization Based on that are representative of the assessment be found)		•		T, SSC	y Listed Species (List s C), type of use, and inte	
Odocileus virginianus (white-tailed de Peromyscus gossypinus (cotton mouse palustris (marsh rabbit), Callinectes sa (great-blue heron), Butorides striatus (fiddler crabs), Sesarma cinereum (n abundant in), Procyon lotor (ra apidus (blue crab), (green-backed he narsh crab), arach	acoon), Sylvilagus Ardea herodias eron), Uca spp.	limited to Volu	usia, B olue he	ata (Atlantic salt marsh trevard, and Indian Rive eron) ^{SSC} , Egretta tricolo etta thula (snowy egret	er Counties. Egretta r (tricolored heron) ^{SSC} ,
Observed Evidence of Wildlife Utilization	(List species dire	ctly observed, or o	other signs such as	s track	s, droppings, casings,	nests, etc.):
Pandion haliaetus (osprey) ^{SSC} , Procyon lotor (racoon), Uca spp. (fiddler crabs), Callinectes sapidus (blue crab), Ardea herodia (great blue heron), Mycteria americana (woodstork) ^E , Eudocimus albus (white ibis) ^{SSC} , Egretta tricolor (tricolored heron) ^{SSC}						
Additional relevant factors:						
We assessed the central 19 ha area or of forest, as small patches (<10m wide) of regeneration by the mangroves, includin (black mangrove).	mangrove forests	occur throughout	the enhanced salt	marsh	areas. However, there	e is strong evidence of
Assessment conducted by:			Assessment date	e(s):		
Kelly Chinners Reiss and Erica Hernandez						23-Aug-05

CGW_MAN Uniform Mitigation Assessment Method, page 2
PART II – Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Numbei	r
CGW Mitigation	NA	CGW_MAN				
Impact or Mitigation		Assessment conducted by: Kelly Chinners Reiss & Erica Hernandez		Assessment date: z 8/23/2005		
Mitigation Bank A	ssessment					
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present	· (0)
Scoring Guidance The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than	Minimal le wetland	evel of support of /surface water unctions	Condition is insuf provide wetland water functi	fficient to /surface
.500(6)(a) Location and Landscape Support	(cattails), and Cassarina spp sides of property (N,W,S). H assessment area. Habitats of gradient into upland habitat of designed to allow natural flust berms, some constructed or berms and canals. Much of p	sment area to the including S a. (Australian pine). Bordered labitats provide support for wil butside assessment area are f an any boundary). Wildlife acc shing for water and species ex enhanced breaches for excha plant community composition b. Land uses outside the asse	to E by India dlife within value of the season partially schange to the single, however, outside the season indianal season in the season in t	an River Lagoon, a vetland, but lack o provide support for limited by distance E. Some flow rer to flow exchangassessment area is	an OFW. Canals a of habitats outside for some species (oe and barriers to N restrictions to E beg to N or S becaus is composed of inv	no N,S,W - cause of se of
W/O Dres Or	, , ,	onnected habitats derive som- nuation), and could suffer due			,	quality
	water quality and quantity alt impacts would perhaps be m	terations, however this is a sm inimal.	nall tract of la	and considering th	ne size of the IRL, s	30
.500(6)(b)Water Environment (n/a for uplands)	adventitious rooting - were dinot been regraded for restorahigher in elevation and drier to older patches of mangrove/sa areas were not. Soils drier thof appropriate species, but zo dead and dying patches of Sa	t - crayfish borrow found, water stinct but not overly abundant tation. Water levels appear low than expected considering sea alt marsh were saturated or in the an expected, though soil oxide contain did not mimic that of a calicornia bigelovii (glasswort), gic requirements were found,	and mostly wer than app asonal patte inundated lik lation and su typical salt an estimate	visible in the lowed ropriate, as the resums, antecedent racely from tidal exclubsidence was mirmarsh. Groundcoad 50% of the population was the result of the population of the population was the result of the population of the population was the result of the population of the population was the result of the population of the populat	or elevation areas the stored marsh area ainfall, and tidal cychange, but restored nimal. Vegetation over vegetation was dead.	hat had as are cles. The d marsh consisted d some Some
current with	of function for water environn	rater, but could be considered nnet included the distinct char tches, changes in the water e	nge in elevat	ion when walking	from the filled/rest	ored
1. Vegetation and/or 2. Benthic Community w/o pres or current with	natural recruitment and norm class distribution in mangrow (white mangrove), and <i>Rhizo</i> , canals. Coarse woody debris Plant condition is typically go mortality. Land management features (ditches to N,S,W of canal, berns with some breach	propriate species. Invasive extend regeneration of mangrove see patches, including Avicennia phora mangle (red mangrove see seems appropriate, patches od, however the species Salic to practices generally appropriate for property borders, N/S ditch the thes to E) that alter natural hyted steep sloped ponds found evegetated.	species thro a germinans), typically ir of excess d cornia bigelo ate with cont hrough mats drologic flow	ughout the marsh. (black mangrove; older patches off ebris, perhaps frow vii (glasswort) had rol of exotic specich connection to prow and exchange.	Typical age and only a construction of the filled/restorm exotic species of an estimated 50% es. Some water coords, and E/W/ by Topographic featur	size cemosa ed control. % control cpass res
Score = sum of above scores/30 (if uplands, divide by 20) current or w/o pres with 0.63	If preservation as mitigation adjustment Adjusted mitigation delta	nt factor =		For impact assess delta x acres =	sment areas	
Dolto = [with over-en]	If mitigation		F	or mitigation asse	essment areas	
Delta = [with-current]	Time lag (t-factor) = Risk factor =		RFG	= delta/(t-factor x	risk) =	
						l

CGW_MAN Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigaton Bank Study - K.C.Reiss. 5/2005

Project Name: CGW_MAN, CGW mitigation bank

Date: 8/23/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: salt marsh with mangrove patches

marsh created from restoring the elevation of old mosquito control ditches running E/W from IRL

patches of mangrove include areas not recently graded

Wetland Size: assessment area approximately 19 ha of bank

FLUCCS Code/Description: 1995 SJRWMD - 612 Mangrove Swamp and 642 Saltwater Marshes

2.0	Wildlife Utilization (WU)				
3.0	Wetland Canopy (O/S)				
3.0	Wetland Ground Cover (GC)				
1.5	Habitat Support/Buffer				
2.0	Field Hydrology (HYD)				
1.5	WQ Input & T	WQ Input & Treatment (WQ)			
13.0	SUM				
6	Count				
2.2	WRAP				

CGW_MAN Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Crayfish chimney hard and cemented near *Sabal palmetto* (cabbage palm) tree island. *Pandion haliateus* (osprey)^{SSC} and wading birds (*Mycteria americana*, woodstork^E; *Eudocimus albus*, white ibis^{SSC}; *Egretta tricolor*, tricolored heron^{SSC}) overhead. *Procyon lotor* (racoon) tracks and one observed foraging, game trails, *Uca* spp. (fiddler crabs), many crab holes, many other unidentified animal tracks, *Callinectes sapidus* (blue crab) in man-made pond, ?*Ceryle alcyon* (kingfisher) calls and observed, frogs jumping into pools, eyewitness said alligators and snakes observed from W developed parcel, tadpoles in patches of water and algae, abundant insects in water holes. Lack of abundant adjacent upland food sources, but perhaps adequate support for the specific species needs for those found in the bank. Evidence of human disturbance - remaining E/W oriented canal separating bank, large dirt road just off the property to the west separating the bank from high density multi-family residential apartment units.

3.0 Wetland Canopy (O/S)

patches of small mixed species of mangroves - some patches <1m tall, other patches with trees to 7m tall. Includes *Avicennia germinans* (black mangrove), *Laguncularia racemosa* (white mangrove), and *Rhizophora mangle* (red mangrove). Strong evidence of natural recruitment and regeneration of mangroves. <10% nuisance and exotic speices, much less than that. Some snags and dens.

3.0 Wetland Ground Cover (GC)

Mixed species composition, including *Batis maritima* (saltwort), *Salicornia virginica* (glasswort), *Salicornia bigelovii* (glasswort), *Distichilis spicata* (salt grass), *Borrichia frutescens* (sea oxeye), small *Eleocharis* sp. (spikerush), *Pluchea odorata* (salt marsh fleabane), other unidentified salt marsh adapted species. Small mangroves mixed in regenerating throughout marsh species. Algae covering the surface of the drying down pools. <10% nuisance species, some exotics occuring near upland tree islands like *Schinus terebinthifolius* (Brazilian pepper) or bisecting canals like *Typha* sp. (cattail). Disturbance to area with linear ditch features and pools with algal growth covering water, but not affecting marsh groundcover throughout.

1.5 Habitat Support/Buffer

To the E is the IRL. To the W is newly developed high density multi-family residential complex. Exotic or nuisance species in the area include *Typha* sp. (cattail), *Schinus terebinthifolius* (Brazilian pepper), *Casuarina* sp. (Australian pine). Buffer 30-300 ft wide but dominated by non-desirable species, includes many exotics, invasives, etc. Tidal connection to IRL to E side, land to E is >300 ft away.

Buffer Type	(Score) x	(% of Area)	= Sub Total
disturbed land	1.5	0.67	1.0
high density res.	0.5	0.17	0.1
IRL	2.5	0.17	0.4
		Total =	1.5

2.0 Field Hydrology (HYD)

Some plants brown and dying, others yellow, others healthy. All E/W ditches not restored - perhaps for mosquito control or stormwater from urban land uses. Ditch crosses bank N/S and connects to man made pools with steep slopes. Berms breached in small areas to reconnect the bank to the IRL tidal flushing. Hydrology adequate to maintain viable wetland with possible external influences.

1.5 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

ETHOUSE CITEOURT (EC)								
Land Use			= Sub					
Category	(Score) x	(% of Area)	Total					
disturbed lands	2.5	0.67	1.7					
multi-fam res.	1.0	0.17	0.2					
undeveloped	3.0	0.17	0.5					
		LU Total =	2.3					

TRETTERITIES		()	
Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
no treatment	0.0	0.67	0.0
veg. strips/buffer	1.0	0.17	0.2
undeveloped	3.0	0.17	0.5
		PT Total =	0.7

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Appendix B-7. Colbert-Cameron Mitigation Bank

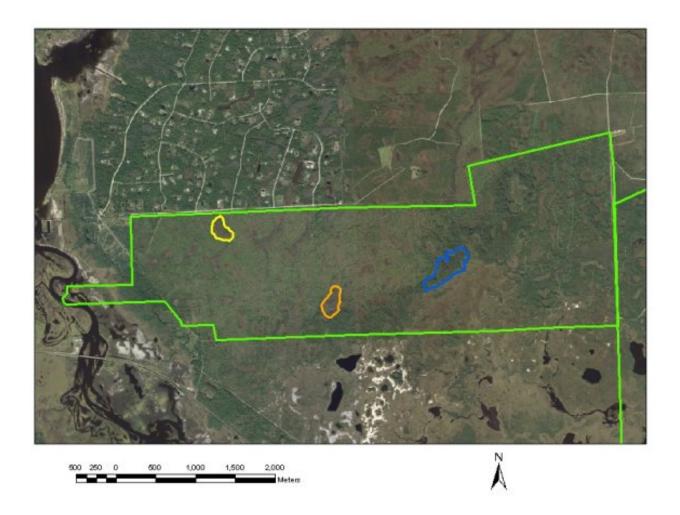


Figure B-7.1. Landscape location of Colbert-Cameron Mitigation Bank (green line). Boundaries of the wetland assessment areas for CoCa_FOR in blue, CoCa_CYP_1 in yellow, CoCa_CYP_2 in orange are shown.

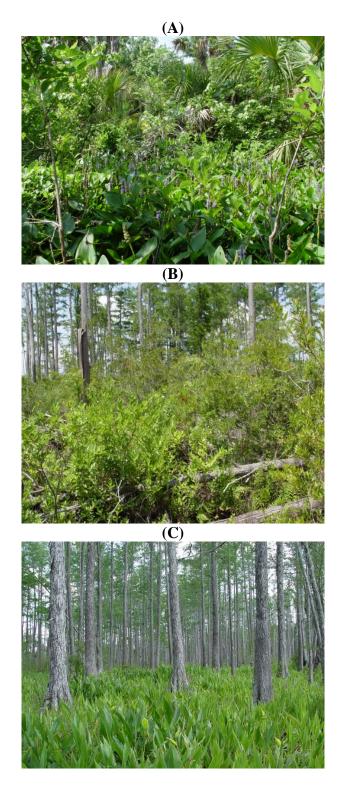


Figure B-7.2. Site photos of A) an opening in the canopy allows for flowering pickerel weed (*Pontederia cordata*) in the ground cover of CoCa_FOR B) shrubby wax myrtle (*Myrica cerifera*) and button bush (*Cephalanthus occidentalis*) dominate the open areas of a cypress dome CoCa_CYP_1 impacted by wildfire and hurricanes C) bandana-of-the-Everglades (*Canna flaccida*) dominates the under story of cypress swamp CoCa_CYP_2

CoCa_FOR Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name Application Nu			ber Assessment Area Name or Number			or Number
Colbert-Cameron Mitigation Bank		NA		CoCa	_FOR	
FLUCCs code	Further classifica	tion (optional)		Impact or Mit	tigation Site?	Assessment Area Size
6170 mixed wetland hardwoods	Malabar hydric so	oil	Mitigation bank ~ 33 acres (~13 h			
Basin/Watershed Name/Number Af	fected Waterbody (Clas	SS)	Special Classification	on (i.e.OFW, AP	o, other local/state/federal	designation of importance)
HUC 32 St .John's River, Upper NA			FWCC Hotspot a	nd Strategic	: Habitat Conserva	ation Area
Geographic relationship to and hydrol	ogic connection with	wetlands, other su	ırface water, uplar	nds		
Wetland drains south/southwest into extensive marsh and towards Cabbage Slough which sheet flows southwester its confluence with Econlockhatchee River.				ithwesterly into the	e St. John's River near	
Assessment area description						
Large mixed forested wetland (linear herbaceous and shrubby marshes. Edamage to the canopy and structure of	xtensive fire damage	and signs of hurr	icane and tornado			
Significant nearby features			Uniqueness (collandscape.) (from	-	-	elation to the regional
Farmton Mitigation Bank to east and northeast. Double Eagle Ranch to the north. Lake Harvey housing development to the north. Lake Harvey to the west. SJRWMD property to the south (Seminole Ranch and South Lake Harney Conservation Area).			Natural communities on bank have experienced minimal degradation compared to other similarly-positioned lands within the St. Johns River valley region. Rare community type inland non-tidal salt marsh.			
Functions			Mitigation for prev	vious permit	other historic use	
Flora and fauna habitat and diversity, flood flow alteration, nutrient removal/transformation			Historical silviculture practices with selective logging in more recent times. Small cattle operation with winter burning on the property for management. Some ditches were installed historically. Cattle removed, but reserve right to selectively harvest timber on 90 year rotation with no removal in wetlands.			
Anticipated Wildlife Utilization Based that are representative of the assess be found)		•		T, SSC), typ	ed Species (List spee of use, and inter	
Warblers, green anole, cottonmouth, marbled salamander, mole salamander, three-lined salamander, slimy salamander, five-lined skink, ringneck snake, gray rat snake, eastern king snake, wood duck, red-tailed hawk, turkey, yellow-billed cuckoo, screech-owl, great-horned owl, ruby-throated hummingbird, acadian flycatcher, pileated woodpecker, hermit thrush, cedar waxwing, yellow-throated warbler, opossum, gray squirrel, flying squirrel, raccoon, mink gray fox, bobcat, and white-tailed deer.			Gopher tortoise (<i>Gopherus polyphemus</i>) ^T , American alligator (<i>Alligator mississippiensis</i>) ^T , Wading birds ^{SSC} , bald eagle (<i>Haliaeetus leucocephalus</i>) ^T , Florida sandhill crane (<i>Grus canadensis pratensis</i>) ^T , woodstork (<i>Mycteria americana</i>) ^E , Florida black bear (<i>Ursus americanus floridanus</i>) ^T			
Observed Evidence of Wildlife Utilizat	ion (List species dire	ctly observed, or o	other signs such as	s tracks, dro	ppings, casings, r	nests, etc.):
Bear tracks, insects eating nectar on	flowers, sapsucker ho	oles in trees				
Additional relevant factors:				-		
None						
Assessment conducted by:			Assessment date	(s):		
Erica Hernandez			5-Jun-06			

CoCa_FOR Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

e of the bank there are land reductive to the east and not allity contiguous habitat in the SJRWMD land to the sout thifolius). Caesar weed (leed by a SJRWMD conservome wildlife. However the rs. This area of the St. Johons or barriers. Landuses didering weather and season	Minimal (4) Minimal level of suppose wetland/surface was functions ct and represent the full dis in conservation to the ortheast. Although son the landscape to suppose the of the bank appears Urena lobata) was also vation area. There are a presence of bears on an's River watershed do in the silviculture area conal variation. Water leads and variation.	Not Present (0) Ort of ter
Moderate(7) Condition is less than ptimal, but sufficient to maintain most wetland/surface waterfunctions assessment area are intage of the bank there are landity contiguous habitat in the SJRWMD land to the south thiffolius). Caesar weed (it ed by a SJRWMD conservome wildlife. However the rs. This area of the St. Johns or barriers. Landuses are consistent. Although the	Minimal (4) Minimal level of suppose wetland/surface was functions ct and represent the full dis in conservation to the ortheast. Although some he landscape to suppose the of the bank appears. Urena lobata) was also vation area. There are a presence of bears on an's River watershed dis in the silviculture area conal variation. Water leads to the conservation of the silviculture area conal variation.	Not Present (0) Condition is insufficient to provide wetland/surface water functions If range of habitats needed to fulfile south and west; some land in the lands in the landscape are not Florida black bear which have to be a continuous source of noted in the landscape. Highwan on hydrologic impediments, but the bank seems to indicate it is present the south of the bank are not optimely landscape. We have to be a continuous source of south of the bank seems to indicate it is present to seem heavily developed soutside the bank are not optimely landscape. We will be an
Moderate(7) Condition is less than ptimal, but sufficient to maintain most wetland/surface waterfunctions assessment area are intage of the bank there are land recipitation in the contiguous habitat in the south of the south	Minimal (4) Minimal level of suppose wetland/surface was functions ct and represent the full dis in conservation to the ortheast. Although son the landscape to suppose the of the bank appears Urena lobata) was also vation area. There are a presence of bears on an's River watershed do in the silviculture area conal variation. Water leads and variation.	Condition is insufficient to provide wetland/surface water functions Il range of habitats needed to full le south and west; some land in ne lands in the landscape are referred black bear which have to be a continuous source of the noted in the landscape. Highwino hydrologic impediments, but the bank seems to indicate it is pes not seem heavily developed is outside the bank are not optime evel indicators such as moss tit was historically before the
Condition is less than ptimal, but sufficient to maintain most wetland/surface waterfunctions assessment area are intage of the bank there are landiculture to the east and no sillet y contiguous habitat in the SJRWMD land to the sour thifolius). Caesar weed (leed by a SJRWMD conservome wildlife. However the res. This area of the St. Johons or barriers. Landuses are consistent. Although the	Minimal level of supp- wetland/surface wa functions ct and represent the ful ds in conservation to the ortheast. Although son the landscape to support the landscape to support the of the bank appears Urena lobata) was also vation area. There are expresence of bears on an's River watershed do in the silviculture area	Condition is insufficient to provide wetland/surface water functions Il range of habitats needed to full le south and west; some land in ne lands in the landscape are referred black bear which have to be a continuous source of the noted in the landscape. Highwino hydrologic impediments, but the bank seems to indicate it is pes not seem heavily developed is outside the bank are not optime evel indicators such as moss tit was historically before the
Condition is less than ptimal, but sufficient to maintain most wetland/surface waterfunctions assessment area are intage of the bank there are landiculture to the east and no sillet y contiguous habitat in the SJRWMD land to the sour thifolius). Caesar weed (leed by a SJRWMD conservome wildlife. However the res. This area of the St. Johons or barriers. Landuses are consistent. Although the	Minimal level of supp- wetland/surface wa functions ct and represent the ful ds in conservation to the ortheast. Although son the landscape to support the landscape to support the of the bank appears Urena lobata) was also vation area. There are expresence of bears on an's River watershed do in the silviculture area	Condition is insufficient to provide wetland/surface water functions Il range of habitats needed to full le south and west; some land in ne lands in the landscape are referred black bear which have to be a continuous source of the noted in the landscape. Highwino hydrologic impediments, but the bank seems to indicate it is pes not seem heavily developed is outside the bank are not optime evel indicators such as moss tit was historically before the
e of the bank there are land reductive to the east and not allity contiguous habitat in third land to the sout third land third land the sout third land land third land	ds in conservation to the ortheast. Although son the landscape to support the of the bank appears. Urena lobata) was also vation area. There are a presence of bears on an's River watershed do in the silviculture area onal variation. Water le	the south and west; some land in the lands in the landscape are refelorida black bear which have to be a continuous source of noted in the landscape. Highwan high highest beank seems to indicate it is been to seem heavily developed so outside the bank are not optime the landscape. Beautiful the bank seems to indicate it is been to seem heavily developed so outside the bank are not optime the landscape.
are consistent. Although th		t it was historically before the
ivity opening up the forest luna species with specific dicative of water quality de	canopy and increasing hydrologic requirement egradation. No standin	g light penetration. There is no ts were not noted during site visi ng water at time of site visit. The
al zonation for plant specie ce of natural recruitment a ees and down woody debro bably from tornado activit over. Early successional s been damaged look healt	es may be disrupted fro nd normal regeneration ris, numerous cavities a y. There is extensive of species are in those are hy. Good topographic	om disturbance to canopy and in of canopy, mid-story, and and hummocks, debris is patchy damage to the canopy and it will eas. Ground cover looks robust
ı,	For impact	assessment areas
	1 1	
,,,,	FL = delta x acre	es =
	-	
	For mitigation	n assessment areas
	RFG = delta/(t-fa	actor x risk) =
	dicative of water quality dicould contribute to change opriate and desirable. The al zonation for plant species of natural recruitment ages and down woody debitoably from tornado activitiver. Early successional speen damaged look healtystem just needs time to reconstructions.	For mitigatio

CoCa_FOR Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: Colbert-Cameron Mitigation Bank, assessment area CoCa_FOR

Date: 5-Jun-06

Evaluator(s): Erica Hernandez

Wetland Type/Description: Large mixed forested wetland (linear on the landscape) grades into oak/palm hammock

and then flatwoods to the north. Some areas open up into herbaceous and shrubby marshes. Extensive fire damage and signs

of hurricane and tornadoes have caused temporary but significant damage to the canopy and structure of this wetland. Expansive marsh

to the south.

Wetland Size: ~ 33 acres (~13 ha)

FLUCCS Code/Description: 6170 mixed wetland hardwoods

2.5	Wildlife Utilization (WU)			
2.0	Wetland Cano	py (O/S)		
2.5	Wetland Ground Cover (GC)			
2.5	Habitat Support/Buffer			
3.0	Field Hydrology (HYD)			
3.0	WQ Input & Treatment (WQ)			
15.5	SUM			
6	Count			
0.86	WRAP			

CoCa_FOR Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Evidence of utilization by Florida black bear which are generalist species but require lots of habitat support. No standing water to look for fish or aquatic macroinvertebrates. There are many plants in flower and profuse amounts of flying insects eating nectar on these flowers. There is abundant upland support within the bank and in the watershed. Some of the immediately adjacent lands are being utilized for silviculture and have degraded value for wildlife. On the fringes of the assessment areas in the more upland hammock areas there may be some exotic grasses and there were a few Caesar weeds (*Urena lobata*) seen, which may have been remnants from when cattle grazed in the area. Otherwise there is no other apparent human disturbance. This area probably had some select harvesting of trees historically, but there were no obvious signs visible. There is abundant cover and habitat.

2.0 Wetland Canopy (O/S)

No exotic or invasive shrub or canopy species. Canopy is comprised of diverse uneven aged trees that would be expected in a hydric hammock or bottomland forest. Parts of the canopy have been heavily impacted, probably by tornadoes based on the chaotic nature of the direction trees have fallen in certain pockets. Strong evidence of natural recruitment of canopy trees. In some areas snags and woody debris are excessive due to natural disturbance. This hammock was probably impacted by fire the most on the south side, which may have opened up this side of the hammock and made it more vulnerable to hurricanes and tornadoes. Trees that are still living look very healthy. Turkeys are known to have roosted in this area. Where the trees grade into the marsh there was a transitional shrubby area where there has traditionally been a bird rookery. This area appears to have been impacted by the 1998 fires and it is unknown whether birds still nest in that

2.5 Wetland Ground Cover (GC)

Ground cover is very robust. Nice species diversity. Many plants in flower or fruit. There are some unidentified grasses that are not dominate but may have been introduced by cattle? Cattle were removed in 1998, when the property became a bank. Dense ground cover is probably benefiting from increased light penetration due to openness of parts of the canopy. Some early successional species present in the most open areas.

2.5 Habitat Support/Buffer

Buffers larger than 300 feet on all sides of this wetland system. Wetland is connected to wildlife corridors and is contiguous with offsite wetland systems. Natural ecotones are intact. This wetland supports Florida black bears, which require lots of contiguous habitat. Plants in the associated buffer are predominately desirable. Brazilian pepper (*Schinus terebinthifolius*) is present in the bank and is being treated as it is encountered. Some Caesar weed (*Urena lobata*) was seen in the upland portions of the hammock but is not dominant.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	2.5	0.25	0.63
South	2.5	0.25	0.63
East	2.5	0.25	0.63
West	2.5	0.25	0.63
		Total =	2.5

3.0 Field Hydrology (HID)

Very thin layer of duff over mucky soils that still retain a lot of moisture even though rainfall is below normal for the season. Obligate plant species present. Plants look healthy, dead trees are a result of wildfire and tornadoes. Hydrologic indicators including mucky soils, wetland vegetation, elevated moss collars, indicate that there is a natural hydroperiod. There does not appear to be any negative hydrologic impacts in the adjacent landscape. There are no signs of subsidence. The openness of areas of the canopy could contribute to changing the microhabitat that would exist in a more closed canopy. The hydrologic regime is adequate to maintain a viable wetland.

3.0 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
natural undeveloped	3.0	1.00	3.0
		LU Total =	3.0

D			
Pretreatment Category	(Score) x	(% of Area)	= Sub Total
natural undeveloped	3.0	1.00	3.0
		PT Total -	3.0

CoCa_CYP_1 Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name Application N			Application Number	nber Assessment Area Name or Number			or Number
Colbert-Cameron Mitigation Bank			NA			CoCa_CYP_1	
FLUCCs code		Further classification	tion (optional)		Impa	ct or Mitigation Site?	Assessment Area Size
6210 Cypress	SSURGO soils POMONA			Mitig	ation bank	12.75 ac (5.16 ha)	
Basin/Watershed Name/Number Affected Waterbody (Class)			ss)	Special Classificati	on (i.e.	OFW, AP, other local/state/federa	I designation of importance)
HUC 32 St .John's River, Upper NA				FWCC Hotspot a	nd St	rategic Habitat Conserv	ation Area
Geographic relationship to and hyd	rologi	c connection with	wetlands, other su	urface water, uplar	nds		
Cypress depression, drains south tresidential development. Previously	_		•	•			
Assessment area description							
Oblong cypress dominated foresterareas. Very open canopy, lots of lasite visit. Thick ground cover and s	rge wo	oody debris. This	area stays wet lor	nger than other we	tland	•	
Significant nearby features						ring the relative rarity in	relation to the regional
Farmton Mitigation Bank to east and northeast. Double Eagle Ranch to the north. Lake Harvey housing development north. Lake Harvey to the west. SJRWMD property to the south (Seminole Ranch and South Lake Harney Conservation Area).			Natural communities on bank have experienced minimal degradation compared to other similarly-positioned lands within the St. John's River valley region. Rare community type (inland non-tidal salt marsh) exists within the mitigation bank.				
Functions				Mitigation for pre	vious	permit/other historic use	9
Flora and fauna habitat and diversity, flood flow alteration, nutrient removal/transformation			Historical silvicultural practices with selective logging in more recent times. Small cattle operation with winter burning on the property for management. Some ditches were installed historically. Cattle removed but reserve right to select harvest timber on 90 year rotation with no removal in wetlands.				
Anticipated Wildlife Utilization Base that are representative of the asset be found)			•		T, SS	by Listed Species (List s C), type of use, and inte	
Flatwoods salamander, mole salan						erus polyphemus) ^T , Am	
southern cricket frog, pinewoods tr narrowmouth toad, snapping turtle,	_		•			•	bald eagle (Haliaeetus
cottonmouth, wood duck, swallow- woodpecker, great-crested flycatch				leucocephalus) ^T , Florida sandhill crane (<i>Grus canadensis pratensis</i>) ^T , woodstork (<i>Mycteria americana</i>) ^E , Florida black bear (<i>Ursus americanus floridanus</i>) ^T			
blackbird Observed Evidence of Wildlife Utili	zation	(List species direct	ctly observed, or o				nests. etc.):
Little grass frog, leopard frog. Song sparrow call coming from surround shells found.	g birds	s flitting around in s	shrubby vegetation	n. Towhee, blue g	ıray g	natcatcher, titmouse, co	ould hear Bachman's
Additional relevant factors:							
Although this wetland appears to h deviation in succession. There is to for soils and the canopy to recover	ery st	rong evidence of p	oond-cypress (<i>Tax</i>				• •
Assessment conducted by:				Assessment date	e(s):		
Erica Hernandez							5-Jun-06

CoCa_ CYP_1 Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Numbe	r
Colbert Cameron N	Mitigation Bank	NA NA			CoCa_	
Impact or Mitigation		Assessment conducted by:		Assessment date		_
Mitigation	bank	Erica Hernandez				2006
Scoring Guidance	Optimal (10) Moderate(7) Minimal (4)			Not Present (0)		
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions Minimal level of support of wetland/surface water functions		Condition is insufficient to provide wetland/s water functions		
.500(6)(a) Location and Landscape Support w/o pres or current with	the north by a low density res encountered. Surrounding p enough quality contiguous he requirement. Highway 46 is s downstream of the assessme assessment areas function.	sidential development. Some roperties are seed source for	exotic speci exotic speci- ort Florida b by a SJRWI impediment mal, primari	es are in the bank es. Although some black bear (<i>Ursus</i> MD conservation a t to some wildlife. ly silviculture to the	's landscape but a e lands in the land americanus florida area. There are no There are no down e north and east o	nstream impediments to the f the mitigation bank, but in
.500(6)(b)Water Environment (n/a for uplands) w/o pres or with	buttressed tree bases, loop r muck in patches, other areas sand substrate underneath. hydrologic conditions. There fire scars. Perhaps due to the take a long time for the wetla a bad wildfire year in the stat were a few frogs seen in the cattail (Typha spp.), but they indicators of water quality de;	oots, wetland plant species, or had exposed sand. It was no it is believed that this is a rest would be no reason for subsi e muck and duff being burned nd to build up organic soils ar e due to excessive drought. T wetland and some old crayfisl	onsistent was tuncommonult of the 199 dence in this in the wildfind duff. Fire here are no hishells and a result of r	ter stain lines, and to see pond-cyprise wildfires and no se landscape due to tres, this wetland on history is not indicators of atypi otter scat. There courtients released	d elevated lichen li ress (Taxodium as at a symptom of so be it being mostly in xidizes more easil cative of excessive cal hydrologic con are some patches and full sunlight a	tact. These knees also exhibited by at times of drought and it will e dryness at the site but a result of ditions or hydrologic stress. There of vailability from the wildfires and not
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current 7	community, but due to 1998 succession. The primary cat terebinthifolius) found in the ascendens) trees were grow were very large probably bec management practices, espewatershed may be disrupted no indicators of a shift in the	wildfire and recent 2004 hurric alyst for this alteration is the la wetland. There is strong evide ing up in the wetland. Many p ause at some point in the pas ecially prescribed fire in the pir	cane disturbated of a close ence of normal ants were in this area was flatwoods sity residentials ruption. The	ances, this assessed canopy. There al regeneration, in fruit. Mature tree as logged but mo, are appropriate al development cuere are lots of top	sment area is expect was one small B nany uneven aged as that were not dest are a good size and beneficial to the atting off flow from	razilian pepper (<i>Schinus</i> I pond-cypress (<i>Taxodium</i> stroyed were uneven aged, none . Plants look robust. Land le landscape. The wetland's a natural swale feature. There are
			_			Ī
Score = sum of above scores/30 (if uplands, divide by 20)	If preservation as mitig	ation,		For impact assess	sment areas	
current	Preservation adjustmen	nt factor =		delta x acres =		
or w/o pres with	Adjusted mitigation del	ta =	FL =	ueila x acres =		
0.73			<u> </u>			
	If mitigation					1
Dolto = [with assessed]	1 <u> </u>		F	or mitigation asse	ssment areas	
Delta = [with-current]	Time lag (t-factor) = Risk factor =		RFG	= delta/(t-factor x	risk) =	
	Alok Idoloi		<u> </u>			
Form 62-345.900(2), F.A.C. [effect	ctive date 02-04-2004]					

CoCa_ CYP_1 Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: CoCa_CYP_1 at Colbert-Cameron Mitigation Bank

Date: 5-Jun-06

Evaluator(s): Erica Hernandez

Wetland Type/Description: Oblong forested cypress swamp, heavily impacted by 1998 wildfires. Very open canopy, thick ground cover and shrubby vegetation.

Wetland Size: 12.75 acres (5.16 ha)

FLUCCS Code/Description: 6210 Cypress

2.0	Wildlife Utilization (WU)			
2.0	Wetland Canop	Wetland Canopy (O/S)		
3.0	Wetland Ground Cover (GC)			
2.5	Habitat Support/Buffer			
2.0	Field Hydrology (HYD)			
3.0	WQ Input & Treatment (WQ)			
14.5	SUM			
6	Count			
0.81	WRAP			

CoCa_ CYP_1 Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Evidence that an otter used the wetland, probably when it had been holding water. Song birds seen in wetland. Upland food sources are intact and maintained pine flatwoods. Human disturbance north of the property, a housing development that has decreased the watershed size of this wetland. In the past there was logging in the wetland. There is adequate cover in the wetland, but it is not optimal habitat because it has been heavily impacted by 1998 wildfire and 2004 hurricanes and will take a long time to recover its canopy. Excessive woody debris will provide cover for some species but may not be appropriate for others. Evapotransporation may be altered because of the diminished canopy and increase in herbaceous vegetation. Historically, according to the land owner, this wetland held water longer than other on site wetlands. There was no standing water at the time of the site visit and therefore no evidence of forage fish but a few small frogs were seen as well as a few old crawfish shells.

2.0 Wetland Canopy (O/S)

One small Brazilian pepper (*Schinus terebinthifolius*) was found in the wetland assessment area. The canopy has been largely disturbed due to the 1998 wildfires and 2004 hurricanes and perhaps previously from logging. Many young pond-cypress (*Taxodium ascendens*) trees were seen growing in the wetland and were of uneven ages. Regeneration appears to be good and the impacts to this wetland are temporary. In its current state, habitat support provided by the canopy is not great.

3.0 Wetland Ground Cover (GC)

Abundant desirable wetland plants in the groundcover. Plants are healthy and robust. Highbush blueberry (*Vaccinium corymbosum*) and bandana-of-the-Everglades (*Canna flaccida*) are in fruit at time of site visit. Ground cover has probably benefited from increased nutrients into the system because of the wildfires.

2.5 Habitat Support/Buffer

Wetland is surrounded by hydric pine flatwoods maintained by prescribed fire. The southern edge of the assessment area has a considerably thicker shrubby edge which could be the result of a fire shadow. The other edges are more open and have a less distinct gradation into pine flatwoods. The northern side of the assessment area is less than 300 feet to the mitigation bank boundary. This boundary area is being monitored for exotic species and is likely to be a seed source for exotic species. North of the bank boundary is a low density residential neighborhood. The north side cuts off part of the natural drainage way into the wetland assessment area either by sheet flow or swales.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	1	0.25	0.25
South	3	0.25	0.75
East	3	0.25	0.75
West	3	0.25	0.75
		Total =	2.5

2.0 Field Hydrology (HID)

Assessment area connected to other wetlands through wet prairie or swale type wetland features that sheet flow at times of high water. Assessment area watershed consists of wet pine flatwoods and wet prairies that sheet flow into the wetland. An unimproved road acts as a fire break south of wetland and has a culvert connecting the swale on either side. Other unimproved roads are mowed and would allow sheet flow. Watershed area north of the assessment area has been cut off by development and there is no longer connection of flow coming from the north. This reduction of available drainage into the wetland may cause a shift in wetland vegetation but there were no obvious signs at the time of the site visit. The wetland did not have transitional or upland species growing in it. Wetland indicators including wetland species and stain lines were consistent indicators of a normal hydrology.

3.0 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
natural undeveloped	3.0	1.00	3.0
		LU Total =	3.0

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
natural undeveloped	3.0	1.00	3.0
		PT Total =	3.0

CoCa_CYP_2 Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	Assessment Area Name or Number		or Number		
Colbert-Cameron Mitigation Bank		NA	CoCa		CoCa_CYP_2	oCa_CYP_2	
FLUCCs code	Further classifica	ation (optional)	on (optional)		t or Mitigation Site?	Assessment Area Size	
6210 Cypress	SSURGO soils E	Bluff and Riviera		Mitiga	ation bank	14 ac (5.7 ha)	
Basin/Watershed Name/Number	Affected Waterbody (Cla	iss)	Special Classificati	ion (i.e.0	DFW, AP, other local/state/federa	designation of importance)	
HUC 32 St .John's River, Upper Class III			FWCC Hotspot a	ind Str	ategic Habitat Conserv	ation Area	
Geographic relationship to and hyd	rologic connection with	wetlands, other si	urface water, uplar	nds			
Assessment area is surrounded by connected to mixed wetland hardware marshes that drain into the St. John	oods dominated by cab						
Assessment area description Pond-cypress (Taxodium ascender canna lily (bandana-of-the-Everglacof cattail (Typha spp.) and sawgras Duff and muck still present. Southe (Liquidambar styraciflua) in the cypLots of epiphytes.	des, <i>Canna flaccida</i>), b ss (<i>Cladium jamaicense</i> rn end of wetland had i	out some typical she i. Fire scars visit more tree diversity	ade tolerant speci ble on trunks, but l with swamp tupel nucky ground and	es are ess wo lo (<i>Nys</i> firefla	still present but not do pody debris than in othe ssa sylvatica var. biflora g (Thalia geniculata) tra	minant. Some patches wetlands on the bank. a) and sweetgum ansitions to canna lily.	
Significant nearby features					ing the relative rarity in MD technical staff report)	relation to the regional	
Farmton Mitigation Bank to east an north. Lake Harney housing develo west. SJRWMD property South (So Conservation Area).	opment to the north. La	ake Harney to the	Natural communi	ities or er simi	n bank have experience larly positioned lands w re community type inlan	ithin the St. John's	
Functions			Mitigation for pre-	vious	permit/other historic use	;	
Flora and fauna habitat and diversit nutrient removal/transformation	ty, floodflow alteration/a	attenuation,	Historical silviculture practices with selective logging in more recent times. Small cattle operation with winter burning of the property for management. Some ditches were installed historically. Cattle removed, but reserve right to select harvest timber on 90 year rotation with no removal in wetlands.				
Anticipated Wildlife Utilization Base that are representative of the asses be found)				T, SS	y Listed Species (List s C), type of use, and inte		
Southern dusky salamander, cricke striped mud turtle, ringneck snake, cottonmouth, wood duck, hawks, tu pileated woodpecker, songbirds, gr river otter, bobcat, and white-tailed	scarlet kingsnake, cray irkey, great horned owl ay squirrel, black bear,	yfish snake, , barred owl,	bald eagle (<i>Halia</i> canadensis prate	eetus ensis)	gator mississippiensis) leucocephalus) T, Flori T, Woodstork (<i>Mycteria</i> ricanus floridanus) T	da sandhill crane (Grus	
Observed Evidence of Wildlife Utiliz	zation (List species dire	ectly observed, or o	other signs such a	s track	s, droppings, casings,	nests, etc.):	
Deer and or rabbit scat, barred owls pileated woodpecker	s, downy woodpecker,	Northern parula, o	tter scat, raccoon	scat, r	ed shouldered hawk, d	eer tracks,	
Additional relevant factors:							
None							
Assessment conducted by:			Assessment date	o(e).			
Erica Hernandez			, loscosificini dale	,(J).		5-Jun-06	
Linea Hemanuez						5 3dil-00	

CoCa_ CYP_2 Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name	Application Number Assessment Area Name or Number			r		
Colbert-Cameron I	Mitigation Bank	NA	CoCa_CYP_2			2
Impact or Mitigation		Assessment conducted by:		Assessment date	:	
Mitigation	bank	Erica Hernandez	ndez			
				I		
Scoring Guidance The scoring of each	Optimal (10)	Moderate(7) Condition is less than	Mi	nimal (4)	Not F	Present (0)
indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions		wetland	evel of support of //surface water unctions		nsufficient to provide ace water functions
Habitats immediately outside the assessment area are intact and represent the full range of habitats needed to fulfill life his requirements. Outside of the bank there are lands in conservation to the south and west; some land in development to the and silviculture to the east and northeast. Although some lands in the landscape are highly altered, there is enough quality contiguous habitat in the landscape to support Florida black bear, which have a large land use requirement. The SJRWMI to the south of the bank appears to be a continuous source of Brazilian pepper (Schinus terebinthifolius). Caesar weed (U lobata) was also noted in the landscape. Highway 46 is south of the bank but buffered by a SJRWMD conservation area. are no hydrologic impediments, but traffic may be an impediment to some wildlife. However the presence of bears on the landscape. There are no downstream limitations or barriers. Landuses in the silviculture areas outside the bank are not of for wildlife.					relopment to the north; s enough quality t. The SJRWMD land Caesar weed (<i>Urena</i> servation area. There of bears on the bank is not seem heavily	
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	and moss collars were consist cover soils were very saturate scars on many of the cypress on the bank. Dominate unde this is probably not a result of detected, otherwise fauna sp	nding water at time of site visi stent. Soils were mucky unde ed and mucky. There was no s trees, but the 1998 wildfire d rstory of canna lily (bandana-d f atypical hydrologic conditions ecies detected are not wetlan- cense), but they did not domin	r a thin laye evidence of amage appo of-the-Everg s. Vegetation d dependan	r of duff and in sor f soil desiccation, sears to have been plades, <i>Canna flac</i> on does not appea t. There were sma	me areas where the subsidence, or oxical less catastrophic less catastrophic less on the expression of cattalless	ere was less vegetative dation. There are fire here than other areas pected zonation, but essed. Otter scat was all (Typha sp.) as well
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current 8	Everglades, Canna flaccida) dominance may be a tempor dispersing seed of the canna overwhelmed by the canna lia abundant evidence of regene pine flatwoods and removing area. Age and size distribution areas on the property, but it is debris is greater in some pate	an the canopy, shrub, and grou as the dominant ground cove ary deviation and a result of the lily in another theory. Other rely, The wetland does not lack eration of pond-cypress (Taxor hogs and exotics are beneficion is normal. This area was pitill had a lot of light penetration ches but not as disruptive as in althy and appear to be in good	r was not expenses and the openness and the shaded diversity but dium ascendial to this we robably logg on through the n some other and open the op	spected but it is a respected but it is a respected but it is a respected by the density of certains). Land manastrand. No exotic sed historically. The canopy. There are wetlands	native wetland plar gh waters from the such as ferns and tain species was n agement practices pecies were seen is area was not as are snags and den	nt. Its presence in such a 2004 hurricanes rushes seem oot expected. There was including burning the in the assessment open as other cypress trees present. Woody
Score = sum of above scores/30 (if	If preservation as mitig	ation.		For impact assess	sment areas	
uplands, divide by 20)	Preservation adjustmen	•				
current or w/o pres with	Adjusted mitigation del		FL = delta x acres =			
0.83]		<u> </u>			
	If mitigation		F	or mitigation asse	ssment areas	
Delta = [with-current]	Time lag (t-factor) =		DE0	- dalka//k 51-	eiala) —	
	Risk factor =		RFG = delta/(t-factor x risk) =			
Form 62-345.900(2), F.A.C. [effe	ctive date 02-04-2004]	_				

CoCa_CYP_2 Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: Colbert-Cameron Mitigation Bank CoCa_CYP_2

Date: 5-Jun-06

Evaluator(s): Erica Hernandez

Wetland Type/Description: Pond-cypress (*Taxodium ascendens*) dominated swamp, open midstory dominated by bandana-of-the-Everglades (*Canna flaccida*) in the groundcover.

Wetland Size: 14 ac (5.7 ha)

FLUCCS Code/Description: 6210 Cypress

2.5	Wildlife Utilization (WU)			
2.5	Wetland Cano	py (O/S)		
2.5	Wetland Grou	Wetland Ground Cover (GC)		
2.5	Habitat Support/Buffer			
3.0	Field Hydrology (HYD)			
3.0	WQ Input & Treatment (WQ)			
16.0	SUM			
6	Count			
0.89	WRAP			

CoCa_ CYP_2 Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Otter scat and other non-wetland dependant species such as raccoon and deer tracks and scat. Song birds in canopy as well as numerous barred owls and pileated and downy woodpeckers heard. No standing water to look for forage fish or macroinvertebrates. There are abundant upland food sources in the surrounding intact landscape. There is adequate cover and habitat for wildlife in and around the assessment area. There may have been harvesting of pond-cypress (*Taxodium ascendens*) trees historically in the wetland, there were no obvious signs of those practices at time of site visit (maybe this could have attributed to why the canopy was not very dense).

2.5 Wetland Canopy (O/S)

No exotic species present. Mature trees present in the canopy, good habitat support. Trees and canopy cover not quite what would be expected for this type of wetland. Would expect a less open canopy although this one is more closed than others that were visited within the mitigation bank. More light penetration than would be expected. Wetland did not have much of a midstory in most areas, but some shrub species were present in patches. There were many sapling and young pond-cypress (*Taxodium ascendens*) trees, regeneration was obvious and abundant. There were some snag. Trees look healthy. This wetland seemed to have the least amount of canopy disturbance compared to other forested wetlands on the mitigation bank. Some areas in the wetland did have what looked more like hurricane damage but this was also patchy.

2.5 Wetland Ground Cover (GC)

Groundcover is overwhelmingly dominated by canna lily (bandana-of-the-Everglades, *Canna flaccida*). Other native shade tolerant wetland plants are present upon a closer inspection, but they are not dominant. There are patches of sawgrass (*Cladium jamaicense*) and some cattail (*Typha* spp.) was also seen. In areas that have a longer hydroperiod, because there is more exposed mucky soils, other species such as fireflag (*Thalia geniculata*) are present. As the wetland gets closer to the adjacent mixed forested wetland the ground cover becomes more diverse. Although the species present are native and desirable, the domination of the canna lily is unexpected and not typical in such abundance for this type of system. Perhaps the disturbance of the 1998 wildfires and the 2004 hurricanes (which also caused extensive flooding) contributed to the canna lily's distribution.

2.5 Habitat Support/Buffer

Buffer is greater than 300 feet on all sides of the wetland. Some areas do have some exotic species, specifically Brazilian pepper (*Schinus terebinthifolius*) and Caesar weed (*Urena lobata*) in the landscape. The adjacent conservation area to the south of the bank owned by the SJRWMD is a constant seed source. Predominately these areas are natural and dominated by desirable plants. This landscape supports Florida black bears, which require a lot of habitat and connectivity through corridors.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	2.5	0.25	0.63
South	2.5	0.25	0.63
East	2.5	0.25	0.63
West	2.5	0.25	0.63
		Total =	2.5

3.0 Field Hydrology (HID)

Plants look healthy and not stressed from hydrologic changes. Wetland appears to exhibit a natural hydroperiod. There are no known external factors altering this wetland's hydroperiod. Soil substrate has a layer of duff and muck underneath it and shows no signs of subsidence or oxidation. Hydrologic indicators such as moss collars and lichen lines are consistent throughout the wetland.

3.0 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total
natural undevel.	3.0	1.00	3.0
		LU Total =	3.0

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
natural undevel.	3.0	1.00	3.0
		PT Total =	3.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Appendix B-8. Corkscrew Regional Mitigation Bank

Figure B-8.1. Landscape location of Corkscrew Regional Mitigation Bank (green line). Boundary of the hydric pine flatwoods wetland assessment area Cork_FLA is outlined in orange.

Figure B-8.2. Site photo of recently planted and seeded hydric pine flatwoods assessment area Cork_FLA at Corkscrew Regional Mitigation Bank.

Cork_FLA Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name			Application Number	er Assessment Area Name or Number			or Number
Corkscrew Mitigation Bank			NA			Cork_FLA	
FLUCCs code		Further classifica	ition (optional)		Impac	t or Mitigation Site?	Assessment Area Size
6250 (desired restored community) Hydric pine flatwoods)	newly planted site	e, was pasture		Mitiga	ation Bank	approximately 14 acres (~6 ha)
Basin/Watershed Name/Number	Affect	ed Waterbody (Cla	ss)			DFW, AP, other local/state/federal	
HUC Everglades West Coast	unaff	ected		FNAI - bird rooke for biodiversity ho		CC priority habitat, 3-4	focal species overlap
Geographic relationship to and hyd	Irologi	c connection with	wetlands, other su	urface water, uplai	nds		
The bank is relatively flat with some very slowly from the higher to lower can be a difference of inches. Assessment area description							
Prior to beginning restoration this a which are now filled. On LEFLAT t treatments and the ground planted succesional species, none of the p restoration or exotic removal or predry seasons to maximize restoration	he <i>Pa</i> with olanted escribe	spalum notatum (direct seeding (De seeds have germ d fire implementa	(bahiagrass) has becember 2005) an ninated yet. The battion. Some ditche	peen removed throw dyoung <i>Pinus elli</i> ank is in various stees have been left i restoration.	ough a ottii (sl tages o n place	series of mowing, diski lash pines). Currently to f restoration through potential with controlling	ng and herbiciding he site has early reparing the ground for water during rainy and
Significant nearby features				Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional
County land to the East of property land in preservation to the North. \(\) developed. This area is exploding Corkscrew sanctuary and Panther miles to the South.	Weste with h	rn property will pro igh density reside	obably be ntial housing.	Most natural communities in this area have been converted to agricultural uses or more recently to housing developments. Although Wet Flatwoods may have been an abundant biological community of the Coastal Plain at one time, examples with an intact overstory and understory, without exotics, and with the potential for future maintenance by fire are rare. One of the most floristically diverse communities in SE.			
Functions				Mitigation for pre	vious p	permit/other historic use	;
Provide habitat for flora and fauna. Nutrient cycling. Provide essential especially large and mid-sized carr	habita	t for rare and end	•	Historically used as improved pasture and grazed by cattle.			
Anticipated Wildlife Utilization Based on Litrepresentative of the assessment area and						ed Species (List species, the sity of use of the assessment	
Oak toad, cricket frog, chorus frog, snake, diamondback rattlesnake, p bobwhite, opossum, cottontail rabb striped skunk, bobcat, and white-ta	oygmy oit, cott oiled de	rattlesnake, red-s on rat, cotton modeer.	use, raccoon,	(Puma (=Felis) co cockaded woodper (Rostrhamus socia eastern indigo sna (Gopherus polypha avicennia), Sherm Bachman's sparrov guarauna), southe Florida sandhill cra	cker E (chilis pla ke T (E emus), an's for w SSC astern ane T (C	Arymarchon corais couper Big Cypress fox squirrel T k squirrel SSC (Sciurus ni (Aimophila aestivalis), lin kestrel T (Falco sparveriu Grus canadensis pratensi	teria americana), red- plade snail kite E faliaeetus leucocephalus), n), gopher tortoise SSC ((Sciurus niger ger shermani), npkin SSC (Aramus is paulus), s).
Observed Evidence of Wildlife Utili	zation	(List species dire	ctly observed, or o	other signs such a	s track	s, droppings, casings, i	nests, etc.):
Buckeye caterpillars, Polyamides b Buckeyes, Queen or Viceroy, Pear Mocking bird, Red shouldered haw cardinal, great crested flycatcher, v	l creso k, Eas	ents, Skippers. Etern meadowlark	Birds - Downy woo , Loggerhead shrik	dpecker, Savanna ke, blue-gray gnat	ah spai catche	rrow, swallow-tailed kite	e, White eyed vireo,
Additional relevant factors:							
None							
Assessment conducted by:				Assessment date	e(s):		
Erica Hernandez, Tony Davanzo				1			20-Mar-06

Cork_FLA Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number	Assessment Area Name or Number			\neg
Corkscrew Mitig	gation Bank	NA		Cork_FLA		
Impact or Mitigation		Assessment conducted by:	conducted by: Assessment date		e:	
Mitigation	Bank	EH, TD			3/20/2006	
Scoring Guidance	Optimal (10)	Moderate(7)	Mir	nimal (4) Not Present (0)		$\overline{}$
The scoring of each	, , ,	Condition is less than		, ,	,	
indicator is based on what would be suitable for the	Condition is optimal and fully supports wetland/surface	optimal, but sufficient to maintain most		vel of support of surface water	Condition is insufficient provide wetland/surface	
type of wetland or surface	water functions	wetland/surface	fu	ınctions	water functions	
water assessed		waterfunctions				_
.500(6)(a) Location and Landscape Support w/o pres or current with	couple of miles away, much of not support all species area a grasses or natural areas infer (i.e. a busy road). There is a wetland corridor to the South used less intensely. This are fragmented landscape and high	n conservation on the North are of the landscape is fragmented and habitat requirements. Sor sted with invasive exotic veget wildlife crossing for panthers and East of the bank and contain would have naturally sheet flydrologic alterations. Land us acted habitats would not derive	d by agricultime of the sp tation. Acce West of the ne around N flowed acros es outside the	ural uses, roads a ecies in the area a ess to the bank is bank. Species co orth to the bank w es the landscape a ne mitigation bank	nd development, and will are undesireable pasture partially limited by barrier uld utilize an extensive while crossing roads that and this is interupted by a have significant impact	II e rs are are
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	Hydric pine flatwoods are characterized by periods of inundation and drought. This site is newly seeded but none of the species have yet germinated. <i>Hydrocoytle</i> spp.(marshpennywort) is the only FACW species present. Site is characterized by early successional natives. At the time of site visit the area had not experienced rain since before the site was seeded in Jan and Feb of 2006. The soil was sandy but moist when we dug down. The site has been disked several times in the restoration process and probably will not exhibit hydric soil characteristics for some time. The wetland assessment area was hydrologically enhanced by filling ditches that were draining the site. A large ditch is remaining in between cells 2 and 5 and will be used to manipulate water on site during the restoration.					s ire en
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	Species present are native early successional that were naturally recruited. No exotic species present in the wetland assessment area. Currently the site cannot provide structural habitat because it is a newly planted restoration site. Plants are in good condition and the early successional species present are expected for the current phase of restoration. Land management practices are being regulated to optimize viability of desired species and future community type. Because the seeded species have not germinated it is difficult to evaluate this site is trending towards a hydric pine flatwoods community. The area is generally very flat but has some unevenness due to the disking practices. This unevenness will probably diminish with time.					
	1		_			
Score = sum of above scores/30 (if uplands, divide by 20)	l	,	<u> </u>	For impact assess	sment areas	
current or w/o pres with	Preservation adjustmen		FL = 0	delta x acres =		
o.5 with	Adjusted mitigation del	ta =				
	J		<u>,</u>			
Dolto = [with ourro=4]	If mitigation		F	or mitigation asse	ssment areas	
Delta = [with-current]	Time lag (t-factor) =		RFG	= delta/(t-factor x	risk) =	
	Risk factor =			_0.1(t 100101 X	,	
Form 62-345 900(2) F ∆ C [effec	otivo data 02 04 20041					

Cork_FLA Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: Cork_FLA

Date: 20-Mar-06

Evaluator(s): Tony Davanzo & Erica Hernandez

Wetland Type/Description: early in restoration phase, was bahia pasture, target

natural community is hydric Flatwoods

Wetland Size: approximately 14 acres (~6 ha)

FLUCCS Code/Description: 6250 Hydric Pine flattwood is the target community this area

of the bank is trying to be restored to

1.5	Wildlife Utilization (WU)		
NA	Wetland Cano	py (O/S)	
0.5	Wetland Grou	nd Cover (GC)	
1.6	Habitat Support/Buffer		
2.0	Field Hydrology (HYD)		
1.5	WQ Input & Treatment (WQ)		
7.1	SUM		
5	Count		
0.48	WRAP		

Cork_FLA Wetland Rapid Assessment Procedure, page 2

1.5 Wildlife Utilization (WU)

At this present stage of restoration the hydric pine flatwoods area is supporting grassland birds and insects. Native species *Linaria canadensis* (Canadian toadflax) and *Hydrocotyle* sp. (marshpennywort) were the dominant flowers at the time of visit and were supporting several species of butterflies. There were no impediments that would limit small, medium or large mammals or reptiles from traveling through or utilizing this area. In its current state this area does not have the same functional support that a hydric pine flatwoods would. It is also recognized that the natural hydroperiod for a hydric pine flatwoods would not necessarily support numerous wetland dependent species as compared to a wetland that has extended periods of standing water. Surrounding uplands in the area are undergoing enhancement through the removal of exotic species and the introduction of prescribed fire. There is a busy road to the South of the bank with a panther crossing further to the West. There are mitigation lands in conservation to the North and East and South of the bank with other adjacent lands in pasture or agriculture. The mitigation bank is in different phases of restoration and therefore is experiencing several different levels of temporary human disturbance.

NA Wetland Canopy (O/S)

No canopy development.

0.5 Wetland Ground Cover (GC)

Site has no exotic vegetation or pasture grasses. Native early successional species are the current cover. A *Hydrocotyle spp.* is the only dominant FACW species present. The site was seeded with herbecaceous hydric pine flatwoods species in January and February of 2006, there is no evidence of germination yet.

1.6 Habitat Support/Buffer

Two miles South of bank is Panther Island Mitigation Bank and Corkscrew Sanctuary. Between these management areas are a busy road and agricultural lands. To the East is a property owned by the county which may be restored and has some remnant hydric pine flatwoods and pasture. To the North is land that is part of mitigation for a local airport and is in preservation - there may be some exotic species but they are probably being treated. There are extensive cypress swamps and flatwoods in this area. To the West is pasture that may be developed in the future.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	2.5	0.25	0.63
South	0	0.25	0.00
East	2	0.25	0.50
West	2	0.25	0.50
		Total =	1.6

2.0 Field Hydrology (HID)

Newly planted site does not have desired vegetation yet to indicate field hydrology other than *Hydrocotyle sp*. (marshpennywort), which is one of the dominant species and is FACW. This area has had hydrologic enhancement due to the removal of ditches that were draining the landscape for agricultural purposes. Currenly there is a large ditch being left in place to manipulate the amount of water on site during the restoration phases. At the time of site visit there has been no rain since seeding and this part of Florida is currently headed into a drought phase. Hydrology should be adequate to support hydric flatwoods vegetation as the vegetation begins to germinate. However until the site is fully restored the hydrology will continue to be manipulated by control structures for maximum vegetative response.

1.5 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
improved pasture	1.0	0.25	0.25
unimproved pastur	2.5	0.25	1.25
citrus groves	2.0	0.25	0.50
natural open space	3.0	0.25	0.75
		LU Total =	2.8

TRETRETTMENT CITIEGORT (LT)									
Pretreatment									
Category	(Score) x	(% of Area)	= Sub Total						
no treatment	0.0	0.25	0.00						
no treatment	0.0	0.25	0.00						
grass swales	1.0	0.25	0.25						
no treatment	0.0	0.25	0.00						
		PT Total =	0.3						

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

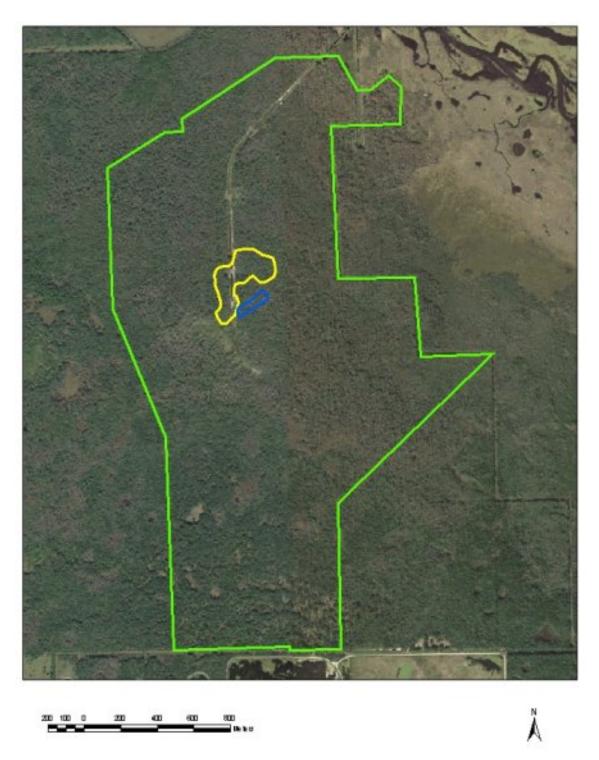


Figure B-9.1. Landscape location of East Central Florida Mitigation Bank (green line). Boundary of the wetland assessment areas ECFl_HAM in yellow and ECFl_FOR in blue are outlined.

Figure B-9.2. Site photos of East Central Florida Mitigation Bank site assessment areas A) loop roots and gum tree (*Nyssa biflora*) in cabbage palm hammock ECF1_HAM impacted by restored canal B) looking east from restored canal at Christmas Creek ECFl_FOR

$ECFl_HAM\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number			Assessment Area Name or Number			
East Central or Hunter Bank			NA			ECFI_HAM		
FLUCCs code		Further classifica	tion (optional)	on (optional)		ct or Mitigation Site?	Assessment Area Size	
6181 cappage palm hammock			Forested/ SSURGO Soils SJRWM ce texture Muck, hydric		Mitigation bank		15.92 ac (6.44 ha)	
Basin/Watershed Name/Number	Affecte	d Waterbody (Clas	ss)	Special Classificati	on (i.e.	OFW, AP, other local/state/federa	Il designation of importance)	
St Johns River Upper/Christmas Creek Class III			Geoplan gweco pr		priority link 2, high priority (not critical)			
Geographic relationship to and hyd	Irologic	connection with	wetlands, other su	urface water, uplar	nds			
Samsula muck is poorly drained so marsh wetland systems.	oil. This	forested wetland	sheet flows East	into Christmas Cr	eek a	nd the St. John's River	through forested and	
Assessment area description								
Forested wetland dominated by cal This forested wetland was disrupte seems to have a large impact on s	d by the	e installation of a	canal used for tra					
Significant nearby features			Uniqueness (considering the relative rarity in relation to the regional landscape.)					
Orlando Wetlands water treatment and conservation area (Orlando Wilderness Park) to the south. SJRWMD Seminole Ranch directly adjacent to the east. Other public conservation areas along the St. John's River and several small parcels of public lands in the region.								
Functions				Mitigation for previous permit/other historic use				
Cover and forage habitat for fauna species. Corridor connection for St. John's River basin. Flood water storage and attenuation. Nutrient cycling.			Historically there were cattle, hunting, and logging practices on the land.					
Anticipated Wildlife Utilization Based on Literature Review (List of species that are representative of the assessment area and reasonably expected to be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)					
Green anole, flycatchers, warblers, gray squirrel, wading birds, woodpeckers, deer, raccoon, bobcat, snakes, frogs			Bald eagle (Haliaeetus leucocephalus), Florida black bear (Ursus americanus floridanus), limpkin (Aramus quarauna), woodstork (Mycteria americana)					
Observed Evidence of Wildlife Utili	zation (List species direct	ctly observed, or o	other signs such a	s track	ks, droppings, casings,	nests, etc.):	
Hog tracks, deer tracks, cow dropp woodpecker, lots of insects, swallo skink, red shouldered hawk, green	w tailed							
Additional relevant factors:								
Restored area was vegetated with is not included in the assessment to downstream wetlands within two zo feet.	ecause	e it is not a restor	ed community typ	e. The canal impa	cted t	he surficial aquifer in th	e forested region and	
Assessment conducted by:				Assessment date	e(s):			
Erica Hernandez						6/19/2006		

ECFl_HAM Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Site/Project Name			Assessment Area Name or Number	
East Ce	entral or l	Hunter Bank	NA		ECFI_HAM	
Impact or Mitigation			Assessment conducted by:		Assessment date:	
N	/litigation	bank	Erica Hernandez	Erica Hernandez		6/19/2006
	_				1	
Scoring Guidance		Optimal (10)	Moderate(7)	Mi	inimal (4)	Not Present (0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed		Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	wetland	evel of support of l/surface water unctions	Condition is insufficient to provide wetland/surface water functions
.500(6)(a) Location and Landscape Support bank, there is extensive hab assessment area. There are appear to be any barriers fo assessment area include so			s in the landscape to the sout tat in the bank and around the invasive exotic species prese wildlife access. Downstream ne logging and conversion of outside the mitigation bank,	e St. John's I ent in proxim benefits are native range but at the tin	River to support w ity to the assessm not limited. Landu e to pasture. There ne of the assessm	ildlife that would exist in the ent area. There do not uses outside the e could be long term ent, there appears to be no
Impacts to hydrology and water quality are associated with the large canal on the bank that has been fil graded for the mitigation bank. There are indicators that this wetland experienced stress and has had subsidence and erosion as a result of this initial impact, but these impacts are now removed. It will take forested community to recover. There are no obvious reasons why there should be a reduction in function by the restored hydrology to this wetland. Soil moisture was appropriate at the time of visit. There was represent typical of degraded systems.					s and has had soil wed. It will take time for the luction in function provided sit. There was no standing	
.500(6)(c)Community st 1. Vegetation and/ 2. Benthic Commun w/o pres or current 6	/or	(<i>Urena lobata</i>). There is not t species. Plants appear health	d of hardwoods, probably a re canopy, specifically cypress (th there was an unknown ferre too much woody debris but the hy. Land management practic whic features are present and	esult of past (<i>Taxodium</i> so the (could be a there are trees tes may not a	logging. Not much sp.), although did so in exotic species) is available for den address the Caesa	n evidence of regeneration see a few seedlings. Nice and a patch of Caesar weeds and cavities of fauna ar weed and this could
		1		_		
Score = sum of above score uplands, divide by 2	,	If preservation as mitigate	ation,		For impact asses	sment areas
current or w/o pres 0.77 Preservation adjustme Adjusted mitigation de				FL =	delta x acres =	
		J				
5 !! - :::		If mitigation		F	or mitigation asse	ssment areas
Delta = [with-current] Time lag (t-factor)		l		RFG = delta/(t-factor x risk) =		risk) =
		Risk factor =		141 0	Johan (t lactor X	,
Form 62-345.900(2), F.A.	.C. [effec	ctive date 02-04-20041				

ECFl_HAM Wetland Rapid Assessment Procedure, page 1

Project Name: East Central or Hunter Bank ECFl_HAM assessment area

Date: 19-Jun-06

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Forested wetland dominated by cabbage palms and interspersed with wetland hardwoods. Understory is open and park like. This forested wetland was disrupted by the installation of a canal used for transporting logged cypress out of the region. Logging seems to have a large impact on species composition in the canopy. Between the East and West sides of the forested wetland is the regraded canal and berm area that now resembles a marsh habitat but will be allowed to grow in with forested species to be a continuous portion of the surrounding wetland.

Wetland Size: 16 acres (6.44 ha)

FLUCCS Code/Description: 6181 cabbage palm hammock

NWI Palustrine Forested/ SSURGO Soils SJRWMD Samsula, surface texture Muck, hydric

2.0	Wildlife Utilization (WU)		
2.0	Wetland Canopy (O/S)		
2.5	Wetland Ground Cover (GC)		
2.0	Habitat Support/Buffer		
2.5	Field Hydrology (HYD)		
3.0	WQ Input & Treatment (WQ)		
14.0	SUM		
6	Count		
0.78	WRAP		

ECFl_HAM Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Most wildlife was noted on restored canal grade. Within forested area woodpeckers and red shouldered hawk (*Buteo lineatus*) were noted as well as some sort of cavity nest at the base of an oak tree (*Quercus* sp.). There are abundant upland food sources in the region. Human disturbances are mostly historic. These consist of the logging in the 1940s that has altered the habitat and the installation of the canal which disrupted the hydrology. There were a few places where scars still existed from where logs were dragged out of the forest. There are some exotic species present as well. There is adequate habitat and cover. There were fish in the pools of water on the restored canal grade but this area is not part of the assessment because it does not yet represent a restored community type. There was no standing water in the forested areas. This region is supposed to support Florida black bears (*Ursus americanus floridanus*) which require large tracts of continuous habitat.

2.0 Wetland Canopy (O/S)

No exotic species in wetland canopy or shrub layer. Logging has altered species composition and dominance of canopy species. Largest trees were laurel oaks (Quercus laurifolia), which tend to be more early successional and cabbage palms (Sabal palmetto). There were hardwood species present through out the forested area. Even though the canopy has been damaged by hurricanes and stressed from historic hydrologic alterations, some areas are still closed and offer good habitat support. Natural recruitment was patchy. Very few young cypress (Taxodium sp.) were seen, some American elms (Ulmus americana) were also seen in patches. Some areas seemed dominated by young common persimmon (Diospyros virginiana). There are some good den trees and snags, but there is not excessive woody debris. Abundance of Eastern poison ivy (Toxicodendron radicans) growing on canopy species. There were also many healthy looking airplants (Tillandsia spp).

2.5 Wetland Ground Cover (GC)

Ground cover is open and park like in most areas. Native vegetation was thicker in some areas where elevation was lower and ground became more saturated. On the west side of the restored grade there were thick patches of ferns that were unidentified and it is unknown whether they are native species or not. No exotic species were noted through the assessment area except for an extensive patch found of Caesar weed (*Urena lobata*), this species was noted on the access roads leading into the bank. Its presence in the forested area is less than 25% of cover.

2.0 Habitat Support/Buffer

Exotic species are noted in the region of the bank. Adjacent upland and wetland buffers are larger than 300 feet. This area is connected to continuous habitat along the St. John's River and supports Florida black bears. Plants are predominately desirable, but there are areas disturbed with exotic species, logged, or converted to pasture. Most habitat disturbance is outside the bank to the south and east. The exotic aquatic species in the Christmas Creek area are in the buffer of this assessment area, but because of differences of community type are not likely to impact this forested area.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	2 0.25		0.50
South	2	0.25	0.50
East	2	0.25	0.50
West	2	0.25	0.50
		Total =	2.0

2.5 Field Hydrology (HID)

Forest exhibits indicators of hydrologic stress. This stress is historic from the installation of a canal which has since been restored to natural grade. The canal affected the surficial aquifer in the areas around it. There is some evidence of historic soil subsidence under trees and roots. This wetland should now have a natural hydroperiod and the hydrologic regime should be adequate to maintain a viable wetland system. There are no existing adjacent negative impacts to the wetlands hydrology. Plants appear healthy.

3.0 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

	ENTERORY (EC)							
				-				
Land Use				= Sub				
Category		(Score) x	(% of Area)	Total				
natural un	develope	3.0	1.00	3.0				
			LU Total =	3.0				

PRETREATMENT CATEGORY (PT)

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
natural undeveloped	3.0	1.00	3.0
		PT Total =	3.0

ECFl_FOR Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	oplication Number		Assessment Area Name or Number	
East Central / Hunter Bank		NA			ECFI_FOR	
FLUCCs code	Further classifica			Impac	et or Mitigation Site?	Assessment Area Size
16300 wetland forested mixed S.IRWMD1		orested/ SSURGO Soils SJRWMD texture Muck, hydric, black water		Mitiga	ation bank	2.15 ac (0.87 ha)
Basin/Watershed Name/Number	Affected Waterbody (Cla	ss)	Special Classificati	on (i.e.0	DFW, AP, other local/state/federal	designation of importance)
St Johns River Upper/Christmas Creek	Class III		Geoplan gweco p	riority	link 2, high priority (not	critical)
Geographic relationship to and hyd	rologic connection with	wetlands, other su	ırface water, uplar	nds		
Christmas Creek drains west to nor have been logged or turned into pareaching the St John's River but flothe creek.	sture. Further west the	landscape is more	altered. Historica	ally a la	arge canal diverted Chr	istmas Creek from
Assessment area description						
On the mitigation bank, Christmas into a small channelized creek with the creek. Further east the creek c	defined banks. The pre	esence of water hy	racinth (<i>Eichhornia</i>			
Significant nearby features			Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional
Orlando Wetlands water treatment Wilderness Park) to the south. SJF		•				that originate in mixed
to the east. Other public conservati several small parcels of public land	on areas along the St.		forested wetlands and flow towards the St Johns. Collectively they would all have important downstream effects.			
Functions			Mitigation for pre	vious p	permit/other historic use	•
Cover and forage habitat for fauna Johns River basin. Flood water stor	•			this ca	anal cut off the historic f	l berm were installed to low and connection of
Anticipated Wildlife Utilization Base that are representative of the asses be found)				T, SS	y Listed Species (List s C), type of use, and inte	
Typical animals include river longnose gar, gizzard shad, threadfin shad, redfin pickerel, chai pickerel, ironcolor shiner, Ohooppee shiner, weed shiner, blacktail shiner, chubsucker, channel catfish, banded topminnow, pygmy killifish mosquitofish, mud sunfish, flier, everglades pygmy sunfish, banded sunfish, redbreast sunfish, dollar sunfish, stumpknocker, spotted bass, black crappie, darters, Alabama waterdog, river frog, snapping turtle, alligator snapping turtle, fiver cooter, Florida cooter, peninsula cooter, stinkpot, spiny softshell, red-bel watersnake, brown watersnake, beaver, and river otter.			Florida black bear (<i>Ursus americanus floridanus</i>), Limpkin (<i>Aramus quarauna</i>), Woodstork (<i>Mycteria americana</i>), American Alliqator (<i>Alliqator mississippiensis</i>)T			
Observed Evidence of Wildlife Utiliz	zation (List species dire	ctly observed, or o	ther signs such a	s track	s, droppings, casings, r	nests, etc.):
Downy woodpecker, Northern parul water that crosses road, red should		dragonflies, lots of	grasshoppers, wo	lf spid	er, dragonfly larvae, mii	nnows in standing
Additional relevant factors:						
Due to rain in the area no photos w traveled along the creek for about 2			past the area whe	re it in	tersects the main road	even though we
Assessment conducted by:			Assessment date	e(s):		
Erica Hernandez, Tony Davanzo			6/20/2006			
<u> </u>			l			

ECFl_FOR Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number	Assessment Are	a Name or Number	
East Central/Hunter Bank		NA	ECFI FOR		
Impact or Mitigation		Assessment conducted by:	Assessment date	· ·	
Mitigation bank		Erica Hernandez 19-Jun-06		.	
Willigation bank		Liica i leitialidez	19-3411-00		
Scoring Guidance	Optimal (10)	Moderate(7)	Minimal (4)	Not Present (0)	
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	Condition is less than optimal, but sufficient to maintain most wetland/surface functions Minimal level of support of wetland/surface water provide wetland water functions		
.500(6)(a) Location and Landscape Support w/o pres or current with	transitions to the west into me Currently this land is somewh Habitats outside the assessm human disturbance in the lan (<i>Urena lobata</i>) was noted an wildlife in the landscape. This and corridors. Outside land u such as logging or conversion There do not appear to be ba	ed by mixed forested wetlands ore mesic forest conditions an ant natural and some of it has nent area are probably adequadscape. There are some pated some exotic pasture grasses area does support Florida blasses may have some effect on no finatural lands to other use arriers to downstream effects. In crassipes () dominating the acceptance of the source of the sour	In the transitions into pine flat been altered. There has bee ate for most life history require thy invasive exotic species in a smay be present. There appack bears which require large the assessment area if there is. Some of these uses are even the only downstream flow research.	twoods and pasture. In logging in the landscape. It is some the landscape Caesar weed tracts of continuous land are upstream disturbances ident on the 2004 aerials.	
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	Historically oxidation may have site visit. Vegetation does not historically by a canal that rein the creek instead of the bazonation. Cypress knees had present are consistent with hidegradation. The overwhelmic creek, the light penetration, a system. Most hydrologic disturcation in time as it adjusts to	for time of site visit. Consisten we occurred after the installation indicate atypical hydrologic of crouted Christmas Creek. This ink edges. Tree species are a devidence of new growth. The ydrologic requirements. There ing dominance of water hyacin and water chemistry. This in tour urbances have been removed o a new hydrologic regime but fecting the creek in the ways se	on of the canal but no evidence onditions. Flow to this assess may have led to some estab ppropriate wetland species buttere are no signs of hydrologic are no species present assouth (Eichhornia crassipes) courn could disrupt the macroing from the system (such as levit the presence of the exotic	the of this was noted during ment area was cut off ishment of woody species at it is not the expected extress. Animal species ciated with water quality ald alter the flow of the vertebrate community in the	
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with 7	(Eichhornia crassipes) is the as other areas where native s regeneration was noted for w reason for any permanent de previous stress from the insta hurricanes. Living plants are hyacinth from the community and therefor it will not be com-	the canopy, shrub, and ground dominant ground cover. Ther species dominant the system. voody canopy species. There a viation from succession. The allation of the canal and a result in good condition. Land man and the thing state that this is because trolled for logistical reasons. The sont appear to be improper and the state of the canal and the state of the	e are still native plants interm Many plants and trees were i are many mature trees and th re is excessive woody debris ulting altered hydrology compo agement practices will not inc se there is a constant source opographic features are pres	ixed with the exotic as well n flower or fruit, actual ere does not appear a that may be a result of ounded with the more recent lude removing the water from the St. John's River ent and normal. There is no	
Score = sum of above scores/30 (if uplands, divide by 20) current br w/o pres with 0.7 Delta = [with-current]	If preservation as mitig: Preservation adjustment Adjusted mitigation delt If mitigation Time lag (t-factor) =	nt factor =	For impact asses FL = delta x acres = For mitigation asses		

ECFl_FOR Wetland Rapid Assessment Procedure, page 1

Project Name: ECFl_FOR at East Central/Hunter Bank

Date: 19-Jun-06

Evaluator(s): Erica Hernandez

Wetland Type/Description: On the mitigation bank, Christmas Creek emerges from an open cypress swamp and crosses an access road (where the old canal was) into a small channelized creek with defined banks. The presence of water hyacinth (*Eichhornia crassipes*) appears to mark the flow and channel. Further East the creek channel becomes less distinct and spreads out.

Wetland Size: 2.15 ac (0.87 ha)

FLUCCS Code/Description: 6300 wetland forested mixed, black water stream

2.0	Wildlife Utilization (WU)		
2.0	Wetland Canopy (O/S)		
0.5	Wetland Ground Cover (GC)		
2.0	Habitat Support/Buffer		
2.0	Field Hydrology (HYD)		
3.0	WQ Input & Treatment (WQ)		
11.5	SUM		
6	Count		
0.64	WRAP		

ECFl_FOR Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Evidence of possible otter scat. Insect larvae and numerous grasshoppers and dragonflies present. Wetland vegetation is dominated in patches by invasive exotic vegetation and may not be the most appropriate protective cover for native wildlife. Surrounding habitats have had some historic disturbance but are mostly intact, further away uplands have had more disturbances.

2.0 Wetland Canopy (O/S)

Many cabbage palms (Sabal palmetto) are growing into the creek channel area. Large sweetgum (Liquidambar styraciflua) trees, but more cypress (Taxodium distichum) trees the further east we walk. Cypress knees do show some new growth and grow larger the deeper the creek appears to get. In open areas (with out defined creek banks) cypress trees are laden with fruit although cypress regeneration was not noted. There were no undesirable trees or shrubs. There are many snags and wood debris. In a black water stream you would expect wetland canopy and shrubs mostly on the streams banks. Perhaps because the flow to the creek was cut off trees grew into the creek bed and became established there. In areas where the creek channel becomes undefined these areas may act more as flow through forested wetlands and not really a defined creek.

0.5 Wetland Ground Cover (GC)

Exotic water hyacinth (*Eichhornia crassipes*) is out competing native species. Although at the time of site visit there was no flow due to current weather patterns, the thick water hyacinth will disrupt flow of the stream, negatively affect wildlife, and can alter water chemistry and light penetration. There are small patches of native species and in one area seen, native rosemallow (*Hibiscus* sp.) is more dominant than the water hyacinth. The water hyacinth is assumed to come into the system from the St John's River, which will remain a constant source. There are no plans to try to control this exotic plant. This exotic may be more concentrated closer to the St John's River and less prevalent further west in the creek.

2.0 Habitat Support/Buffer

Buffers around the assessment area are greater than 300 feet. The creek is inside a large mixed forested and cabbage palm hammock dominated mitigation bank along the St. John's River. Most habitat disturbance is outside the bank to the south and east. The assessment area began where the creek crosses the old canal foot print. This area is in transition and is characterized by marsh vegetation and open ground. This area is to the west of the assessment area and still provides habitat support but it is different from the forested areas. There are invasive exotic plants in the landscape. Caesar weed (*Urena lobata*), pasture grasses, and exotic aquatics are growing in the wetlands connected to the creek. These exotics do not dominate the landscape in the supporting buffer area.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	2	0.25	0.50
South	2	0.25	0.50
East	2	0.25	0.50
West	2	0.25	0.50
		Total =	2.0

2.0 Field Hydrology (HID)

Field indicators of hydrology include cypress knees with evidence of new growth, buttressed roots, aquatic vegetation, high water marks, and the presence of muck soils over sand. The dominance of water hyacinth (*Eichhornia crassipes*) may interfere with the creeks flow in the rainy season. Water was stagnant in areas, but this was not unexpected due to the seasonality and lack of flow. Due to this area of the creek being cut off by the canal, there may have been some alterations to hydrology that resulted in soil subsidence, but no indicators of this were visible during the site visit. There appears to be no negative impacts to the hydrology such as other canals, ditches, or berms. The road it crosses is unimproved and sand, it may contribute to some sediments but most of this area is vegetated.

3.0 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total
natural undevel	` /	1.00	3.0
		LU Total =	3.0

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
natural undevelop.	3.0	1.00	3.0
		PT Total =	3.0

Appendix B-10. Everglades Mitigation Bank/Phase I (FPL)

Figure B-10.1. Landscape location of Everglades Mitigation Bank (FPL) (green line). Boundary of the wetland assessment areas Glad_SHR in blue, Glad_MAR_1 in yellow, Glad_MAR_2 in orange and Glad_MAR_3 in pink are outlined. There are no site photos for the assessment areas.

Glad_SHR Uniform Mitigation Assessment Method, page 1 PART I - Qualitative Description

(See Section 62-345.400, F.A.C.)

Site/Project Name	Site/Project Name Application Number			ber Assessment Area Name or Number		
FPL/Everglades Mitigat	tion Bank		NA		Glad	_SHR
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size
SFWMD 1995: 6172 Mixed Wetla Hardwoods - Mixed Shrubs	nd SFWMD Perrii	ne Marl, very poor	ly drained soils		Mitigation Bank	0.92 ha (2.27 ac)
Basin/Watershed Name/Number A	Affected Waterbody (Clas	SS)	Special Classificat	ion (i.e.C	DFW, AP, other local/state/federa	I designation of importance)
SE FL Coast HUC 03090202	Class I	II			none	
Geographic relationship to and hydro	ologic connection with	wetlands, other su	urface water, upla	nds		
Historically part of the continuou important to freshwater pulse in the	estuaries. Now partition	oned off from large		aligned	US-1 and Card Sound	
Assessment area description						
Tree island of small woody species,	surrounded on all side appears to flood during					ydrologic indicators and
Significant nearby features			Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional
Close proximity (within 1 mile) to OF Card Sound Rd. from Southern Gla SFWMD. Lack of exotic species of	ades and Model Lands	Basin owned by				ed wetland. While there a unique system for the
Functions			Mitigation for pre	vious p	permit/other historic use	9
Trap and cycle organic material estuaries; provide important food cl production; provide habitat and nurs habitat for many transient and	hain resources with hig sery grounds for many	th rate of primary species; provides	Canals previous	ly divid	ded and drained area - have been backfilled	portions in support area
Anticipated Wildlife Utilization Based that are representative of the assess be found)				T, SSC	y Listed Species (List s C), type of use, and inte	
Odocoileus virginianus (white-taile Peromyscus gossypinus (cottol Sylvilagus palustris (marsh rabbit), herodias (great-blue heron), Butt arachnids (spiders), Columba le abundant insects, other small to m	n mouse), <i>Procyon loto</i> <i>Callinectes sapidus</i> (borides striatus (green-bucocephala (white crow	or (raccoon), blue crab), Ardea backed heron), wned pigeon),	Egretta caerule heron)SSC, My (limpkin)S mississippiens	ea (littl ycteria SSC, E is (allig	e blue heron)SSC, Egr americana (wood stort gretta thula (snowy egr gator)SSC, Eudocimus oncolor coryi (Florida p	k)E, Aramus guarauna et)SSC, Alligator alba (white Ibis)SSC,
Observed Evidence of Wildlife Utiliza	ation (List species direc	ctly observed, or o	ther signs such a	s track	s, droppings, casings,	nests, etc.):
Neotropical migrants; black and wh	ite warbler; common ye ame trails leaving tree i					snail shell. Evidence of
Additional relevant factors:						
FWCC Biodiversity Hotspots: 7+ foc saltmarshes present within 1 mile bu species that may need higher ground supported on tree islands are an imp	uffer. Tree islands offe d for nesting like some	r important nestin species of turtles	g opportunities for Also the highly	r Everg	glades species that nes	t in trees and other
Assessment conducted by:			Assessment date	e(s):		
Kelly Chinners Reiss, Erica Hernand	lez					12-Dec-05

Glad_ SHR Uniform Mitigation Assessment Method, page 2
PART II - Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name			Application Number		Assessment Area	a Name or Numbe	r
FPL/Evergla	ades M	itigation Bank	NA		Glad_SHR		
Impact or Mitigation		Assessment conducted by:	Assessment date:		: :		
Miti	igation	Bank	Kelly Chinners Reiss, Erica Hernandez 12/12/20		12/12/2005		
Scoring Guidance		Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present	· (0)
The scoring of each		Optimal (10)	Condition is less than	IVII	illilai (4)	NOT Fresen	(0)
indicator is based on what		Condition is optimal and fully	optimal, but sufficient to	Minimal le	evel of support of	Condition is insu	fficient to
would be suitable for the		supports wetland/surface	maintain most		/surface water	provide wetland	/surface
type of wetland or surface		water functions	wetland/surface water	fı	unctions	water functi	ons
water assessed			functions				
.500(6)(a) Location an Landscape Support w/o pres or current		there is some fragmentation uplands, so species with larg tree islands available. There Brazilian pepper (Schinus ter species cattail (Typha spp.) mainly US-1 and Card Sound downstream environments at the highly traveled roads, has to consider. There are few h does restrict some flow and it	assessment area support the of the landscape. The outside of dispersal needs may be at are some invasive exotic speebinthifolius) in areas along the was present along the roadsid IRd., plus some ditching assore generally not limited by district on the will be provided in the product of the	e landscape a loss (nega- cies, particu- ne perimeter e. Wildlife a ociated with ance and ba- dlife, plus thand Sound R	is also missing the attively affected). It allarly Australian pin of the mitigation access is limited by these roads. Funitriers. However, were are transmissed.	e natural gradient There are additionane (Casuarina spp bank. Also, the nu by landscape barrie ctions that benefit outside land uses, ion towers and pow r upstream, and as	into al nearby al), and uisance ers - mainly wer lines
9 .500(6)(c)Community stru 1. Vegetation and/or 2. Benthic Community	with ucture	(approximately less than 1 m and adventitious rooting. The americanum) and sawgrass marsh), which was appropria oxidation, erosion, or deposit An arson fire burned through this tree island. Vegetation is facultative (FAC) species, was component. There were no shells, but there was limited a There were no species prese available. The impervious sunatural way, including the infliground water from the surficial Nearly all of the vegetation is the wetland assessment area evidence of regeneration, but shrub layers exhibited appropriately appropriately appropriately appeared to be in management practices were the marsh support area. Mar	ate. Water levels were distind, there were wetland appropriere was a deeper water zone a (Cladium jamaicense) (that we for this habitat. Soil moistuion. The soil was saturated we the landscape in past five year hows no atypical hydrologic or is interspersed, but this species in the species of hydrologic stress from additional evidence of animal sunt that would be indicative of surface of nearby roadways and ow of toxins and nutrients. That aquifer, changing the amount appropriate species. We found a sport of the species were lack detailed notes on this oriate age and size class district ere were few noted cavities and good condition (no chlorotic legenerally optimal, but there has agement does intend to contion in topographic relief features.	iate species around the tass taller that are was apprited a thick of ars, but there on dition. So as was not a the vegeta species presewater quality I canals do all the canals (ent of freshword on the canals (ent of freshw	, buttressing on pore island fringe on no present island fringe on no per island fringe on no per island in the sawgrass in no evidence on the wax myrtle (Marchael of the wax myrtle (Marchael of the wax myrtle) and island isla	ond apple (Annona of string-lily (Crinum the adjacent Every idence of soil substanker, greasy organe of damage by the Myrica cerifera), who as tree frog and apprydrological require to water quality data uality and quantity is on Card Sound Rd this area. (Schinus terebinthimal. We did not not however, the tree irriate amount of coord species was avict damage). The least prescribed fire pewith herbicide trea	a glabra), n glades glidence, nic soil. e fire to nich is a ble snail ements. were n a non) draws folius) in otice and arse ailable. and ermit for
Score = sum of above scores uplands, divide by 20) current or w/o pres 0.83	,	If preservation as mitigation adjustment Adjusted mitigation delta	nt factor =		For impact assess	sment areas	
		If mitigation		F	or mitigation asse	essment areas	
Delta = [with-current]]	Time lag (t-factor) =					
		Risk factor =		RFG	= delta/(t-factor x	risk) =	
				ш			l

Glad_SHR Wetland Rapid Assessment Procedure, page 1

Project Name: Glad_SHR

Date: 12/2/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Hydric tree island in sawgrass marl marsh

Wetland Size: 0.92 ha (2.27 ac)

FLUCCS Code/Description: 6172 mixed shrub

3.0	Wildlife Utiliz	ration (WU)		
2.5	Wetland Cano	Wetland Canopy (O/S)		
3.0	Wetland Ground Cover (GC)			
2.5	Habitat Support/Buffer			
2.5	Field Hydrology (HYD)			
3.0	WQ Input & Treatment (WQ)			
16.5	SUM			
6	Count			
0.92	WRAP			

Glad_SHR Wetland Rapid Assessment Procedure, page 2

3.0 Wildlife Utilization (WU)

Neotropical migrants; black and white warbler; common yellow throat in tree island; green tree frog; American crow; apple snail shell. Abundant adjacent food sources and food within the tree island. Abundant cover and habitat within tree island and surrounding sawgrass (*Cladium jamaicense*) marsh. Evidence of game trails leaving tree island into marsh and connecting adjacent tree islands. Available microhabitat and refugia within wetland assessment area. Some human disturbance from treatment of exotic species for restoration purposes (i.e. tracks from vehicles) but no obvious disturbance visible. Inside tree island US-1 is no longer audible.

2.5 Wetland Canopy (O/S)

One Brazilian pepper (*Schinus terebinthifolius*) found, had been previously treated and has since resprouted. Good habitat support in canopy and mid-story, many fruit bearing trees and shrubs. Healthy canopy. Few snags. Did not notice recruitment but there was good diversity and species richness and appropriate age class distribution.

3.0 Wetland Ground Cover (GC)

No exotic, invasive, or nuisance species. No inappropriate species. Minimal ground cover disturbance. Maybe some local disturbance for exotic treatments, but not currently visible. Support area was subject to arson fire, but tree island did not suffer inappropriate fire.

2.5 Habitat Support/Buffer

Buffer > 300' - contains desirable plant species in sawgrass marsh. Tree islands in the landscape may host some exotic species however none were seen. Contiguous with offsite wetlands, including Everglades marshes with other tree islands in landscape. Almost 2000' west to US-1, no acceptable wildlife crossing or corridor connecting to offsite wetlands.

Buffer Type	(Score) x	(% of Area)	= Sub Total
Glades	2.5	1.00	2.5
		Total =	2.5

2.5 Field Hydrology (HID)

Hydrology adequate, plants healthy, no stress. Natural hydroperiod. US-1 is putting water on east side of Phase I. On west side of US-1 is a deep wide canal. Card Sound Road ditch is pulling water off the landscape, as it is deep enough to be hitting the surficial aquifer. May have some effects from these alterations in the landscape but this tree island looked healthy. No sign of subsidence. Clear water level indicators included adventitious roots, water stain lines, and buttressing.

3.0 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Entra est entra est (Ee)					
Land Use			= Sub		
Category	(Score) x	(% of Area)	Total		
natural undevel	3.0	1.00	3.0		
•	•	LU Total =	3.0		

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
natural undevel	3.0	1.00	3.0
•	-	PT Total =	3.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

$Glad_MAR_1\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Numbe	Assessment Area Name or Number		or Number	
FPL / EMP			NA		Glad_	MAR_1
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size
641 Fresh Water Marsh		none			Mitigation Bank	93 ha (230 ac)
Basin/Watershed Name/Number A	Affected Waterbody (Clas	SS)	Special Classification	on (i.e.C	DFW, AP, other local/state/federal	designation of importance)
SE FL Coast HUC 03090202	Class I	III			none	
Geographic relationship to and hydro	ologic connection with	wetlands, other su	ırface water, uplar	nds		
Contributes to the greater E	verglades area and co	ontributes freshwa	ter inflow to Manat	tee Ba	y, part of the Barnes So	ound waterway.
Assessment area description						
Marl Everglades marsh dominate species. Area					mix of additional gramir I separately as DABUTI	
Significant nearby features			Uniqueness (collandscape.)	nsideri	ing the relative rarity in	relation to the regional
Across US1 and Card Sound Rd. fr Basin owned by SFWMD. Lack shoulde				earby	n conservation by state areas slated for restora banized Miami-Dade ar	tion. North is highly
Functions			Mitigation for previous permit/other historic use			
Trap and cycle organic materials						
estuaries; provide important food che production; provide habitat and nurs habitat for many transient and	sery grounds for many	species; provides	Canais previou	usiy ar	vided and drained area backfilled	- portions have been
Anticipated Wildlife Utilization Based that are representative of the assess be found)		•	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Odocileus virginianus (white-tailed Peromyscus gossypinus (cottor Sylvilagus palustris (marsh rabbit), herodias (great-blue heron), Buto	n mouse), <i>Procyon loto</i> <i>Callinectes sapidus</i> (b	or (raccoon), blue crab), <i>Ardea</i>	Egretta caerulea (little blue heron)SSC, Egretta tricolor (tricolored heron)SSC, Egretta thula (snowy egret)SSC, Mycteria americana (wood stork)E, Aramus guarauna (limpkin)SSC, Egretta thula (snowy			
arachnids (spiders), abundant i		**	, ,	•	mississippiensis (alliga C), Puma concolor con	**
Observed Evidence of Wildlife Utiliza	ation (List species dire	ctly observed, or c	other signs such as	s track	s, droppings, casings, i	nests, etc.):
Spiders throughout sawgrass marsh, including triangular spider eggs; dragonflies; greater yellow legs flying overhead; game trails visible to and from tree islands; small holes in periphyton mat perhaps from small animals such as crabs, crayfish, etc.; tree swallows flying overhead; palm warbler; white peacock butterfly.						
Additional relevant factors: Entire area is approximately 93 ha; v to that; button wood in small patches road widening mitigation will treat ex- easy to walk on except for softness o some standing water; can hear US 1 and forms a mat on water surface, w trails leading south from tree island.	routing < 1m; bord action; very even Muhlenbergia capill erlines along US 1	ders of elevat <i>laris</i>) l , some	f bank have exotic spection in marsh, gradual chave slightly higher elevertowers in the distance	cies established, FDOT changes in elevation, vation; oily deposits on ; periphyton very thick		
Assessment conducted by:			Assessment date	e(s):		
Kelly Chinners Reiss, Erica Hernandez			12/7/2005			

Glad_MAR_1 Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

,		Application Number		Assessment Area Name or Number	
FPL / E	MB	NA		Glad_MAR_1	
Impact or Mitigation		Assessment conducted by:		Assessment date	
Mitigation	Bank	Kelly Chinners Reiss, Erica F	Hernandez		12/7/2005
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present (0)
The scoring of each	, , ,	Condition is less than		`,	,,
indicator is based on what would be suitable for the	Condition is optimal and fully supports wetland/surface	optimal, but sufficient to maintain most		vel of support of /surface water	Condition is insufficient to provide wetland/surface
type of wetland or surface	water functions	wetland/surface water		inctions	water functions
water assessed		functions			
A variety of habitats are generally available, but there is some reduced an and also habitat loss to the north due from the mine and urban developm the likelihood of larger land mammals (ex. Florida panthers) using the arc composition in adjacent areas is composed of exotic species such as this (especially Australian pines, <i>Casuarina</i> species). Wildlife access for land (US1 on west and Card Sound Rd. to east) and flying species may have tower lines. Downstream flow not limited by distance or barrier, there she enhancement activities. Adjacent roads, towers, canals, and Florida Roc impacts on fish and wildlife. No hydrologic restrictions preventing down so discharge (volume) due to Card Sound Rd. on eastern edge, which has a running parallel to the road that pulls substantial surficial groundwater flor			oment (roads to ea area. Some of the thin, narrow strips and bound species be complication with should be increase tock mine (to the roads tock mine (to the roads) as a channelized ca flow from the north	ast and west). This will limit e plant community surrounding the bank s is impeded by roadways th power lines and radio ed freshwater out flow from north) have negative but perhaps less water anal nern adjacent areas, in	
current with	v	v of freshwater in this area. Do low. There are many edge effe		•	
7	support because it is such a	, ,	Cla deachibe	ed fiere - and mac	on or the area mas interior
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	not show signs of atypical fire. Vegetation appropriate, no indicators of atypical hydrologic conditions. Vegetation shows no signs of hydrologic stress. The occurrence of wildlife/animal species present was less than expected. In general, the area was species poor, with some burrows in periphyton/marl patches. This may have been a factor of the late visit (December), the cool weather, or other undetermined factors. There				getation species. Water s visible. Fire history does ic conditions. Vegetation was less than expected. In etermined factors. There ater frequency, depth, or a organic sheen. No water at water surface.
Bladderwort (<i>Utricularia</i> sp.) in bloom, southern swamp-lily (<i>Crinum americanum</i>) in fruit. Site well revege after early spring fire. No shrub or tree layers - this is a marl flats marsh. Some mortality of very young buttonwoods (<i>Conocarpus erectus</i>) from fire, all buttonwoods less than 1m tall. This was appropriate for twetland system. No coarse woody debris anticipated or found. Plants in good condition - no evidence of or spindly growth, no signs of insect damage. Land management appears optimal, no controlled burns habeen permitted due to permitting issues - they have had wildfires which burned across the site in a timely in Topographic features were slight - some were visible with a shift in the dominant species			y of very young as appropriate for the no evidence of chlorotic ontrolled burns have yet ne site in a timely interval.		
w/o pres or current with composition - this was appropriate for the wetland system. Periphyton and bladderwort cover was normal and appropriate for area. Constant threat of exotic species encroached in the developed south Florida environment, plus some concern over ability to conduct regular controlled burns due to permitting issues. Vegetation cover slightly less than reference condition based on low percent cover estimates.				uth Florida environment,	
Coors - sum of about	If proportion as	ation		For import car	ament group
Score = sum of above scores/30 (if uplands, divide by 20)	, , , , , , , , , , , , , , , , , , , ,	·	<u> </u>	For impact asses	sment areas
current or w/o pres with	Preservation adjustmen Adjusted mitigation deli		FL =	delta x acres =	
0.83]				
	If mitigation		F	or mitigation asse	essment areas
Delta = [with-current]	Time lag (t-factor) =				
	Risk factor =		RFG	= delta/(t-factor x	risk) =

Glad_MAR_1 Wetland Rapid Assessment Procedure, page 1

Project Name: Glad_MAR_1

Date: 12/2/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Marl Everglades

Wetland Size: ~93 ha (230 ac)

FLUCCS Code/Description: 6411 Freshwater marsh sawgrass

2.5	Wildlife Utiliz	ration (WU)	
N/A	Wetland Canopy (O/S)		
3.0	Wetland Ground Cover (GC)		
1.6	Habitat Support/Buffer		
2.5	Field Hydrology (HYD)		
2.1	WQ Input & Treatment (WQ)		
11.7	SUM		
5	Count		
0.78	WRAP		

Glad_MAR_1 Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Some small holes in periphyton mat, could be made by crustaceans. Some limited game trails seen leaving tree islands. Did not see macroinvertebrates, forage fish or amphibians in water. Periphyton is 100% cover on water surface and on the bladderwort (*Utricularia* sp.) roots, maybe these organisms are not visible because of this. Early morning site visit on a relatively cool day for south Florida, did have some butterflies and dragonflies, some birds flying overhead. Natural tree islands with abundant habitat support and food sources in landscape. Human disturbances includes US1 on western boundary of wetland assessment area, the road is between 55-70 m wide and has high density traffic. Road kill was visible. On the eastern edge of Phase I is Card Sound Road, traffic is moving fast but is less dense and the road is more narrow than US1. Major power lines on the side of the road and some towers in the landscape outside the bank.

N/A Wetland Canopy (O/S)

3.0 Wetland Ground Cover (GC)

Low diversity in ground cover expected due to type of wetland. Looks well vegetated after an early spring wildfire. No exotics. Species composition includes all desirable species. No exotic, invasive, or nuisance species identified in the groundcover. Some disturbance to ground cover from low impact vehicle and fire plow lines from DOF. Low impact vehicles left tracks but did not appear to have left damage such as rutting or destroying vegetation. Will be managed with fire. Wildfire burned in a patchy mosaic, leaving some un-burned areas with thicker cover.

1.6 Habitat Support/Buffer

West side, quarter of buffer < 30' with exotics and US1 road (0). North buffer > 300' some exotics but mostly native open glades (2). East side Card Sound Road has narrow vegetated with strip with exotic species (1.5). South natural glades (3).

Buffer Type	(Score) x	(% of Area)	= Sub Total
West	0	0.25	0.00
North	2	0.25	0.50
East	1.5	0.25	0.38
South	3	0.25	0.75
		Total =	1.6

2.5 Field Hydrology (HID)

Canals on Phase I have been back filled. Closer to US1 and Card Sound Roads there is some ditching and drainage off the roads that may affect the edges of Phase I. Vegetation looks healthy. Hydroperiod appears normal. Some sheet flow may be interrupted by outside factors. Card Sound Road ditch is deep enough to reach surficial aquifer, this ditch had very strong southward flow.

2.1 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
high vol. hwy	1.0	0.50	0.5
mining	1.0	0.25	0.3
nat. undeveloped	3.0	0.25	0.75
-		LU Total =	1.5

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
wet detention	2.5	0.50	1.25
wet detention with dry	2.5	0.25	0.63
undeveloped	3.0	0.25	0.75
•		PT Total =	2.63

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

$Glad_MAR_1\ Hydrogeomorphic\ Approach,\ page\ 1$

Variable Subindex and FCI Calculation for Florida Marl Flats Glades

Assessment Team:

Project Name: Glad_MAR_1

Location: FPL Everglades Bank

Date: 12/2/05 Subclass: Marl Flats

Function	FCI
Surface and Subsurface Water Storage	1
Cycle Nutrients	0.95
Characteristic Plant Community	0.98
Wildlife Habitat	0.96

Variables	Measure	Units	Subindex
VTRACT	> 8000	ha	1
VCORE	84	%	1
VCONNECT	90	%	1
VMICRO	0	%	1
VWOODY	0	%	1
VINVASIVE	0	%	1
VMAC	26	%	0.68
VPERI	99	%	1
VSURTEX	100	%	1
VCOMP	100	%	1

Glad_MAR _2 Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name	Application Number		er Assessment		ssessment Area Name	ssment Area Name or Number	
FPL/EMB	FPL/EMB		NA Glad_MAR_2		MAR_2		
LUCCs code Further classification (optional)				l		T	
FLUCCs code		ition (optional)		Impact	or Mitigation Site?	Assessment	Area Size
SFWMD 1999 6411 fresh water marsh sawgrass more specifically, high mars		h/tidal flats	١	Mitigation Bank	2.2 ha	(5.4 ac)	
Basin/Watershed Name/Number Affect	cted Waterbody (Cla	ss)	Special Classificati	ion (i.e.OF	W, AP, other local/state/federa	al designation of in	nportance)
SE FL Coast HUC 03090202	Class	III			none		
Geographic relationship to and hydrolog	gic connection with	wetlands, other su	urface water, uplai	nds			
Contributes to the greater Everglade	utes fresh/brackis	h water inflow to N	Manatee	Bay, part of the Barn	nes Sound wa	aterway.	
Assessment area description							
High marsh, canal back filled in 1998, a drains the s	appears to be in tra surficial aquifer from					ng Card Sou	nd Rd. that
Significant nearby features			Uniqueness (co landscape.)	nsiderin	g the relative rarity in	relation to th	e regional
Across US1 and Card Sound Rd. from Basin owned by SFWMD. Lack of a shoulder by	exotic species conti		1	earby a	conservation by state reas slated for restora anized Miami-Dade a	ation. North	-
unctions			Mitigation for pre	vious pe	ermit/other historic use	e	
Trap and cycle organic materials with downstream detrital export to estuaries; provide important food chain resources with high rate of primary production; provide habitat and nursery grounds for many species; provides habitat for many transient and resident fish and wildlife species.			1 ' '				
Anticipated Wildlife Utilization Based on hat are representative of the assessme pe found)		•		T, SSC)	Listed Species (List s), type of use, and into		•
Odocileus virginianus (white-tailed deer), Oryzomys palustris (rice rat), Peromyscus gossypinus (cotton mouse), Procyon lotor (raccoon), Sylvilagus palustris (marsh rabbit), Callinectes sapidus (blue crab), Ardea herodias (great-blue heron), Butorides striatus (green-backed heron), arachnids (spiders), abundant insects, other small to medium size mammals, variety of birds, snakes, perhaps additional species that can tolerate brackish water conditions as well.			Egretta caerulea (little blue heron)SSC, Egretta tricolor (tricolored heron)SSC, Mycteria americana (wood stork)E, Aramus guarauna (limpkin)SSC, Egretta thula (snowy egret - SSC), Alligator mississippiensis (alligator - SSC), Eudocimus alba (white Ibis - SSC), Puma concolor coryi (Florida panther)E.				
Observed Evidence of Wildlife Utilizatio			other signs such a	s tracks	, droppings, casings,	nests, etc.):	
Numerous song birds, raptor, wading birds, evidence of alligator trail, racc and amph				shallow	pools. Good diversity	of macroiny	rertebrates
Additional relevant factors:							
Three constructed tree islands occur wi Habitats: mangroves present.	thin the wetland as	sessment area. F	WCC Strategic H	abitat Co	onservation Areas: pr	iority habitat.	. FMRI
Assessment conducted by: Kelly Chinners Reiss, Erica Hernandez			Assessment date	e(s):			12-Dec-05

Glad_MAR _2 Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Number
FPL/EN	МВ	NA		Glad_MAR_2	
Impact or Mitigation		Assessment conducted by:		Assessment date	: :
Mitigation	Bank	Erica Hernandez, Kelly Chinners Reiss		12/12/2005	
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present (0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than ly optimal, but sufficient to Minimal level of support of Condition is insu			
.500(6)(a) Location and Landscape Support w/o pres or current with	Habits outside the wetland assessment area support most wildlife species, but there is some reduced availability adjacent habitat, mainly it transitions into fresh water marsh but then transition into upland that has been used a Florida Rock mine. Some invasive exotic species occur in the proximity to the wetland assessment area, particularly along roads and to the area to the east that has not yet been restored. Wildlife access is partially lir by a canal to the east along Card Sound Rd. and also the road itself. There is a "quick sand" substrate within the backfilled interior canal in pools with less dense vegetation and shallow pools of open water, however these are are still colonized by vegetation and have evidence of wildlife use (small fish, crabs, crayfish, etc.). Downstrear functions are generally not limited to by distance or barriers (excluding fragmentation of landscape by road ways creating some disturbance to historic sheet flow). Land use outside the wetland assessment area do have som minimal impacts to fish and wildlife (ex. Card Sound Rd, transmission tower). The opportunity for the wetland assessment area to provide downstream benefits has not been limited by impediment but some florestrictions do occur because of the eastern canal pulling out ground water from surficial aquifer upstream, redi				
8	substantial adverse impacts i	Downstream habitats receive f quality were altered.			
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	water environments, but the species were appropriate for the system type. The composition was not necessarily a expected but not a sign of hydrologic issues. Plants appeared healthy, no signs of stress, though there was patchy evidence of grazing (from Lubber grasshoppers?) on the red mangrove leaves. The freshwater pools were full of wetland dependent species. These species were abundant, more so than anticipated due to artificial topographic relief from pooled areas in filled canal footprint. There were no plant				
8	low salinity.	ration). No water quality data	available, c	Accet 470 Saminy	lested in one poor indicates
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	Plant cover was by appropriate species. There were red mangrove (Rhizophora mangle), spikerush (Fleocharis				
Score = sum of above scores/30 (if uplands, divide by 20)	If preservation as mitigate	ation,		For impact assess	sment areas
current or w/o pres with	Preservation adjustmer Adjusted mitigation delt		FL = (delta x acres =	
0.83					
	If mitigation		F	or mitigation asse	ssment areas
Delta = [with-current]	Time lag (t-factor) =		REG	= delta/(t-factor x	risk) =
	Risk factor =		IN G	acita/(t-lactol X	non, -

Glad_MAR _2 Wetland Rapid Assessment Procedure, page 1

Project Name: Glad_MAR_2

Date: 12/2/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: High marsh, canal back filled in 1998, appears to be in transition from sawgrass marsh to high marsh.

Wetland Size: 2.2 ha (5.4 ac)

FLUCCS Code/Description: FLUCCS SFWMD 1999 6411 fresh water marsh sawgrass more specifically, high marsh/tidal flats in the wetland assessment area.

0.80	WRAP		
6	Count		
14.4	SUM		
2.4	WQ Input & T	reatment (WQ)	
2.0	Field Hydrology (HYD)		
2.0	Habitat Support/Buffer		
2.5	Wetland Ground Cover (GC)		
3.0	Wetland Canopy (O/S)		
2.5	Wildlife Utilization (WU)		

Glad_MAR _2 Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Numerous song birds, raptor, wading birds, evidence of alligator trail, raccoon tracks, fish in shallow pools. Good diversity of macroinvertebrates and amphibians. Upland food sources in tree islands located within marsh. Restored canal has a footprint where disturbance is evident, though the vegetation and wildlife use appeared similar to surrounding area within the footprint of the restored canal. Soil substrate is sometimes less in footprint of restored canal. Some man made structures in the landscape: tower south of wetland assessment area, small ditch, and Card Sound Road. Abundant habitat support, good habitat structure, abundant cover in mangroves, tree islands, and buttonwood (*Conocarpus erectus*) snags.

3.0 Wetland Canopy (O/S)

Low shrubby red mangroves (*Rhizophora mangle*), some taller and more mature patches mixed in with buttonwood (*Conocarpus erectus*) in landscape. Some buttonwood snags. No exotics and no undesirable species. Strong evidence of natural recruitment in red mangroves. Numerous sprouted propagules. Uneven age distribution. Healthy live canopy trees, some evidence of grazing on mangrove leaves.

2.5 Wetland Ground Cover (GC)

No exotic, invasive, or nuisance species. Vegetation is patchy. Human induced impacts apparent in restored canal footprint. Substrate is very soft in some areas where there are vegetation gaps and shallow open pools. As part of restoration sawgrass (*Cladium jamaicense*) was planted but is transitioning out and not present in great numbers. Three to four additional species were planted as well after the canal was backfilled. The vegetation is also characterized by patches of spikerush (*Eleocharis* sp.) and saltgrass (*Distichlis spicata*). Species composition has shifted since planting and is now dominated by short red mangrove (*Rhizophora mangle*) patches.

2.0 Habitat Support/Buffer

East: ditch and Card Sound Road, exotic spp. on road, Phase II past road with more available habitat and Australian pine (*Casuarina* sp.). Buffer < 30' with some desirable species. South: >300' average buffer within bank with desirable species, on borders there are exotic species. North: habitat loss outside of bank, rock quary. West: US1, no connection to offsite wetlands but considerable distance from wetland assessment area, > 300'. Loss of corridors off the property on west and north.

Buffer Type	(Score) x	(% of Area)	= Sub Total
East	1	0.25	0.25
South	2	0.25	0.50
West	2.5	0.25	0.63
North	2.5	0.25	0.63
		Total =	2.0

2.0 Field Hydrology (HID)

Hydrology adequate to maintain viable wetland. May have external influences. Close distance to ditch on Card Sound Road which is deep enough to drain surficial aquifer. Plants appear healthy, species composition is shifting due to changes in salinity(?). 4ppt salinity detected with refractometer in shallow pool. No soil subsidence, no transitional species encroachment. Rack line distinct from marsh into tree islands.

2.4 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
natural undevel	3.0	0.75	2.25
high volume hwy	1.0	0.25	0.25
		LU Total =	2.5

PRETREATMENT CATEGORY (PT)

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
natural undevel	3.0	0.75	2.25
no treatment	0.0	0.25	0.00
•	•	PT Total =	2.3

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

$Glad_MAR_3\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name Application Number		er Assessment Area Name or Numbe		or Number		
FPL/EMB			NA Glad_MAR_3		MAR_3	
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size
6410 Freshwater Marsh	•	; Perrine Marl and s, very poorly drai	and Lauderhill Muck drained		Mitigation Bank	8.1 ha (20.0 ac)
Basin/Watershed Name/Number	Affected Waterbody (Clas	ss)	Special Classificati	on (i.e.0	DFW, AP, other local/state/federal	designation of importance)
SE FL Coast HUC 03090202	Class I	II			none	
Geographic relationship to and hydr	ologic connection with	wetlands, other su	ırface water, uplar	nds		
Historically would have contributed Now, this triangular shaped wetlar			sentially hydrologi			
Assessment area description						
Marl Everglades marsh dominated by patches of sawgrass (<i>Cladium jamaicense</i>) or spikerush (<i>Eleocharis</i> sp.) with a very limited mix of addition graminoid and herbaceous species. Area has not undergone restoration/enhancement activities.					limited mix of additional	
Significant nearby features			Uniqueness (collandscape.)	nsider	ing the relative rarity in	relation to the regional
Across Card Sound Rd. from Phase I, where restoration/enhancemen activities have been completed. Further west across US1 is the Southe Glades and Model Lands Basin owned by SFWMD. Lack of exotic spec control on highway shoulder by FDOT.			Some nearby areas in conservation by state or water management districts, so nearby areas slated for restoration. North is highly urbanized Miami-Dade area			
Functions			Mitigation for previous permit/other historic use			
Trap and cycle organic materials with downstream detrital export to estuaries; provide important food chain resources with high rate of primary production; provide habitat and nursery grounds for many species; provides habitat for many transient and resident fish and wildlife species.			unknown			
Anticipated Wildlife Utilization Based that are representative of the asses be found)		•	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Odocileus virginianus (white-tailed deer), Oryzomys palustris (rice rat), Peromyscus gossypinus (cotton mouse), Procyon lotor (raccoon), Sylvilagu palustris (marsh rabbit), Callinectes sapidus (blue crab), Ardea herodias (great-blue heron), Butorides striatus (green-backed heron), arachnids (spiders), abundant insects, other small to medium size mammals, variety of birds, snakes, etc.			Egretta caerulea (little blue heron)SSC, Egretta tricolor (tricolored heron)SSC, Mycteria americana (wood stork)E, Aramus guarauna (limpkin)SSC, Egretta thula (snowy egret - SSC), Alligator mississippiensis (alligator - SSC), Eudocimus alba (white lbis - SSC) Puma concolor coryi (Florida panther)E.			
Observed Evidence of Wildlife Utiliz		ctly observed, or o	ther signs such a	s track	s, droppings, casings, r	nests, etc.):
Evidence of rail, kingfisher overhead, American bittern, small fish, dragonflies, cricket frogs, snails, snipe, crayfish, clams. Evidence limited t smaller species - no evidence of large mammals or reptiles - did see aquatic macroinvertebrates, amphibians and forage fish. No game trail visible.						
Additional relevant factors:						
FWCC Biodiversity Hotspots: 7+ focal species overlap. FWCC Priority Wetlands: 1-3 species, wetland habitat. FMRI Habitats: mangroves and salt marshes present.					ats: mangroves and	
Assessment conducted by:			Assessment date	e(s):		
Kelly Chinners Reiss, Erica Hernandez						14-Dec-05

Glad_MAR_3 Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name			Application Number		Assessment Area	Name or Number
	FPL/EN	ИВ	NA		Glad_MAR_3	
Impact or Mitigation			Assessment conducted by:		Assessment date:	
Mit	itigation I	Bank	Kelly Chinners Reiss, Erica I	Hernandez		12/14/2005
Scoring Guidance The scoring of each		Optimal (10)	Moderate(7) Condition is less than	Mi	nimal (4)	Not Present (0)
indicator is based on what		Condition is optimal and fully	optimal, but sufficient to			
would be suitable for the type of wetland or surface		supports wetland/surface water functions	maintain most wetland/surface water		/surface water unctions	provide wetland/surfact water functions
water assessed		water furietiene	functions		ariodorio	water ranetiene
		Habitate around the wetland	assessment area support som	e requirem	ante for wildlife en	acies There is onen
			ative tree islands and lack of s			
.500(6)(a) Location a			e nearby areas are moderately unctions. Wildlife access is pa			•
Landscape Support		9	Also, Card Sound Rd., a 2-lan	•	•	
			ent area have adverse impact arson, shotgun shells, etc. De		•	•
			xchange of water and wildlife			
w/o pres or		, , ,	ediments. Downstream no lon he glades, so while downstrea	0	, ,	,
current 5		o o	not solely dependent on histo	•	very impacted by t	ne lack of water lilliows
3		outflows from this small area.			. 511 history these	at laviala tha
		-	different than expected. Wate have significant variation in wa		•	
.500(6)(b)Water Environ			rned through in 2004, fire inte			
(n/a for uplands)		, , , , , , , , , , , , , , , , , , ,	nrubby remains, etc. Vegetati m jamaicense) from intensity			•
		requirements such as fish, cr	ayfish, frogs, marsh bird spec	ies. No veg	etation species pr	esent indicative of water
w/o pres or		. ,	erhaps some cattail (<i>Typh</i> a sp e water quality data. Water de	, .		•
	with		species cover/density, this is e			
7		high sawgrass mortality from	• •			
.500(6)(c)Community str	ucture		ecies, invasive exotics are pre dium jamaicense) grew at a lo			•
		marsh there are "dead" Austr	alian pine (Casuarina sp.) thr	oughout fro	m fire, the land ma	anager suggested these v
Vegetation and/o			e standing dead remains, we he. Course woody debris maybe			
Benthic Communit		marsh and falling onto surfac	e, however the UMAM rule sa	ys this shou	ıld be "native" veg	etation - clearly Australiar
w/o pres or			did not feel it appropriate to co good condition. Land manage			•
•		berms on all sides. Topograp	phic features appear optimal for	or the area l	being assessed, tl	
6		· ·	than normal (perhaps remnan pected. Lower regeneration a		, ,	enaciae richnaee
		i onpristori growth was as ex	pootou. Lower regeneration a	morpateu.	Complete lack Of	opeolog Horillegg.
Score = sum of above scores	s/30 (if	If preservation as mitig	ation		For impact asses	sment areas
uplands, divide by 20	(
current	s a siddle	Preservation adjustment factor = FL = delta x acres =				
or w/o pres 0.60	with	Adjusted mitigation delt				
0.00				<u></u>		
		If mitigation		F	or mitigation asse	ssment areas
Delta = [with-current	t]	Time lag (t-factor) =		<u>⊢</u>		
		Risk factor =		RFG	= delta/(t-factor x	risk) =
				<u> </u>		
Form 62-345 900(2) Ε Δ C	Coffoo	tive data 02 04 20041				

Glad_MAR_3 Wetland Rapid Assessment Procedure, page 1

Project Name: Glad_MAR_3

Date: 12/2/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: This site has not yet undergone restoration or enhancement activities. It occurs in Phase II of the mitigation bank. A fire burned through in 2004 (from arsen) and burned an uneven mosiac throughout the sawgrass patches.

Wetland Assessment Area: 8.1 ha (20.0 ac)

FLUCCS Code/Description: 1995 SFWMD 6410 Freshwater Marsh

1.5	Wildlife Utilization (WU)		
N/A	Wetland Canopy (O/S)		
2.0	Wetland Ground Cover (GC)		
1.5	Habitat Support/Buffer		
2.0	Field Hydrology (HYD)		
2.8	WQ Input & Treatment (WQ)		
9.8	SUM		
5	Count		
0.65	WRAP		

Glad_MAR_3 Wetland Rapid Assessment Procedure, page 2

1.5 Wildlife Utilization (WU)

Evidence of rail, kingfisher overhead, American bittern, small fish, dragonflies, cricket frogs, snails, snipe, crayfish, clams. Evidence limited to smaller species - no evidence of large mammals or reptiles - did see aquatic macroinvertabrates, amphibians and forage fish, not abundant upland food sources - no nearby tree islands, just scrubby species along berms. Some cover in wetland, lack of abundant cover, vegetation not dense. Obvious evidence of human disturbance. No game trails visible. ATV trails show evidence of human disturbance plus roads/berms.

N/A Wetland Canopy (O/S)

2.0 Wetland Ground Cover (GC)

Moderate cover of desirable groundcover species. Cover was by desirable species, but there was a general lack of species richness throughout. Patchy areas with either sawgrass (*Cladium jamaicense*) or spikerush (*Eleocharis* sp.), limited other species. Perhaps higher mortality of species (had burned over 1 year ago and had 2 years of growing season to recover) from the arsen fire than would be anticipated (based on visual comparison from same wetland type that has already undergone enhancement/restoration activities.

1.5 Habitat Support/Buffer

Buffer >300' wide but that includes the dirt road and the berm, so not desirable cover necessarily because the berm is lined with undesirable species. Patches of punktree (Melaleuca quinquenervia) and Australian pine (Casuarina sp.). Support area hosts exotic and invasive species, this area has not yet undergone enhancement. There are some species that provide desirable cover and food.

Buffer Type (Score) x (% of Area) = Sub Total
Disturbed habitat 1.5 1 1.5

Interval 1.5

Total = 1.5

2.0 Field Hydrology (HYD)

Has been maintained as a wetland. Stain lines show water levels have receded by 4-5." Wetland assessment area forms a triangle with impounded berms on all three sides, so hydrology is not "natural" as this area is adjacent to berms that alter hydrology by eliminating sheet flow into and out of the system. This changes drainage area. Plants appear healthy but show evidence of stress and changes (low richness, patchiness etc).

2.8 WQ Input & Treatment (WQ)*

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

^{**}In wetland systems that are totally isolated (i.e., bermed) from surrounding areas and receive rainfall as part of the water budget, the evaluator should not consider the surrounding land use pretreatment rating index. A water quality score of 2.75 should be assigned under this scenario. (Miller and Gunsalus 1999, page 20)

$Glad_MAR_3\ Hydrogeomorphic\ Approach,\ page\ 1$

Variable Subindex and FCI Calculation for Florida Marl Flats Glades

Assessment Team:

Project Name: Glad_MAR_3

Location: FPL Everglades Bank

Date: 12/2/05 Subclass: Marl Flats

Function	FCI
Surface and Subsurface Water Storage	1
Cycle Nutrients	0.9
Characteristic Plant Community	0.96
Wildlife Habitat	0.9

Variables	Measure	Units	Subindex
VTRACT	> 8000	ha	1
VCORE	79	%	1
VCONNECT	65	%	0.85
VMICRO	0	%	1
VWOODY	0	%	1
VINVASIVE	0	%	1
VMAC	15	%	0.4
VPERI	99	%	1
VSURTEX	100	%	1
VCOMP	100	%	1

Appendix B-11. Florida Mitigation Bank

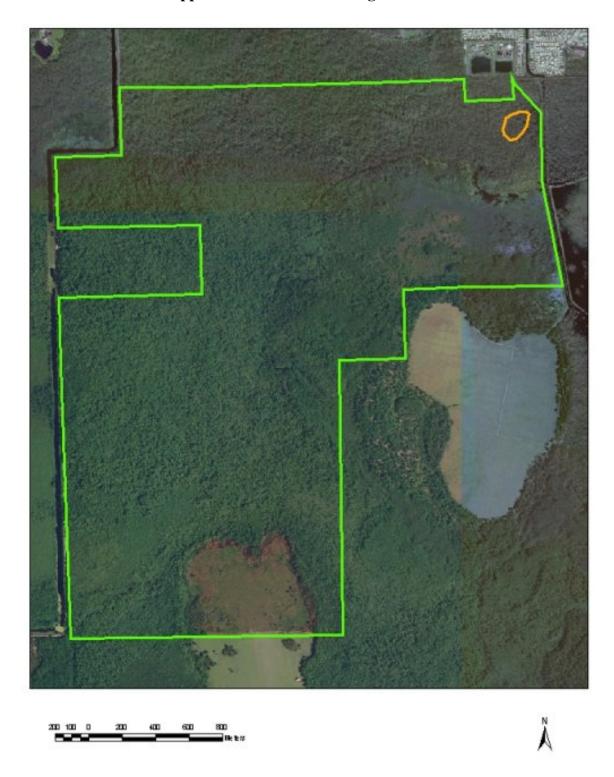


Figure B-11.1. Landscape location of Florida Mitigation Bank (green line). Boundary of the wetland assessment area FLMB_FOR (orange line) shown.

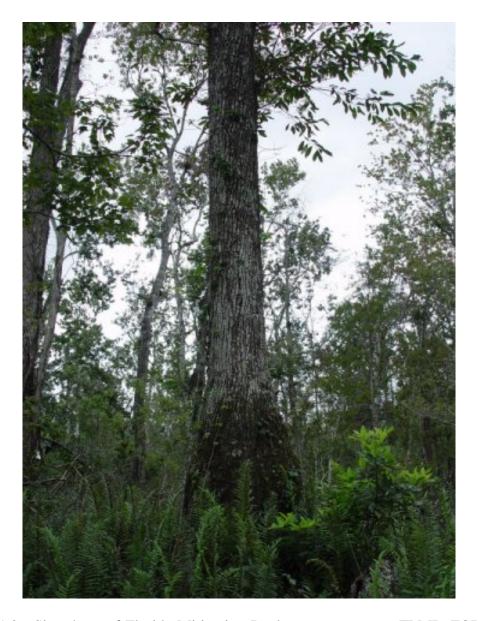


Figure B-11.2. Site photo of Florida Mitigation Bank assessment area FLMB_FOR a wetland forested mixed system adjacent to a large marsh. This forested system has been impacted by years of hydrologic impacts and more recent hurricanes.

FLMB_FOR Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Numbe	er		Assessment Area Name	or Number
Florida Mitigation Bank		NA			FLMB_FOR	
		ti-a (antional)	n (ontional)			
		tion (optional)	ion (optional)		t or Mitigation Site?	Assessment Area Size
1995 SFWMD 6300 Wetland Foresto Mixed	Hontoon Mu	uck soils, very poo	very poorly drained.		Mitigation Bank	1.8 ha (4.4 ac)
Basin/Watershed Name/Number Affected Waterbody (Class)		ss)	Special Classificati	on (i.e.C	DFW, AP, other local/state/federa	designation of importance)
Kissimmee River HUC 03090101	III			none		
Geographic relationship to and hydrol Water empties from this forested wetl	ek. Receives wate	er from channelize	d Ree			
of this watershed is extremely fragme treatment facilities, etc.).	nted from large roads	; (i.e. US-192, I-4,	etc.) and urban d	evelop	ment (residential, comi	mercial, wastewater
Assessment area description	Ligh ovidence of	asillosa moseur	ad at least 70cm in	orone	Trace are stressed (sith or due to historia
Historically the area was highly draine drainage or now currently flooded con regime. There are numerous invasive	nditions, this area is in	a state of transition	on, and it is unclea	ar if the		
Significant nearby features			Uniqueness (collandscape.)	nsideri	ng the relative rarity in	relation to the regional
The channelized Reedy Creek is to the west, and the channelized Shingle Creek is to the east. There are other area lakes and creeks, but also a great deal of urban development (ex. the town of Celebration, the Kissimmee Municipal Airport).			This site is still undeveloped, compared to nearby urban areas, but it is a highly disturbed system.			
Functions			Mitigation for prev	vious p	permit/other historic use	•
Important habitat for wildlife. Flood storage, aquifer recharge, and nutrient cycling. Provides cover to many species. Offers refugia for migrating birds Provide permanent water pools for wildlife while improving water quality an controlling quantity. Structural and species diversity within canopy layer supports one of the most productive and diverse habitats.			unknown			
Anticipated Wildlife Utilization Based of that are representative of the assessment found (•		T, SSC	y Listed Species (List s C), type of use, and inte	
Mole salamander, tiger salamander, of frog, pinewoods tree frog, barking frog little grass frog, narrowmouth toad, easnapping turtle, mud turtles, eastern rewallow-tailed kite, barred owl, pileate flycatcher, prothonotory warbler, rusty white-tailed deer, striped skunk, arma cotton rat, flycatchers, warblers, red-swoodpecker, northern bobwhite, soutl diamondback rattlesnake, yellow rat s	g, squirrel frog, souther spadefoot toad, mud snake, cottonmot ed woodpecker, greaty blackbird, raccoon, budillo, cottontail rabbit, shouldered hawk, piles hern black racer, east snake, pygmy rattlesnake.	ern chorus frog, I, snakes, uth, wood duck, -crested bobcat, opossum, cotton mouse, ated tern ake	crane (T), woods great egret (SSC	tork (E), little	green heron (SSC)	C), tricolor heron (SSC),
Observed Evidence of Wildlife Utilizat	ion (List species direc	ctly observed, or o	other signs such as	s track	s, droppings, casings,	nests, etc.):
Evidence of macroinvertebrates, forage fish, amphibians, anoles, some game trails and matted vegetation indicating large mammal or possible reptiles. White peacock butterfly, red shouldered hawk, black swallowtail, caterpillars on cattails (<i>Typha</i> sp.), green tree frog, green anoles, red bellied woodpecker, kingfisher, brown anoles.						
Additional relevant factors:						
This represents an evaluation of curre overlap; FWCC Priority Wetlands: 1-3			reas: bird rookery;	; FWC	C Biodiversity Hotspots	:: 7+ focal species
Assessment conducted by:			Assessment date	e(s):		
Erica Hernandez, Kelly Chinners Reis	ss					11-Oct-05

FLMB_FOR Uniform Mitigation Assessment Method, page 2
PART II – Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

				(See Section	18 62-345.500 and .	.000, 1 .7	٦.٥.)			
Site/Project Name			Application Number		Assessment Area Name or Number					
Florida Mitigation Bank		NA			OSSWIM					
Impact or Mitigation		Assessment conducted	l by:		Assessment date	9:				
		Mitigation	Bank		Kelly Chinners Reiss,	Erica Herr	nandez	10/11/2005		
Soori	ing Guidance	_		Optimal (10)	Moderate(7)		Mi	nimal (4)	Not Presen	+ (0)
The scoring of each indicator is based on what Condi		dition is optimal and fully oports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most Minimal let wetland/		vel of support of /surface water unctions	Condition is insu provide wetland water funct	ifficient to			
w/o pres o	0(6)(a) Location andscape Supp or		berm consi partia effect actua the ti limite uses qualit	/canal barriers. Some of ists of invasive exotic spally limited with the wast at aquatic species. The a ally breach the berm, but me. The functions of the d by barriers that reduce have limited adverse im ty). Some hydrologic im	most needs of wildlife. So the plant community of the plant community of the plant towards and the plant the area does connect near this is a rare occurrence wetland assessment a the opportunity for the placts on fish and wildlift pediments occur - has occur. Downstream area	omposition mal and had not the north the top of e and the urea that be wetland a e (ex. this overflow st	n in the pas minim h and the berns a enefit fis seessme area is tructure	proximity of the whal adverse effect: e berm/canal to e berm/canal to e to the control of the co	etland assessmen s. Wildlife access ast - this would es water events and n limitations during vnstream are som e these benefits. f unknown source er levels to mainta	at area is is specially may most of ewhat Land and
8					d waters to Shingle Cree				adon nom the fore	otou
			of soil erosion or deposition was evident. No atypical fire scarring. Vegetation zonation shows facultative, invasive and nuisance species on hummocks and down woody debris. Other appropriate vegetation was found throughout conditions leaving the current canopy more vulnerable to hurricane windfall, disease, etc. Most trees have thinner canopies. Animal species not characteristic of specific hydrologic requirements but the site visit was in midday are it began raining. Connected to nearby wetland that had fish, macroinvertebrates, and wading birds. The nuisance to the system. Standing water covered with water spandles (Salvinia minima), water was tannic, alone in shallow.					NW e not as saturated a saturated a soil evidence invasive, oughout the ethinned dday and nuisance curbance shallow opriate.		
1.	Vegetation an Benthic Comm	d/or	necessarily by ideal species. Some regeneration by sweetbay (<i>Magnolia virginiana</i>), swamp bay (<i>Persea palustris</i> , swamp tupelo (<i>Nyssa sylvatica</i> var. <i>biflora</i>), red maple (<i>Acer rubrum</i>). Limited shrub regeneration. Overall considered to have greater than minimal regeneration. Coarse woody debris slightly greater or greater than anticipated probably due to past hydrologic stress, but this debris is still present throughout the wetland assessment area. Plant condition is generally good, but trees do have thinned canopies. Land management includes past water control (drained), but has been restored. Land management also includes exotic species removal. Topographic features show slightly more elevation than expected from excess woody debris and mortality. Age and size class distribution of canopy is not appropriate, as the system lacks the mid-size cohort and many of the larger trees that have fallen over. This may not be a permanent deviation because of the restored hydrology, but currently there are a greater number of dead or dying trees than is					not palustris), all an ent cies I mortality. many of		
			_			_				_
	sum of above so			If preservation as mitigate	ation,			For impact asses	sment areas	
current	olands, divide by	20)		Preservation adjustmen	nt factor =			delte v ec		
or w/o pre	es	with		Adjusted mitigation del	ta =		FL = 0	delta x acres =		

0.67

FLMB_FOR Wetland Rapid Assessment Procedure, page 1

Project Name: FLMB_FOR Fl Mitigation Bank

Date: 10/11/05

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Historically area was highly drained. High evidence of soil loss measured at least 70cm in areas. Trees are stressed either due to historic drainage or now currently
flooded conditions, this area is in a state of transition, and it is unclear if the established trees will
survive the new water regime. There are numerous invasive exotic and nuisance species throughout the
groundcover.

Wetland Assessment Area: 1.8 ha (4.4 ac)

FLUCCS Code/Description: 1995 SFWMD 6300 Wetland Forested Mixed

2.5	Wildlife Utilization (WU)			
1.5	Wetland Canopy (O/S)			
2.0	Wetland Ground Cover (GC)			
1.8	Habitat Support/Buffer			
2.0	Field Hydrology (HYD)			
0.9	WQ Input & Treatment (WQ)			
10.7	SUM			
6	Count			
0.59	WRAP			

FLMB_FOR Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Evidence of macroinvertebrates, forage fish, amphibians, anoles, some game trails and matted vegetation indicating large mammal or possible reptile use. Abundance of woody debris and snags from changing hydrology and hurricane damage. Refugia ponds formed from root ball hollows under downed trees. Lots of evidence of cavities. Severe soil subsidence left lots of den space under exposed roots. Adequate upland food sources nearby. Saw two deer stands and human footprints on a path to them, indicating some recent human disturbance.

1.5 Wetland Canopy (O/S)

Canopy is currently very open from recent hurricane damage and hydrologic stress. Some natural recruitment of red maple (*Acer rubrum*), swamp tupelo (*Nyssa sylvatica* var. *biflora*), and sweetbay (*Magnolia virginiana*). Canopy has uneven age distribution, there are not many large dbh trees, but there are some tall trees. Did see some Chinese tallow (*Sapium sebiferum*) in the midstory and as seedlings. Many snags, some probably due to pre-restoration hydrolic stress, hurricanes, and hydrologic restoration. There is the potential for the canopy to provide increased habitat support over time

2.0 Wetland Ground Cover (GC)

Torpedo grass (*Panicum repens*) growing in thick clumps in drier areas. Some native species growing within the patches of torpedo grass. Patches of invasive, exotic, or nuisance species including water hyacinth (*Eichhornia crassipes*); cattail (*Typha* sp.) with pickerelweed (*Pontederia cordata*) growing within it; some Caesar weed (*Urena lobata*) in patches, also growing in down woody debris; most open water areas otherwise covered in water spangles (*Salvinia minima*); patch of Peruvian primrosewillow (*Ludwigia peruviana*). Total cover by invasive or exotic species estimated at <25%.

1.8 Habitat Support/Buffer

South of this wetland opens up to more of the mitigation bank Buffer Type = Sub Total (Score) x (% of Area) 0.25 large basin marsh with open water, saw grass, and cypress, N - WWTP 1.5 0.4 large contiguous forested wetland through the bank and south. E - berm/canal 1.5 0.25 0.4 Far west boundary of bank is berm and then the C-1 canal W - berm/canal 1.5 0.25 0.4 0.25 S - wetland 0.6 with a forested wetland on other side. Most of the bank is buffered by either pasture or more forested wetland. East edge has a berm and then the Orin Brown Canal. Past this buffer is Poiciana Blvd. On the northern border is a sewage treatment plant, the effluent travels in pipes to spray fields south of the bank. Adjacent lands are continuous seed sources for exotic vegetation. Portions connected to off site wetlands. Flows into Shingle Creek and then Lake Taho. The main hydrologic connections are into the bank from the C-1 Canal and off the bank at control structure into the Orin Brown Canal. Does not appear to be interchanging flow, could limit some species dispersal. Berms could limit some dispersal.

2.0 Field Hydrology (HYD)

Evidence of severe soil subsidence from historical land use. Hydrology has been somewhat restored. Trees are obviously hydrologically stressed. Soils inundated. Some upland transitional species on hummocks but not invading wetland. Many facultative, facultative wetland, and obligate species. Did see limited recruitment of swamp tupelo (Nyssa sylvatica var. biflora) and sweetbay (Magnolia virginiana). Red maple (Acer rubrum) recruitment evident. This wetland is in transition but appears that the hydrology may be appropriate for maintaining an adequate wetland in the future.

0.9 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total
Canal from urban	1.0	0.83	0.8
sources			
Runoff from forest	3.0	0.17	0.5
,		LU Total =	1.3

PRETREATMENT CATEGORY (PT)

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
No Treatment	0.0	0.83	0.0
Nat. Undevel.	3.0	0.17	0.5
		PT Total =	0.5

Water input is from canal to west that receives urban runoff and stormwater. Some rainwater and runoff from the upslope forested area to the north must be considered (water contribution estimated at 1/6 of water budget).

Appendix B-12. Florida Wetlandsbank

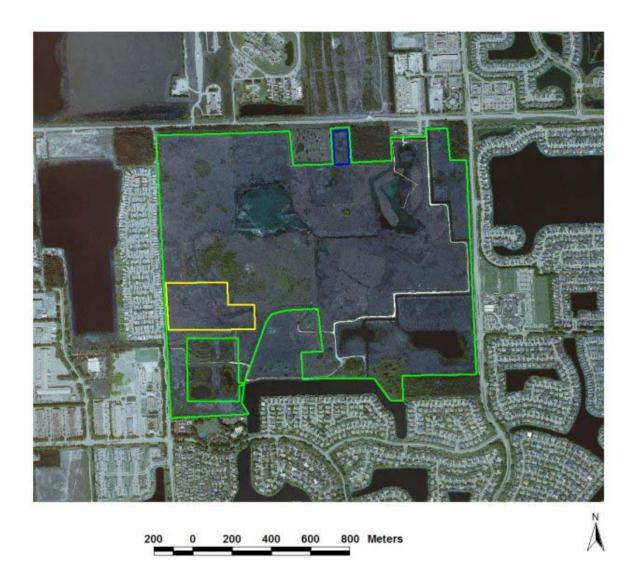


Figure B-12.1. Landscape location of Florida Wetlandsbank (green line). Boundary of the wetland assessment areas FLWt_MAR_1 in yellow and FLWt_MAR_2 outlined in blue, represent different phases of restoration of organic Everglades flats communities.

Figure B-12.2. Site photos of Florida Wetlandsbank assessment areas FLWt_MAR_1 the first phase to begin restoration with time zero occurring in 1995. There is no site photo for FLWt_MAR_2 one of the last phases to be restored with time zero in 1999.

$FLWt_MAR_1\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	er	Assessment Area N	ame or Number	
Florida Wetlands Bank			FLWt_MAR_1			
FLUCCs code Further classif		cation (optional)		Impact or Mitigation Site?	Assessment Area Size	
		ne Emergent, Soils - Dania muck, k. Organic flats			22.6 acres	
Basin/Watershed Name/Number	Affected Waterbody (Clas	ss)	Special Classificat	On (i.e.OFW, AP, other local/state/	federal designation of importance)	
HUC - SE FL Coast C-11 West						
Geographic relationship to and hyd	rologic connection with	wetlands, other so	urface water, upla	nds		
BRBANK is surrounded by a berm primary source of water to the bank conservation lands. Each section of	k. Water leaves the bar	nk via canal into re	esidential areas. S			
Assessment area description Small square shaped Organic flats berm planted with subtropical hard Some young planted cypress and o Residential to West and city proper	woods and <i>Spartina</i> spr deeper pools with <i>Thalia</i>	 Standing water 	is waist high in so	ome areas becoming sha	llower to Western edge.	
Significant nearby features			Uniqueness (co landscape.)	nsidering the relative rari	ty in relation to the regional	
To the South is city owned property. On Western edge is a residential are and then Hwy 27. To the West of hwy 27 are conservation lands for Floric panther habitat owned by SFWMD and private partnerships. There is a waste disposal site North of the bank.			In general much of Broward county has been converted from its natural landscape. Exotics tend to dominate land that is not being managed naturally or in development of agriculture or urban.			
Functions			Mitigation for pre	vious permit/other historic	use	
Surface and subsurface water storage, wildlife habitat, biogeochemical processes			This area was hydrologically impacted and dominated by <i>Melaleuca</i> quinquenervia.			
Anticipated Wildlife Utilization Based on Literature Review (List of species that are representative of the assessment area and reasonably expected to be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Apple snails, alligators, marsh rabbit, wading birds, raccoon, turtles, sailfir molly			Snail kites Rostrhamus sociabilis plumbeus (E), Woodstork Mycteria americana(E), Bald eagle Haliaeetus leucocephalus (T), Limpkin Aramus guarauna (SSC), Wading Birds (threatened and SSC), Least tern Sterna antillarum (T)			
Observed Evidence of Wildlife Utili.	zation (List species dire	ctly observed, or o	other signs such a	s tracks, droppings, casir	igs, nests, etc.):	
Marsh rabbit, game trails, numerou	s small fish, mosquitoe	s. Snail kites hav	e been noted on s	ite.		
Additional relevant factors:						
This is the oldest restored area in t muck on site, in some areas it was			regraded to limes	one and planted. There	is now a good amount of	
Assessment conducted by:			Assessment date	e(s):		
EH, KCR			1		27-Jun-05	

FLWt_MAR_1 Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number	Assessment Are	ea Name or Number	
Florida Wetlands Bank			F	FLWt_MAR_1	
Impact or Mitigation		Assessment conducted by:	Assessment dat	Assessment date:	
		EH, KCR		6/27/2005	
Scoring Guidance	Optimal (10)	Moderate(7)	Minimal (4)	Not Present (0)	
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	Minimal level of support of wetland/surface water functions	Condition is insufficient to provide wetland/surface water functions	
.500(6)(a) Location and Landscape Support w/o pres or current with	for many important wildlife s supposed to be treated. So connection however site car this area from highways and the distance and barriers. I have contributed to the regio entire wetland mitigation bar	d assessment area provide suppecies. Limits from the urban me limits to connectivity by be no not sheet flow like it might had canals. Some generalist sport he downstream areas receive nal water budget with sheet flook probably act as water purifical have adverse impacts (lance)	interface. Some upland inverms, berms are broken out in ave historically. Wildlife acceecies are expected to be able a single outflow into a SFW ow style drainage pre-developer for the SFWMD canal water	asive species on berms are a some areas for hydrologic less is substantially limited to to fly over and or deal with MD canal - this area would oment. This wetland and the er. Land uses outside of the le is less magnitude and	
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	matter) No atypical fire for consistent. No water quality is very clear. Vegetation z bank from degraded quality area is impounded by berr much of the flow is impeded are some unknown fact	oppropriate. Water indicators a sequency. No erosion or deposition in a proposition is a process of the condition and composition is a process of the condition in the condition is a process of the condition in the condition is a process of the condition in the condition in the condition is a process of the condition in the con	sition apparent. No excessive there are no oil sheens, alga appropriate. One inflow of water ain source of water being rail ome sheet flow through the was limited to a point discharge suggested a general lack of control of the state of the	e mortality. Animal use is all blooms or turbidity. Water or to the wetland mitigation nfall. Wetland assessment wetland mitigation bank but at a SFWMD canal. There oncern for water quality	
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	appropriate species, a few result of treated exotics. F	th water depth and topography melaleuca were seen in drier . Refugia ponds and hummocks de during regrading to have ar species richness and d	area. Coarse woody debris hare appropriate. Sagittaria seas of higher elevation and lo	nigher than anticipated as a spp. and <i>Utricularia spp.</i> in	
Score = sum of above scores/30 (if uplands, divide by 20) current or w/o pres with 0.73333	If preservation as mitigation adjustment Adjusted mitigation deli	nt factor =	For impact asset	esment areas	
Delta = [with-current]	If mitigation Time lag (t-factor) = Risk factor =		For mitigation ass		

FLWt_MAR_1 Wetland Rapid Assessment Procedure, page 1

Project Name: FLWt_MAR_1 Fl Wetlands Bank

Date: 6/27/05

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: organic flats glades - wetland surface has been scraped to grade to create marsh with appropriate hydrology.

Wetland Assessment Area:

FLUCCS Code/Description: 1995 SFWMD - 4240 Upland Hardwood Forests, Melaleuca infested- has now been restored as 6410 Freshwater Marsh

1.5	Wildlife Utilization (WU)			
N/A	Wetland Cano	Wetland Canopy (O/S)		
2.5	Wetland Ground Cover (GC)			
0.5	Habitat Support/Buffer			
2.5	Field Hydrology (HYD)			
1.8	WQ Input & Treatment (WQ)			
1.8	SUM			
5	Count			
0.55	WRAP			

FLWt_MAR_1 Wetland Rapid Assessment Procedure, page 2

Wildlife Utilization (WU)

Audible amphibian calls, Leopard frog, red winged black birds, rabbit, apple snail shells, fish, tadpoles, wading birds, game trails, dead fox on road. No use by large mammals, use by alligators. Lack of adjacent upland food source. Appropriate cover and food in wetland. Small to medium sized mammals can use limited adjacent food source. Human disturbance in form two-lane road, urban developemnt, housing etc.

NA Wetland Canopy (O/S)

2.0 Wetland Ground Cover (GC)

More diversity in shallow areas Pluchea spp. Bacopa spp, Taxodium spp., Sagittaria spp. and Hypericum spp. Dominated by large Eleocharis and Cladium jamaicense some Utricularia spp. in flower. <10 % exotics, some young Melaleuca quinquenervia, probably previously treated. Ground is uneven making walking difficult due to build of organic materials. Woody debris was present but not characteristic for comunity type and results from exotic species treatment.

2.0 Habitat Support/Buffer

Patches on three sides with the invasive exotic punktree (Melaleuca guinguenervia). North: thin buffer strip and then two-lane road and landfill. Three sides have berms that have been planted with native species and that are somewhat maintained for exotic species removal, they also host some nuisance species, the berms are approximately 20' wide. Housing developments and roads beyond berms. No offsite wildlife corridor or connections.

Buffer Type	(Score) x	(% of Area)	= Sub Total
N: berm, exotics	0.5	0.25	0.1
E: berm, exotics	0.5	0.25	0.1
W: berm, exotics	0.5	0.25	0.1
S: berm, exotics	0.5	0.25	0.1
		T 4 1	0.5

Total =

Field Hydrology (HYD)

Inflow and outflow connects to SFWMD canals - though not directly inflowing to this portion of the bank - water for the WAA comes from rainfall and sheet flow from up gradient restored wetlands (that receive canal water). Water levels are regulated. We anticipated indicators or poor or low water quality because of the water source (SFWMD canal), but we observed nothing to suggest impaired water quality. In fact, Utricularia spp. was in full bloom and flourishing throughout the WAA. Plants appeared healthy and we did not observe signs of stress. Site does not dry down, with only minimal if any water level fluctuations.

WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
Wetland	3.0	0.50	1.5
Canal	1.0	0.50	0.5
	-		0.0
	2.0		

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
Nat. Undev.	3.0	0.50	1.5
No treatment	0.0	0.50	0.0
			0.0
		PT Total =	1.5

Additional Notes: Water inflow from neighboring wetland, water originates into bank from SFWMD canal, mainly from urban land uses. No runoff contribution from surrounding areas due to berms.

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

FLWt_MAR_1 Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Organic Flats Glades

Assessment Team: Erica Hernandez, Kelly Chinners Reiss **Project Name:** Florida Wetlandsbank FLWt_MAR_1

Location: Broward County

Date: 6/27/05 Subclass: Organic Flats

Function	FCI
Surface and Subsurface Water Storage	0.63
Cycle Nutrients	0.69
Characteristic Plant Community	0.66
Wildlife Habitat	0.56

Variables	Measure	Units	Subindex
VTRACT	189	HA	0.03
VCORE	27	%	0.38
VCONNECT	8.6	%	0.10
VMICRO	100	%	0.00
VWOODY	10	%	0.90
VINVASIVE	< 1	%	1.00
VMAC	43	%	1.00
Vsurtex	GIS says Muck		1.00
VCOMP	76	%	0.76

Vsurtex field verified

FLWt_MAR_1 Hydrogeomorphic Approach, page 2

VTRACT < 189 ha

VCORE 124.6 acres

VCONNECT total perim of wetland tract 6486.68

556.8 m connected

VMICRO all wetland area has altered microtopography from rock plow

VWOODY 0%, 0%, 10%

VINVASIVE 0%, 0%, <1%

VMAC 1. 30% 2. 25% 3. 20% 4. 40% 5. 35%

6. 15% 7. 60% 8. 60% 9. 100%

VSURTEX 100% clay loam

VCOMP 1. 100% 2. 100% 3. 100%

4. 33% 5. 0% 6. 100% 7. 100% 8. 50% 9. 100%

FLWt_MAR_2 Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

rumped warblers (audio), small vegetation matted nest, (1' x 1/2' and 1/2' above H2O surface), grasshoppers, spider webs across vegetation, dragonflies, tree swallow. No use by large mammals, use by alligators. Additional relevant factors: FNAI Bird Aggregation Areas: bird rookery; FWCC Strategic Habitat Conservation Areas: priority habitat. Assessment conducted by: Assessment date(s):	Site/Project Name			Application Number	er		Assessment Area Name or Number		
1995 SFWMD - 4240 Upland Hardwood Forests, Melleguate infested-that as now been restored as 6410 Freshwater Marsh Marsh Basin/Watershed Name/Number SE FL Coast HUC 030000202 Affected Waterbody (Class) Class III Special Classaffication (a CPV.Nr. enteriocalistate/bedraf designation of importance) None SE FL Coast HUC 030000202 Affected Waterbody (Class) Class III Special Classaffication (a CPV.Nr. enteriocalistate/bedraf designation of importance) None SE FL Coast HUC 030000202 Affected Waterbody (Class) Class III Special Classaffication (a CPV.Nr. enteriocalistate/bedraf designation of importance) None SE FL Coast HUC 030000202 And Interiocal Section (Class III Special Classaffication (a CPV.Nr. enteriocalistate/bedraf designation of importance) None SE FL Coast HUC 030000202 Affected Waterbody (Class) None SE FL Coast HuC 030000202 And Interiocal Section (Class III Special Classaffication (a CPV.Nr. enteriocalistate/bedraf designation of importance) None SE FL Coast HuC 030000202 Affected Waterbody (Class) None SE FL Coast HuC 030000202 And Interiocal Section (Class III Special Classaffication (a CPV.Nr. enteriocalistate/bedraf designation of importance) None SE FL Coast HuC 030000202 Affected Waterbody (Class) Interiocal Section (Class III Special Classaffication (a CPV.Nr. enteriocalistate/bedraf designation of importance) None SE FL Coast HuC 03000020 And Coast Interiocal Section (Class III Special Classaffication (Classaffication (Classaff	FI Wetlands B	Fl Wetlands Bank			NA	NA FLWt_MAR_2		MAR_2	
SE FL Coast HUC 03090202 Class III none Geographic relationship to and hydrologic connection with wetlands, other surface water, uplands While this small wetland assessment area does have connection to a larger wetland system (the wetland mitigation bank,), the wetland mitigation bank does not have any offsite connections or Midlife corridors. The water inflows to the bank from a SFWMD canal, and later outflows into a SFWMD canal, perhaps improving the water quality within the canal system. The entire mitigation bank is surrounded by berms preventing much connections (though poor quality) uplands. Assessment area description Organic flats glades - freshwater marsh system. Wetland surface has been scraped to grade to create a wetland with the appropriate hydrology to maintain an organic flats glades system. Overall there was low plant species richness. Wildlife habitat for medium or large mammals is severely limited due to lack of connections to offsite wetland or upland habitats. Significant nearby features Everglades and Francis Taylor WMA within one-two miles to west. Some other nearby small conservation parcels, but no direct connections. Surface and subsurface water storage, biogeochemical processes, important wildlife habitat support Mitigation for previous permit/other historic use Surface and subsurface water storage, biogeochemical processes, important wildlife habitat support Anticipated Wildlife Utilization Based on Literature Review (Ust of species that are representative of the assessment area and reasonably expected to be found) Anticipated Wildlife Utilization Based on Literature Review (Ust of species found) Florida apple snall, crayfish, marsh rice rat, bobbcat, raccoon, while talled deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, woding birds Florida apple snall, crayfish, marsh killifish, woding birds Florida apple snall, crayfish, marsh killifish, woding birds Florida paple snall, crayfish, marsh killifish, woding bird	1995 SFWMD - 4240 Upland Hard Forests, Melaleuca infested- has been restored as 6410 Freshwa	and Hardwood sted- has now		porly drained	Impac	-			
Geographic relationship to and hydrologic connection with wetlands, other surface water, uplands While this small wetland assessment area does have connection to a larger wetland system (the wetland mitigation bank), the wetland mitigation bank does not have any offsite connections or wildlife corridors. The water inflows to the bank from a SFWMD canal, and later outflows into a SFWMD canal, perhaps improving the water quality within the canal system. The entire mitigation bank is surrounded by berms preventing much connectivity with adjacent (though poor quality) uplands. Assessment area description Organic flats glades - freshwater marsh system. Wetland surface has been scraped to grade to create a wetland with the appropriate hydrology to maintain an organic flats glades system. Overall there was low plant species (inches. Wildlife habitat for medium or large mammals is severely limited due to lack of connections to offsite wetland or upland habitats. Significant nearby features Everglades and Francis Taylor WMA within one-two miles to west. Some other nearby small conservation parciels, but no direct connections. Everglades and Francis Taylor WMA within one-two miles to west. Some other nearby small conservation parciels, but no direct connections. Surface and subsurface water storage, biogeochemical processes, important wildlife habitat support Anticipated Wildlife Utilization Based on Literature Review (List of species that are representative of the assessment area and reasonably expected to be found) Florida apple snall, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, wading birds Florida apple snall, crayfish, marsh killifish, wading birds Florida spole snall, crayfish, marsh killifish, wading birds Florida pole snall, crayfish, marsh killifish, wading birds Florida pole snall, crayfish, marsh killifish, wading birds Florida pole snall, crayfish, marsh killifish, wading birds	Basin/Watershed Name/Number	Affected	Waterbody (Clas	ss)	Special Classificati	ion (i.e.	DFW, AP, other local/state/federa	designation of importance)	
While this small wetland assessment area does have connection to a larger wetland system (the wetland mitigation bank), the wetland mitigation bank does not have any offsite connections or wildlife corridors. The water inflows to the bank from a SFWMD canal, and later outflows into a SFWMD canal with the appropriate hydrology to maintain an organic flats glades system. Wetland surface has been scraped to grade to create a wetland with the appropriate hydrology to maintain an organic flats glades system. Wetland surface has been scraped to grade to create a wetland with the appropriate hydrology to maintain an organic flats glades system. Wetland surface in the appropriate hydrology to maintain an organic flats glades system. Wetland surface some scraped to grade to create a wetland with the appropriate hydrology to maintain an organic flats glades system. Wetland surface wetland or upland habitats. Significant nearby features Everglades and Francis Taylor WMA within one-two miles to west. Some other nearby small conservation part of the grades of the site of the grades of the gra	SE FL Coast HUC 03090202		Class I	II			none		
Organic flats glades - freshwater marsh system. Wetland surface has been scraped to grade to create a wetland with the appropriate hydrology to maintain an organic flats glades system. Overall there was low plant species richness. Wildlife habitat for medium or large mammals is severely limited due to lack of connections to offsite wetland or upland habitation or upland habitation. Significant nearby features Everglades and Francis Taylor WMA within one-two miles to west. Some other nearby small conservation parcels, but no direct connections. Everglades and Francis Taylor WMA within one-two miles to west. Some other nearby small conservation parcels, but no direct connections. Functions Surface and subsurface water storage, biogeochemical processes, important wildlife habitat support Anticipated Wildlife Utilization Based on Literature Review (List of species that are representative of the assessment area and reasonably expected to be found) Anticipated Wildlife Utilization based on Literature Review (List of species that are representative of the assessment area and reasonably expected to be found) Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiluma, mosquito fish, flag fish, marsh killifish, wading birds Diserved Evidence of Wildlife Utilization (List species directly observed, or other signs such as tracks, droppings, casings, nests, etc.): Leopard frog, black vulture, turkey vulture, northern harrier, two small parrots, apple snail shells, small fish, burrows on berm, smaller snails, yellow rumped warbiers (audio), small vegetation matted nest, (1" x 1/2" and 1/2" above HZO surface), grasshoppers, spider webs across vegetation, dragonflies, free swallow. No use by large mammals, use by alligators. Assessment conducted by: Assessment date(s):	While this small wetland assessment area does have connection to a larger wetland system (the wetland mitigation bank), the wetland mitigation bank does not have any offsite connections or wildlife corridors. The water inflows to the bank from a SFWMD canal, and later outflows into SFWMD canal, perhaps improving the water quality within the canal system. The entire mitigation bank is surrounded by berms preventing monectivity with adjacent (though poor quality) uplands.					d later outflows into a			
Everglades and Francis Taylor WMA within one-two miles to west. Some other nearby small conservation parcels, but no direct connections. Functions Surface and subsurface water storage, biogeochemical processes, important wildlife habitat support Anticipated Wildlife Utilization Based on Literature Review (List of species that are representative of the assessment area and reasonably expected to be found) Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphirma, mosquito fish, flag fish, marsh killifish, wading birds Florida apple snail, crayfish (Right of the species) Florida apple snail, crayfish, marsh killifish, wading birds Florida apple snail, crayfish (Right of the species) Florida apple snail, crayfish (Right of the species) Florida apple snail, crayfish, marsh killifish, wading birds Florida apple snail,	Organic flats glades - freshwater r	ystem. (Overall there wa	as low plant specie	es richness. Wildl offsite wetland or u	life hal ıpland	oitat for medium or large habitats.	e mammals is severely	
Surface and subsurface water storage, biogeochemical processes, important wildlife habitat support Anticipated Wildlife Utilization Based on Literature Review (List of species that are representative of the assessment area and reasonably expected to be found) Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, wading birds Florida apple snail, crayfish, marsh killifish, wading birds American alligator (Alligator mississippiensis) SSC; Everglades snail kite (Rostrhamus sociabilis plumbeus) END; American bald eagle (Haliaeetus leucocephalus) T; Florida panther (Puma concolor coryi) E could probably pare frigher ground; little blue heron (Egretta caerulea) SSC; tricolored heron (Egretta tricolor) SSC; snowy egret (Egretta thula) SSC; wood stork (Mycteria americana) E; limpkin (Aramus guaranus) SSC; white bis (Eudocimus alba) SSC. Observed Evidence of Wildlife Utilization (List species directly observed, or other signs such as tracks, droppings, casings, nests, etc.): Leopard frog, black vulture, turkey vulture, northern harrier, two small parrots, apple snail shells, small fish, burrows on berm, smaller snails, yellow rumped warblers (audio), small vegetation matted nest, (1° x 1/2° and 1/2° above H2O surface), grasshoppers, spider webs across vegetation, dragonflies, tree swallow. No use by large mammals, use by alligators. Additional relevant factors: FNAI Bird Aggregation Areas: bird rookery; FWCC Strategic Habitat Conservation Areas: priority habitat. Assessment conducted by: Assessment date(s):	Everglades and Francis Taylor WMA within one-two miles to west. Some				landscape.) Much of Broward County is in high intensity urban development, so considering this is a green space it is relatively rare, however the greater Everglades is with one-two miles, so the habitat type is not				
Anticipated Wildlife Utilization Based on Literature Review (List of species that are representative of the assessment area and reasonably expected to be found) Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area and reasonably expected to be found) Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, wading birds Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, wading birds Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, wading birds Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, wading birds Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed assessment srae and liligator (Alligator mississippiensis) SSC; Everglades snail kite (Rostrhamus sociabilis plumbeus) END; American alligator (Alligator mississippiensis) SSC; Everglades snail kite (Rostrhamus sociabilis plumbeus) END; American alligator (Alligator mississippiensis) SSC; Everglades snail kite (Rostrhamus sociabilis plumbeus) END; American alligator (Alligator mississippiensis) SSC; Everglades snail kite (Rostrhamus sociabilis plumbeus) END; American alligator (Alligator mississippiensis) SSC; Everglades snail kite (Rostrhamus sociabilis plumbeus) END; American alligator (Alligator mississippiensis) SSC; Everglades snail kite (Rostrhamus sociabilis plumbeus) END; American alligator (Alligator mississippiensis) SSC; Everglades snail kite (Rostrhamus sociabilis plumbeus) END; American bale ass	Functions				Mitigation for previous permit/other historic use				
that are representative of the assessment area and reasonably expected to be found) It is be found (assessment area) Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, wading birds Florida apple snail, crayfish, marsh killifish, wading birds Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, wading birds Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, wading birds Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, wading birds Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, but would not be expected here and would probably prefer higher ground; little blue heron (Egretta tricolor)SSC; snowy egret (Egretta thula)SSC; wood stork (Mycteria americana)E; limpkin (Arams guarauna)SSC; white libis (Eudocimus alba)SSC. Deserved Evidence of Wildlife Utilization (List species directly observed, or other signs such as tracks, droppings, casings, nests, etc.): Leopard frog, black vulture, turkey vulture, northern harrier, two small parrots, apple snail shells, small fish, burrows on berm, smaller snails, yellow rumped warblers (audio), small vegetation matted nest, (1' x 1/2' and 1/2' above H2O surface), grasshoppers, spider webs across vegetation, dragonflies, tree swallow. No use by laligators. Additional relevant factors: Additional relevant factors: Assessment area		•	•	al processes,	unknown				
Leopard frog, black vulture, turkey vulture, northern harrier, two small parrots, apple snail shells, small fish, burrows on berm, smaller snails, yellow rumped warblers (audio), small vegetation matted nest, (1' x 1/2' and 1/2' above H2O surface), grasshoppers, spider webs across vegetation, dragonflies, tree swallow. No use by large mammals, use by alligators. Additional relevant factors: FNAI Bird Aggregation Areas: bird rookery; FWCC Strategic Habitat Conservation Areas: priority habitat. Assessment conducted by: Assessment date(s):	that are representative of the assessment area and reasonably expected to be found) Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma,			con, white tailed o, amphiuma, birds	classification (E, assessment area American alligate kite (Rostrhamus (Haliaeetus leuce could potentially would probably p caerulea) SSC; tr (Egretta thula) SS (Aramus guaraur	T, SSo a) or (Allig s social ocepha pass therefor hericolore SC; wo ma)SS	C), type of use, and integrator mississippiensis) shills plumbeus JEND; Alalus)T; Florida panther nrough but would not be higher ground; little blue ad heron (Egretta tricole od stork (Mycteria ame C; white ibis (Eudocimu	nsity of use of the SSC; Everglades snail merican bald eagle (Puma concolor coryi)E expected here and heron (Egretta br)SSC; snowy egret tricana)E; limpkin is alba)SSC.	
FNAI Bird Aggregation Areas: bird rookery; FWCC Strategic Habitat Conservation Areas: priority habitat. Assessment conducted by: Assessment date(s):	Leopard frog, black vulture, turkey vulture, northern harrier, two small parrots, apple snail shells, small fish, burrows on berm, smaller snails, yellow rumped warblers (audio), small vegetation matted nest, (1' x 1/2' and 1/2' above H2O surface), grasshoppers, spider webs across vegetation,								
Assessment conducted by: Assessment date(s):	Additional relevant factors:								
	FNAI Bird Aggregation Areas: bird	rookery;	FWCC Strateg	ic Habitat Conser	vation Areas: prior	rity hal	pitat.		
Kelly Chinners Reiss, Erica Hernandez 1-Dec-05	Assessment conducted by:				Assessment date	e(s):			
	Kelly Chinners Reiss, Erica Hernar	ndez						1-Dec-05	

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

FLWt_MAR_2 Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name			Application Number		Assessment Area	a Name or Number	
F	-I Wetlands	s Bank	NA		FI	LWt_MAR_2	
Impact or Mitigation			Assessment conducted by:	d by: Assessment date:		::	
	Mitigation	Bank	Kelly Chinners Reiss, Erica Hernandez 12/1/2005		12/1/2005		
						N . 5	
Scoring Guidance The scoring of each		Optimal (10)	Moderate(7) Condition is less than	MI	nimal (4)	Not Present (0)	
indicator is based on wh		Condition is optimal and fully			vel of support of	Condition is insufficient	
would be suitable for the type of wetland or surface		supports wetland/surface water functions	maintain most wetland/surface water		/surface water inctions	provide wetland/surfact water functions	е
water assessed			functions				
Habitats outside the wetland assessment area provide support for generalists species, and fails to provide for many important wildlife species. Some of the nearby areas have excessive punktree (<i>Melaleuca qi</i> infestations and other exotic species (excluding the maintained berms and tree islands). The remaining areas are highly developed (urban). Wildlife access is substantially limited to this area from highways. Some generalist species are expected to be able to fly over and or deal with the distance and barriers. downstream areas receive a single outflow into a SFWMD canal - this area would have contributed to water budget with sheet flow style drainage pre-development. This wetland and the entire wetland mitt probably act as water purifier for the SFWMD canal water. Land uses outside of the wetland assessment area provide support for generalists species, and fails to provide support for many important wildlife species. Some of the nearby areas have excessive punktree (<i>Melaleuca qi</i> infestations and other exotic species (excluding the maintained berms and tree islands). The remaining areas have excessive punktree (<i>Melaleuca qi</i> infestations and other exotic species (excluding the maintained berms and tree islands). The remaining areas have excessive punktree (<i>Melaleuca qi</i> infestations and other exotic species (excluding the maintained berms and tree islands). The remaining areas receive a single outflow into a SFWMD canal water. Land uses outside to this area from highways of the wetlands areas are highly developed (urban). Wildlife access is substantially limited to this area from highways of the wetlands areas are highly developed (urban). Wildlife access is substantially limited to this area from highways of the wetlands areas area highly developed (urban). Wildlife access is substantially limited to this area from highways of the wetlands areas area highly developed (urban). Wildlife access is substantially limited to this area from highways of the wetlands areas area highly developed (urban). Wildlif						(Melaleuca quinquenery The remaining nearby om highways and canals e and barriers. The contributed to the regiona te wetland mitigation ban land assessment area ha	ria) i. al k
4		influences.	modeled to stay high and inund				
.500(6)(b)Water Envir (n/a for uplands		muck, appropriate wetland ve fire history. Vegetation zonat which have specific hydrologi degradation. Standing water inflow of water to the wetland being rainfall. Wetland asset the wetland mitigation bank b	ths of the year. Water level in- egetation composition. Soil me tion appropriate. No sign of hy ic requirements. No signs of s appeared clear - no turbidity/c mitigation bank from degrade ssment area is impounded by out much of the flow is impede	oisture appr ydrologic str species toler bil sheen/dis ed quality ca berms on the d from	opriate, no soil eness or excessive in ant of or associate coloration. Light and water, with the cree sides. There	osion present. No atypical mortality. Did see fish ed with water quality penetration optimal. One other main source of wais some sheet flow throu	e ater gh
w/o pres or current 9	with		nited to a point discharge at a SFWMD canal. There are some unknown factors, but the a general lack of concern for water quality degradation. The site appeared to have to water data available.				
.500(6)(c)Community 1. Vegetation and 2. Benthic Community w/o pres or current 8	d/or	though some are present. Re quinquenervia) stumps are p woody debris greater than ex debris throughout. Plants are Land management must mai optimal, the uneven nature of	and desirable plant species. egeneration by herbaceous spresent from past land manage pected, as the freshwater mare in good condition with no evintain exotic species control arf the substrate is drastic in sor had been regraded through a	pecies appea ement activit rsh system widence of chi and water leve me areas wit	ars appropriate. Faties, which increas would otherwise had orotic or spindly gels. Topographic than that the large/rapid char	Punktree (Melaleuca se the amount of course ave limited if any woody prowth or insect damage. features appear less than nges in the	n
Score = sum of above sco uplands, divide by		If preservation as mitigate	ation,		For impact assess	sment areas	
current pr w/o pres with 0.70		Preservation adjustmen	nt factor =	EI -	delta x acres =		
		Adjusted mitigation delt	ta =	FL = 1	ueila x aules -		
		If mitigation		<u> </u>			
Delta = [with-curr	ent]	Time lag (t-factor) =		F	or mitigation asse	ssment areas	
		Risk factor =		RFG	= delta/(t-factor x	risk) =	
Form 62-345.900(2), F.A	A.C. [effec	ctive date 02-04-2004]					

FLWt_MAR_2 Wetland Rapid Assessment Procedure, page 1

Project Name: FLWt_MAR_2 Fl Wetlands Bank

Date: 12/1/05

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: organic flats glades - wetland surface has been scraped to grade to create marsh with appropriate hydrology.

Wetland Assessment Area: 1.2 ha (3.0 ac)

FLUCCS Code/Description: 1995 SFWMD - 4240 Upland Hardwood Forests, Melaleuca infested- has now been restored as 6410 Freshwater Marsh

1.5	Wildlife Utilization (WU)		
NA	Wetland Cano	py (O/S)	
1.5	Wetland Ground Cover (GC)		
0.5	Habitat Support/Buffer		
2.5	Field Hydrology (HYD)		
1.8	WQ Input & Treatment (WQ)		
7.8	SUM		
5	Count		
0.52	WRAP		

FLWt_MAR_2 Wetland Rapid Assessment Procedure, page 2

Wildlife Utilization (WU)

Leopard frog, black vulture, turkey vulture, northern harrier, two small parrots, apple snail shells, small fish, burrows on berm, smaller snails, yellow rumped warblers (audio), small vegetation matted nest, (1' x 1/2' and 1/2' above H₂O surface), grasshoppers, spider webs across vegetation, dragonflies, tree swallow. No use by large mammals, use by alligators. Lack of adjacent upland food source. Appropriate cover and food in wetland. Small to medium sized mammals can use limited adjacent food source. Human disturbance in form two-lane road, urban developemnt, housing

NA Wetland Canopy (O/S)

1.5 Wetland Ground Cover (GC)

Few undesirable species (certainly <25%). Human disturbance obvious with grading of soils - though not routinely managed. Groundcover composed of knontted spikerush (Eleocharis interstincta), gulf coast spikeruch (Eleocharis cellulosa), Eastern purple bladderwort (Utricularia purpurea), arrowhead (Sagittaria sp.) punktree (Melaleuca quinquenervia) sprout, yellow flowered bladderwort (Utricularia sp.), two unknown submerged aquatics. Overall low species richness.

0.5 Habitat Support/Buffer

Patches on three sides with the invasive exotic punktree (Melaleuca quinquenervia). North: thin buffer strip and then two-lane road and landfill. Three sides have berms that have been planted with native species and that are somewhat maintained for exotic species removal, they also host some nuisance species, the berms are approximately 20' wide. Housing developments and roads beyond berms. No offsite wildlife corridor or connections.

	Buffer Type	(Score) x	(% of Area)	= Sub Total
l	N: berm, exotics	0.5	0.25	0.1
	E: berm, exotics	0.5	0.25	0.1
	W: berm, exotics	0.5	0.25	0.1
	S: berm, exotics	0.5	0.25	0.1
			TC 4 1	0.5

Total =

Field Hydrology (HYD)

Periphyton mat on water and soil surfaces. Has muck soils. Some unknown submerged aquatic, if these are exotics they would only contribute a small percent in cover by exotic species. Controlled hydroperiod from SFWMD canal. Plants appear adapted to current hydrology. Site does not dry down, with only minimal if any water level fluctuations. Hydrology adequate and maintain viable wetland - some external influences from canal control.

WO Input & Treatment (WO)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
Wetland	3.0	0.50	1.5
Canal	1.0	0.50	0.5
			0.0
	_	LU Total =	2.0

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
Nat. Undev.	3.0	0.50	1.5
No treatment	0.0	0.50	0.0
			0.0
		PT Total =	1.5

Additional Notes: Water inflow from neighboring wetland, water originates into bank from SFWMD canal, mainly from urban land uses. No runoff contribution from surrounding areas due to berms.

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

FLWt_MAR_2 Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Organic Flats Glades

Assessment Team: EH, KCR, TD **Project Name:** FLWt_MAR_2

Location: Florida Wetlands Bank area 29

Date: 12/1/05 Subclass: Organic Flats

Function	FCI
Surface and Subsurface Water Storage	0.67
Cycle Nutrients	0.64
Characteristic Plant Community	0.62
Wildlife Habitat	0.53

Variables	Measure	Units	Subindex
VTRACT	≤ 188	ha	0.025
VCORE	27	%	0.38
VCONNECT	9	%	0.1
VMICRO	100	%	0
Vwoody	0	%	1
VINVASIVE	3	%	1
VMAC	41	%	1
VSURTEX	100	%	1
VCOMP	56	%	0.55

FLWt_MAR_2 Hydrogeomorphic Approach, page 2

VTRACT ≤ 188 ha

VCORE 124.6 acres

VCONNECT 9%

VMICRO all of the microtopograhic features have been rock plowed

VWOODY 0% on average of each 0.04 ha plots sampled

VINVASIVE 3%, 0%, 0%

VMAC 1. 35% 2. 15% 3. 20% 4. 45% 5. 25%

avg 41% 6. 45% 7. 35% 8. 80% 9. 70 %

VSURTEX muck 100% for each plot sampled

VCOMP 1. 25% Utricularia purpurea 67%

avg 56% 25% Eleocharis cellulosa

25% Eleocharis interstincta

2. 50% Eleocharis interstincta 50%

25% Utricularia purpurea

3. 50% Eleocharis interstincta 50%

25% Utricularia purpurea

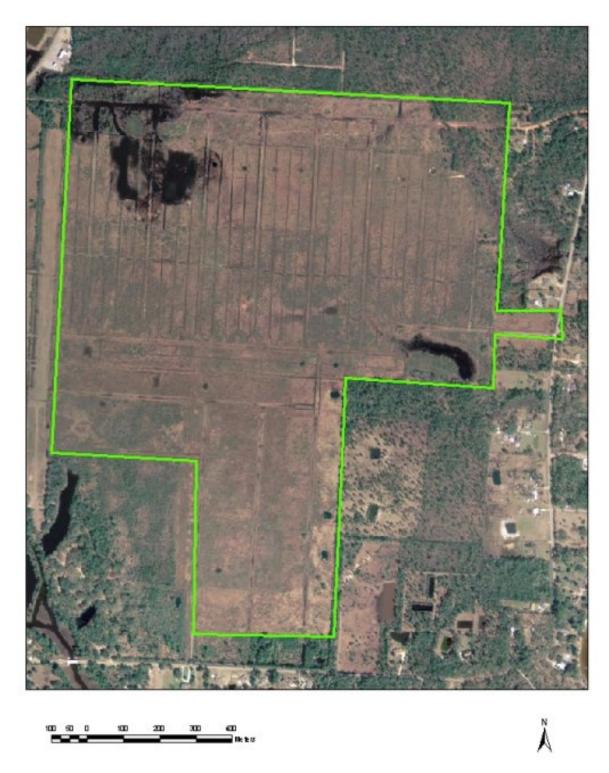


Figure B-13.1. Landscape location of Garcon Peninsula Mitigation Bank (green line). The boundary of the wetland assessment area Garc_FLA includes most of the bank's wet prairie habitat.

Figure B-13.2. Site photo of Garcon Peninsula Mitigation Bank assessment area Garc_FLA with yellow pitcherplant (*Sarracenia flava*) pitcher plant featured in the foreground.

Garc_FLA Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name Application Number Assessment		Assessment Area Name	nent Area Name or Number				
Garcon Peninsula Mitigation Bank	Garcon Peninsula Mitigation Bank NA				Garc_FLA		
FLUCCs code 1995 NWFWMD FLUCCS 2100 Pa land	ısture	Roughly, the nort sand, middle Mul	Roughly, the north portion of bank is Goldhead fine		ct or Mitigation Site?	Assessment Area Size roughly 200 acres of bank is in wet prairie (~81 ha)	
Basin/Watershed Name/Number	Affect	ed Waterbody (Clas	ss)	Special Classificati	ion (i.e.0	OFW, AP, other local/state/federal	designation of importance)
HUC ID 14, Pensacola Bay	Class	; III		None			
Geographic relationship to and hyd Bank is pretty flat and mostly sheet earthen mound in the SE corner of no longer serve as an outflow becan Assessment area description	flows	to various slough ank but has been l	like drainage feat breeched by hurric	ure that all flow to canes. Some foot	Pens		
Historic wet prairie was converted to remnant pasture grasses. There is (Myrica cerifera). Ditch footprints and native desirable species are dominative desirable.	an over	erstory of dead an tinguishable in the	nd stressed woody e landscape by ele	vegetation, Chine vation and vegeta	ese tal tion st	low (<i>Sapium sebiferum)</i> ratification. There are o	and wax myrtle pen patches were
Significant nearby features Little over 2 miles northeast from G Drains into and is less than half a m is also the Yellow River Marsh Aqua Florida Managed Areas and corrido	arcon nile av atic Pr	Point water mana way from the Black reserve. Across th	agement area. kwater Bay which ne bay are more	Uniqueness (co landscape.) In its present deg the landscape, bu beneficial to this	nsider graded ut an in rapidly	condition this area is no condition this area is no ntact restored wet prairie developing part of Flor plant (Sarracenia spp.) a	relation to the regional of rare in comparison to e ecosystem would be ida. Intact wet prairie
Functions				Mitigation for previous permit/other historic use			
Habitat for flora and fauna. Flood retention and storage. Maintaining biodiversity. Sediment retention.			laintaining	Turned into pasture for cattle.			
Anticipated Wildlife Utilization Based on Literature Review (List of species that are representative of the assessment area and reasonably expected t be found)				Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Cricket frog, chorus frog, little grass frog, black racer, yellow rat snake, cottonmouth, pygmy rattlesnake, northern harrier, southeastern kestrel, killdeer, long-billed marsh wren, red-winged blackbird, marsh rabbit, cottor rat, and cotton mouse.			stern kestrel,	Sarracenia flava (T), Sarracenia leucophylla (E), Lilium catebaei (T), Eleocharis quadrangulata (rare but not listed)			
Observed Evidence of Wildlife Utiliz	zation	(List species direct	ctly observed, or o	ther signs such a	s track	s, droppings, casings, r	nests, etc.):
Hum of insects, pileated woodpecker, white eyed vireo, tohee, killdeer, dragon flies, grasshoppers, raccoon scat, animal trail, snipe, tree swallov osprey, Carolina wren, mourning dove, skippers, green anole, crayfish chimney, great blue heron, bluebird (on bank west edge), Yellow legs (we edge), spiders, butterflies, crayfish chimney, blue gray gnatcatcher							
Additional relevant factors:							
Wax myrtle (Myrica cerifera) and C little growing season fire has been a seedbank but until a regular prescriwet prairie community will recover. prairie back to reference conditions management has consisted of treat	effecti iption Hydro s. Fire	ively applied on the burning program o logy alterations ar program has had	e property. There a can be applied and nd historic cattle good difficulty because	are patches where d maintained and razing may have s of red flags for bu	e grou the wo some y urning	ndcover is appropriate s body mid-story removed yet unseen effects in try and excessive standing	so there is hope for the it is unknown how this ing to restore this water on the site. Most
Assessment conducted by:				Assessment date	e(s):		_
Erica Hernandez		9/6/2006					

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

Garc_FLA Uniform Mitigation Assessment Method, page 2
PART II – Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number	Assessment Are	a Name or Number
Garcon Peninsula Mitigation Bank		NA Garc_FLA		
Impact or Mitigation		Assessment conducted by: Assessment date:		e:
Mitigation Bank		Erica Hernandez	9/6/2006	
	I			
Scoring Guidance The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Optimal (10) Condition is optimal and fully supports wetland/surface water functions	Moderate(7) Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	Minimal (4) Minimal level of support of wetland/surface water functions	Not Present (0) Condition is insufficient to provide wetland/surface water functions
.500(6)(a) Location and Landscape Support w/o pres or current with	requirements. Invasive Chine woody canopy to a treeless t Chinese tallow. There are no conservation areas. They are residential. North of the banl underneath the interstate. Sa Preserve. The bank is not su exotic species, natural flow wand west for species migration.	nay be limited due to the reducese tallow (Sapium sebiferum) arget reference community. The significant landscape barriers a separated by inappropriate his is I-10 which is a significant landy Bayou does not appear to irrounded by optimal habitats, vays in the landscape have import. There appear to be no hydine bank is impounded. Downs	is present in the landscape, here is a constant seed source on the peninsula between the labitat but they are mostly agribarrier, it is unknown whether of have any downstream barrie agricultural and residential are poundments. I-10 may be acrologic impediments on Sand	it brings an inappropriate to outside the bank of the bank and other ricultural and low density or there are corridors ers and flows into an Aquaticeas may be conduits for thing as a barrier to the northly Bayou but another
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	100 days each year. General regular and prolonged desict to this information. Ditches that have been blocked but ra higher elevation tended to vegetation was not an issue water was observed. There blocks, although no longer results.	ity. According to FNAI, wet prily they have shorter hydroperication during the dry season dihat were installed historically foot filled did tend to have wetlahave more facultative or uplar or as apparent. Some crayfish were no species indicative of the words are the same proper was apparent to the theorem. This may be contributing to the theorem of the same proper was a season of	lods than other herbaceous we use to their flat topography. No or raising cattle have been bland vegetation growing in their dayecies. In some areas this a chimneys were observed in water quality degradation or a property, may be altering the	retlands and are subject to be observations were contrary ocked or filled. The ditches m whereas adjacent areas a s linear zonation of the landscape. No standing alteration. The ditches with the hydroperiod of a system
.500(6)(c)Community structure	On the southern portion of th been knocked back. They ar grasses and Japanese hone the dominant woody structure	ire may make this less of an is e assessment area Chinese to e stressed but still living and n ysuckle (<i>Lonicera japonica</i>) ale e and some have also been kith the due to the lack of growing so	allow (<i>Sapium sebiferum</i>) we leed further management for re also in the landscape. Wa nocked back but are still stan	removal. Exotic pasture x myrtle (<i>Myrica cerifera</i>) is ding and probably still alive.
Vegetation and/or Benthic Community // O pres or // Current with	impact in altering the structure more aggressive in applying prairie communities and ther season fire and a removal of resembles an overgrown past become established because This has implications for ava	re of a wet prairie community to an appropriate fire regime. The fore there is hope that the se the woody over story biomass sture field. Desirable plants ar e of other weedy species domi ilable food sources available to	type. Land management practive were pockets of intact growed bank is still viable and will so the present time the majoritie being shaded out or have rinating.	tices will have to become oundcover indicative of wet I flourish with growing by of the assessment area not yet had an opportunity to
	that depend on grass seed.			
Score = sum of above scores/30 (if uplands, divide by 20) current or w/o pres with	If preservation as mitig Preservation adjustme Adjusted mitigation del	nt factor =	For impact asses	sment areas
	J			
D. II. 1	If mitigation		For mitigation asse	essment areas
Delta = [with-current]	Time lag (t-factor) =		RFG = delta/(t-factor x	(risk) =
	Risk factor =		i i O – deita/(t-lactor x	Hon) -

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Garc_FLA Wetland Rapid Assessment Procedure, page 1

Project Name: Garcon Peninsula Mitigation Bank, Garc_FLA

Date: 9/6/2006

Evaluator(s): Erica Hernandez

Wetland Type/Description: Historic wet prairie had been ditched and seeded to create

pasture for cattle production. Site has remnant patches of wet prairie species in an old field setting.

Wetland Size: about 200 ac (~ 81 ha)

FLUCCS Code/Description: pasture, 2100

1.5	Wildlife Utilization (WU)		
0.5	Wetland Cano	py (O/S)	
1.0	Wetland Grou	nd Cover (GC)	
1.9	Habitat Support/Buffer		
2.0	Field Hydrology (HYD)		
1.8	WQ Input & Treatment (WQ)		
8.7	SUM		
6	Count		
0.48	WRAP		

Garc_FLA Wetland Rapid Assessment Procedure, page 2

1.5 Wildlife Utilization (WU)

There are a few patches of remnant wet prairie, but otherwise functionally and structurally this area is not wet prairie. Various birds and insects were noted during the field visit. This site could certainly provide food and cover to generalist species and is a large open expanse in a landscape that is not under high intensity development but instead mostly residential. The main concern is immediately on the bank there is quite a bit of human disturbance due to the encroachment of shrubby species, exotic species, an altered hydrology, and a lack of growing season fire. Species adapted to a diverse groundcover and an open landscape may have a difficult time surviving.

0.5 Wetland Canopy (O/S)

The presence of woody shrub species is inappropriate for a wet prairie system. The presence of wax myrtle (Myrica cerifera) is directly related to the management of the bank. An effort was made to aerially treat the dominant woody Chinese tallow ((Sapium sebiferum) in the southern portion of the bank, it was deemed effective and now can be controlled by hand in the continuing management of the bank. Some of the larger wax myrtles (Myrica cerifera) have been killed or stressed but there are still many live shrubs and the presence of this woody mid-story species that forms a canopy undermines the structural integrity of wet prairie. These species might support perched predators, shade out the ground cover, and can alter the hydrology by tying up groundwater into the woody species. Few Chinese tallow saplings were seen except directly under larger trees, this is a good sign. Bank managers are working to irradiate the Chinese tallow and wax myrtle.

1.0 Wetland Ground Cover (GC)

Although there are small pockets on the bank that persist with appropriate wet prairie species either because of historic use or the application of growing season fire, most of the wet prairie areas of the bank are dominated by early successional and old field species. Individual desirable forbs and grasses are still around in these disturbed areas but are not dominant. With a more aggressive burn plan that uses prescribed fire in the growing season more native species might get better established. There are exotic species in the landscape. Japanese honey suckle (Lonicera japonica) was present in the southern portion of this habitat and torpedo grass (Panicum repens) was growing along the northern side in the Maggie Road footprint. In some areas, there was linear stratification of wetland species and upland or facultative species because of linear ditch and road foot prints in the landscape.

1.9 Habitat Support/Buffer

A wall of Sapium sebiferum is present on the road south of the bank and will be a constant seed source. Interstate-10 runs northeast to southwest just north of the bank, unable to tell if drainage features are connected under the interstate but there should be connection. Might be a habitat fragmentation issue to a large forested area to the north. Lands around the bank look like low intensity residential and some agriculture. There are some Florida Managed areas to the south and then across the bay to Eglin Air Force Base where there are more extensive natural areas. Appropriate natural uplands do not really exist in an unaltered state immediately around the bank. Immediately north, work has been done to improve the flatwoods, north of that looks like planted pine and flatwoods. To the east are some overgrown planted pine areas and residential homes. To the west there is some remnant upland habitat but most is converted to agriculture. South there is a private home with flatwoods and then a low intensity use road and the exotics mentioned. Most drainage features in the landscape are

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	2	0.24	0.48
South	1	0.12	0.12
East	2	0.35	0.70
West	2	0.29	0.58
		Total =	1.9

2.0 Field Hydrology (HID)

impounded.

This site can be very saturated with standing water. At the time of site visit the site was very dry. Naturally this wet prairie ecosystem would have sheet flowed to a lower elevation towards slough like systems that drain through flatwoods to the Pensacola Bay. Most of the drainage features in the landscape appear impounded. It appears that Sandy Bayou does not have any impoundments and drains naturally, although up steam off of the property may be altered. This bank has the numerous crisscross of ditch foot prints. Some ditches have been filled and others plugged. They are no longer actively draining the property offsite. However at the time of visit it was noted that in some areas wetland vegetation was growing linearly in the ditches and more upland and facultative vegetation was growing on higher ground. This might be less of an issue when more active burning is implemented. Woody vegetation may be tying up available water as well.

1.8 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total
pasture	2.5	0.40	1.0
natural areas	3.0	0.30	0.9
residential	2.0	0.20	0.4
planted pine	1.0	0.10	0.1
	•	LU Total =	2.4

PRETREATMENT CATEGORY (PT)

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
natural undeve.	3.0	0.40	1.2
none	0.0	0.60	0.0
			0.0
			0.0
		PT Total =	1.2

Appendix B-14. Graham Swamp Mitigation Bank

Figure B-14.1. Landscape location of Graham Swamp Mitigation Bank (green line) is estimated, as areas within this boundary have been used for mitigation projects not included as part of the larger mitigation bank. Boundary of the wetland assessment area Grhm_FOR in yellow includes most of the wetland mitigation bank.

Figure B-14.2. Site photo of Graham Swamp Mitigation Bank assessment area Grhm_FOR.

Grhm_FOR Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description

(See Section 62-345.400, F.A.C.)

Otto /Duning t Name		[A			A N N	Mounds
Site/Project Name		Application Number	er		Assessment Area Name	or Number
Graham Swamp Mitigat	ion Bank		NA Grhm_FOR			n_FOR
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size
6170 Mixed Wetland Hardwoods	SJRWMD SOIL	S - Favoretta, ve	ry poorly drained		Mitigation Bank	~ 89 acres (36 ha)
Basin/Watershed Name/Number A	Affected Waterbody (Clas	SS)	Special Classificati	on (i.e.C	DFW, AP, other local/state/federa	l designation of importance)
Upper East Coast HUC 03080201	Class I	III			None	
Geographic relationship to and hydro	ologic connection with	wetlands, other si	urface water, uplar	nds		
This area historically drained into the Tomoka Bay at Bulow Creek State P the bank. The bank is surrounded b	Park and Tomoka State y canals. Weirs were	Park. Currently installed to get so	Graham Swamp (me of that canal w	Conser ater b	vation Area backs up a ack on to the mitigation	and flows North towards a bank. There is a spill
over on the NW corner of the bank the Assessment area description	nat flows into a larger f	North flowing cana	al which is connec	ted to	the Intracoastal Waterv	vay.
FWCC Biodiversity Hotspots - 7+ Fo and east. Conr		•	•		etland habitat. Bounder tract of forested wetland	
Significant nearby features				nsideri	ng the relative rarity in	relation to the regional
The Graham Swamp Conservation Area drain into the Intracoastal Waterway, an Aquatic Reserve. However flow is restric culvert underneath RR grade. Area is sl does not connect.	Outstanding Florida Wa cted and only connects the	ter Tomoka Marsh rrough one small	turned into urba	an spra	•	, ,
Functions			Mitigation for pre	vious p	permit/other historic use	е
Provide permanent water pools for water quantity. Structural and sper productive and diverse habitat. Probreeding grounds for waterfowl,	cies diversity within car rovides important habit	nopy supports a tat, refugia, and	Unknown. Mo:	squito	control may be respons	sible for some canals.
Anticipated Wildlife Utilization Based that are representative of the assess be found)		•		T, SSC	y Listed Species (List s C), type of use, and inte	
Opossum, river otter, white-tailed de and rice rats, egrets, herons, hawk downy), turkey, swallow-tailed kite toads, salamander	s, wood duck, woodpe	eckers (pileated, variety of frogs,	SSC), Egretta th	<i>ula</i> (sr	wood stork - E), Aramu nowy egret - SSC), Egr ligator mississippiensis	retta caerulea (little blue
Observed Evidence of Wildlife Utiliza	ation (List species direct	ctly observed, or o	ther signs such a	s track	s, droppings, casings,	nests, etc.):
Queen butterfly emerging from co through canopy, sapsucker holes of fish (minnows? and gambusia), dow frog, pileated woodpecker. In sup	on hickory, lubbers, rib rny woodpecker, red be oport area: hunting star	bon or garter sna ellied woodpecker nd, snowy egret a	ke, green anole, b , snails along tree	anded trunks at blue	water snake, 2 large w , red shouldered hawk heron in canal, deer tr	vater moccasins, small , Carolina wren, leopard
Additional relevant factors:						
Water flow has been reversed. The eventually fed into the Intracoastal W Highway 100 and eventually drains in	/aterway (an OFW). T	his swamp create	ed the headwaters		•	
Assessment conducted by:			Assessment date	e(s):		
Kelly Chinners Reiss, Erica Hernand	ez		9/16/2005			

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

Grhm_FOR Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation)

(See Sections 62-345.500 and .600, F.A.C.)

	(See Sections	s 62-345.500 and .600, F	A.C.)			
Site/Project Name		Application Number		Assessment Area	a Name or Numbe	er
Graham Swan	mp Mitigation Bank	NA		Grhm_FOR		
Impact or Mitigation		Assessment conducted by:		Assessment date	: :	
Mitiga	ation Bank	Kelly Chinners Reiss, Erica	Hernandez		9/16/2005	
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Prese	ent (0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface water functions	wetland	evel of support of /surface water unctions	Condition is in provide wetland/	surface water
.500(6)(a) Location and Landscape Support w/o pres or current with	North of the bank is Colbert Lane a small retention areas along Colbert I then berm on the bank side. Canals out NW corner of bank under the robut does make its way West to the lebottomland swamp to the South on t look like old fields in succession and from 3m to 800m wide. On the Wesnot appear stabilized and organic de developments are apparent on the N in sufficient quantity because at leas have many exotics, there are pasture There were dense edges of unidentimany species could not cross the roalso substantially limiting for some be provide habitat support. On the Wescanal. The historical downstream suand into the artificial Intracoastal Wafeatures associated with a weir that water upstream. The basin probably system because the canal features of quality then other water draining of farea have significant land use impact water levels may be slightly lower the water levels may be slightly lower the surface of the support of the significant land use impact water levels may be slightly lower the	Lane. Between the road and to surrounding bank on the Eas ad and to the Intracoastal Wat arger North flowing canal. The the South side of the canal. Of forested uplands, this edge but side is a big canal with wood beins and substrate were falling North, East and Western edge but two sides of the bank do not e grasses and one small Sapified grasses on the Southern ad and would probably be hit full not all animals supported but the stern edge there is some adjalupport to Bulow Creek has besterway that eventually drains could keep some species from that an increased quantity of the san increased quantity of the san not hold as much water as adjacent lands and flowing to tots. Downstream effects probates	he bank is a thave water verway. On the term is a berm in the West shetween the bed uplands light in the cars of the bank have adjace um sebiferur berm. Barri by cars if the y this wetland cent land that on exchanging water leaving is a natural sy the Intracoasibly draw mir	grassy edge, side flow North and the South side of the separating the baside is a conserval bank and the North being cleared for a lat. Medium to high control of the separation of the separati	ewalk, a fence and en West to larger he bank the canal ank from the adjaction easement on h flowing canal is development. Cle hid density housing re not available Adjacent land us was found on No East sides are sut al and berm on the ior uplands within by barriers until the area drains North anal has small wate he or intracoastal a wing the bank is preses outside the as a the bank.	a canal and canal flowing has less flow yent uplands that anywhere ared area did less do not orthern berm. Ostantial, e South side is the bank that the Western into a canal orfall type areas to fresh obably better sessment
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	Water levels may be slightly lower than normal due to berms on the North and East side of the bank. There were large cypress knees and buttresses that would indicate water levels were once much higher. Canal on South side receives over flow from Graham Swamp Conservation Area and may pop over to bank but mostly connects to other canals that flow to the North. NW corner of bank has a spillover into North flowing canal if water is too high. Because of historically severe soil subsidence the bank can hold more water than it did. Water level indicators included loop roots, new small cypress knees, and stain lines however lichen lines and moss collars are not as distinct as would be expected. The site was mostly inundated at time of site visit. No evidence of erosion or soil deposition leaving the bank on the spill over. No evidence of fire. Ground cover vegetation is not typical for the system in some areas, this could be due to an open canopy from stressed trees or inappropriate hydrology. The bank supports wetland dependant species water snakes, an alligator, frogs and fish were seen during site visit. We did not see species indicative of degraded water quality. Direct observation of					
7	standing water looked clear and tann	nic. No water quality data. Lig	ght penetration			probably
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	more shallow then it should be. The Majority of plant cover is by appropri grasses (i.e. Stenotaphrum secunda allowing light in. Species compositic species though ferns do grow across Regeneration of canopy species was (hackberry) growing up but only smasome temporary deviation from norn dens, and cavities is optimal for habiarea includes water control features	ate and desirable plant specie atum - St. Augustine grass) on on primarily grasses, sedges, as the southern boundary cana is patchy, some areas had you all number of very young Taxo and age and size class distributiat support. No evidence of cand canals that caused a shift	es in canopy, berms and cand herbacee. Invasive sping Ulmus and dium distichution. Density holorotic or stin the plant	shrub and ground lrier patches. Ver ous species - no fo necies are present mr (bald-cypress) y and quality of co spindly growth. La community. Weir	d stratums. Some y green understor erns visible excep but cover is minir an elm) and <i>Celtis</i> were found. The arse woody debris and management is	y, canopy t epiphytic mal. laevigata re has been s, snags, in surrounding
7	hydrology but maintenance and man Topographic features such as refugi	•				
	ropograpnio icatares sucir as letugi	a pondo ana naminocko die p	nosciit anu I	ionnai.		
Score = sum of above scores/30 (if uplands, divide by 20)	1			For impact assess	sment areas	
current or w/o pres with	Preservation adjustme	in racior –	FL =	delta x acres =		

	sum of above scores/30 plands, divide by 20)			
current or w/o pres	6	with		
0.60				

If preservation as mitigation,
Preservation adjustment factor =
Adjusted mitigation delta =

For impact assessment areas	
FL = delta x acres =	

Grhm_FOR Wetland Rapid Assessment Procedure, page 1 Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: Grhm_FOR - Graham Swamp Mitigation Bank

Date: 9/16/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: mixed forested wetland divided from northern section by busy 2-lane road. Encroaching urban development on uplands surrounding this area.

Wetland Size: 26.7 ha (65.9 ac)

FLUCCS Code/Description: 2000 SJRWMD - East side 6170 Mixed Wetland Hardwoods,

West side 6210 Cypress

0.68	WRAP		
6	Count		
12.3	SUM		
1.9	WQ Input & Treatment (WQ)		
2.0	Field Hydrology (HYD)		
1.3	Habitat Support/Buffer		
2.0	Wetland Ground Cover (GC)		
2.5	Wetland Canopy (O/S)		
2.5	Wildlife Utilization (WU)		

Grhm_FOR Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Within wetland: Queen butterfly coming out of cocoon, other Queen butterflies, Fritillary butterfly, dragonflies, sapsucker holes on hickory trees, great egret flying through the canopy, pig frog, 3 ft alligator, green treefrog, apple snail eggs, 2 large water mocossins, banded water snake, small fish (?minnows and gambusia), downy woodpecker, redbellied woodpecker, snails along tree bark, red shouldered hawk, Carolina wren, leopard frog, pileated woodpecker. In support area: hunting stand, pileated woodpecker, large fish in south canal, snowy egret along west canal, great blue heron in west canal, deer tracks on west berm, turkey feather on west berm, small fury critter in brush - thought to be a small hog, hog rooting, ?water thrush, titmouse, white eyed vireo - support area was disturbed hydric hammock. Much wildlife support in the wetland, but less than optimal support in the surrounding area. Strong evidence of wildlife utilization, especially by reptiles. Two sides of the mitigation bank are bordered by a road. There are canals on almost all sides, showing greater than human disturbance to water quality and quantity.

2.5 Wetland Canopy (O/S)

Some fallen and down trees, open canopy allowing green groundcover. Many Acer rubrum (red maple) seedlings suggesting previous dryness especially along south side. Also regeneration of Ulmus americana (elm) and Celtis laevigata (sugar-berry) present. Mature old trees present, some patches with only Sabal palmetto (cabbage palm) trees throughout. Some limited Taxodium distichum (bald-cypress) regeneration in one patch in the SE also with Fraxinus caroliniana (Carolina pop ash) regeneration. Ilex vomitoria (yaupon holly) on upland/higher patches. Not strong evidence of recruitment of Taxodium distichum. Some snags and dead trees, perhaps more than appropriate. Abundant desirable canopy species. Less than 10% nuisance species, only one Sapium sebiferum (Chinese tallow) tree observed in northern area near busy 2-lane paved road.

2.0 Wetland Ground Cover (GC)

Species composition not ideal for this type of forested system but not full of invasive, exotic, or nuisance species. Abundant desirable species, some disturbance visible with hog rooting and also some human impacts. Some pasture grasses (i.e. Stenotaphrum secundatum - St. Augustine grass) on berms and drier patches. Pretty green understory, canopy allowing light in. Species composition primarily grasses, sedges, and herbaceous species - no ferns visible except epiphytic species though ferns do grow across the southern boundary canal. Some Lygodium sp. (climbing fern) found near N/E side (close enough to hear traffic on busy 2-land paved road). Noted groundcover species include Asclepias sp. (milkweed), Polygonum hydropiperoides (swamp smartweed), Saururus cermuus (lizard's tail), Boehmeria cylindrica (false-nettle), Iris sp. (iris), ?Panicum gymnocarpon (savannah panicum) - though not reported for Volusia Co. in online USF atlas. Cypress knees growing low to ground throughout - theory of bank manager is that these are new growth. No ground cover in areas of heavy Sabal palmetto (cabbage palm) canopy.

1.3 Habitat Support/Buffer

Canals surround bank on nearly all sides (expect upland strip in center of bank), some canals with steep banks (at least on 3 sides). South canal has water level almost the same as the banks ground elevation. Water levels in this canal have been much lower with clear nonflowing water with large fish visible (did not see at this site visit). The other 3 sides also have berms associated with the canals. On 2 sides there is >300 ft buffer. On 2 sides there is little buffer because there s canal and then urban interface. Animals must be able to limb the berm and swim the canal to access areas of the bank. On the W side the buffer is >300' but separate from other natural area by the canal which prevents access by larger terrestrial species. To the S is the GSCA, water flow is to the north but really it goes around the bank into the bypass canals. On N and E is berm/canal/road with no connection to other natural areas and a <30 ft vegetated or flooded buffer. On the W is the >300 ft conservation easement, though not ideal habitat for all species, it is an desirable species but limited native groundcover or desirable canopy and midstory species. A portion is cut off by the canal spill-over feature. On the S side the wetland bank is onnected to the GSCA with water flow to the north in high

Buffer Type	(Score) x	(% of Area)	= Sub Total
berm/canal/road	0.5	0.17	0.08
berm/canal/road	0.5	0.33	0.17
old field succession	2	0.33	0.67
canal/GS Con. Area	2.5	0.17	0.42
		Total =	1.3

2.0 Field Hydrology (HID)

Loop roots, stain lines, knees visible. Lichen lines not as distinct as expected, moss collars not intact. Berm on S side of S border canal could be lined with an exotic species a bushy large grass. Soil subsidence clearly visible on Acer rubrum (red maple) and cypress knees. Some cypress knees crumble down when touched, these have not recovered from the previous drawdown period. Utricularia sp. (bladderwort) found in deeper water area. Many small young cypress knees found growing throughout - a good sign of successful hydrologic restoration as the trees respond to an increase in water level. Hydrology appears adequate, but not a natural hydroperiod as evidenced by the size of the buttresses and the reversed flow of water (historically drained to the S). External influence apparent with canals on all sides and species along the edges near canals showing more signs of hydrologic stress. Wetland is viable, some regeneration noted.

1.9 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
natural/undev.	3.0	0.33	1.0
low volume high.	2.0	0.33	0.7
single fam. Res.	1.5	0.33	0.5
		LU Total =	2.2

PRETREATMENT CATEGORY (PT)

FRETREATMENT CA	ALLOOKI	(F I)	
Pretreatment Category	(Score) x	(% of Area)	= Sub Total
nat/undev.	3.0	0.33	1.0
grass swal. w/dry det.	2.0	0.33	0.7
no treatment	0.0	0.3	0.0
		PT Total -	17

Appendix B-15. Hole in the Donut/Everglades National Park

Figure B-15.1. Landscape location of Hole in the Donut/Everglades National Park (green line). Boundary of the wetland assessment areas HID_MAR_1 outlined in blue and HID_MAR_2 outlined in yellow are shown.

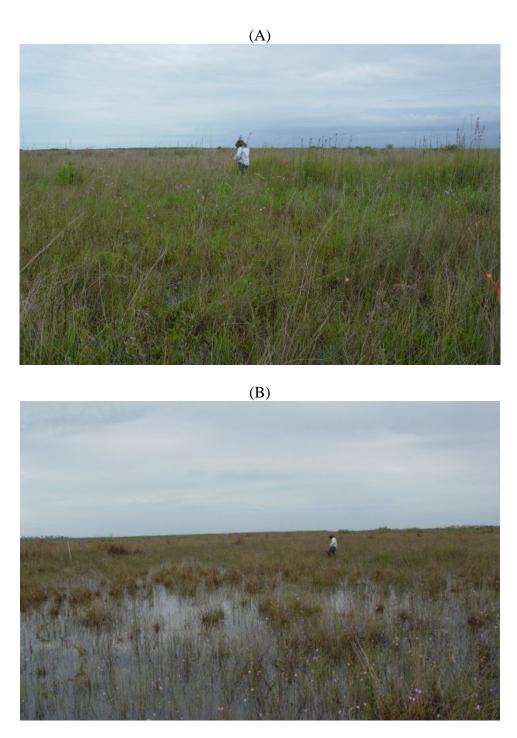


Figure B-15.2. Site photo of rocky glades assessment areas A) HID_MAR_1, the oldest portion of the bank with time zero starting in 1989 and B) HID_MAR_2 with time zero starting in 2001.

HID_MAR_1 Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name Hole in the Donut Mitigation Bank, I Park	Everglades National	Application Numbe	er		Assessment Area Name HID_MAR_1	or Number
FLUCCs code	Further classifica	tion (optional)		Impac	ct or Mitigation Site?	Assessment Area Size
641 - Freshwater marsh	Rocky Glades					~ 5.3 acres
Basin/Watershed Name/Number HUC - SE Florida Coast	Affected Waterbody (Clas	SS)			OFW, AP, other local/state/federa	
Geographic relationship to and hyd	rologic connection with	wetlands, other su	urface water, uplai	nds		
Hydrologically connected to the res Biscayne Bays.	t of HID and connected	to the greater Eve	erglades which be	ars gre	eat ecological importand	ce to Florida and
Assessment area description Square parcel restored in 1989 fror West and South were restored in 1si characterized as rocky glades, ar of open water and clumps of saw g	997. Bordered on East nd is precipitation driven	by narrow paved	road which separa ry diverse vegetat	ates Dation, st	AGLAD from land resto anding water at time of	red in 1999. DAGLAD site visit, and has areas
Significant nearby features			Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional
Within the Everglades National Park. Conservation lands owned by SFWMD to the East, about 7 miles away.		owned by	The Everglades is recognized through out the world as unique and ecologically and economically important ecosystem.			
Functions			Mitigation for pre	vious p	permit/other historic use	2
Surface and subsurface water storage, biogeochemical processes, important wildlife habitat support		ocesses,	Historically private in holding used for agriculture inside ENP. This area was rock plowed.			
Anticipated Wildlife Utilization Base that are representative of the asses be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, Florida Panther, white tailed deer, gray fox, water snakes, southern toad, mosquito amphiuma, mosquito fish, flag fish, marsh killifish, alligator, wading birds, snail kite		n toad, mosquito,	Alligator mississippiensis (SSC); Rostrhamus sociabilis plumbeus (END); Haliaeetus leucocephalus (T), Puma concolor coryi (E) could potentially pass through here but probably prefer higher ground.			
Observed Evidence of Wildlife Utiliz	ration (List species direc	ctly observed, or o	other signs such a	s track	ks, droppings, casings,	nests, etc.):
Apple snails, crayfish, marsh rat, fire ants, red winged black birds, grackles, mosquitoes						
Additional relevant factors:						
Entire site has been regraded as part of the restoration effort by removing agricultural fill bringing the ground to the limestone substrate. Spoil pile remains on site in HID.				e substrate. Spoil pile		
Assessment conducted by:			Assessment date	e(s):		
EH, KCR						20-Jun-05

HID_MAR_1 Uniform Mitigation Assessment Method, page 2
PART II – Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Number	r
Hole-in-the-Donut/Everg	lades National Park			F	HID_MAR_1	
Impact or Mitigation		Assessment conducted by:		Assessment date	e:	
mitigation		EH, KCR			6/20/2005	
Scoring Guidance	Optimal (10)	Moderate(7)	Mir	nimal (4)	Not Present	· (0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than	Minimal le	vel of support of surface water inctions	Condition is insur provide wetland water functi	fficient to /surface
.500(6)(a) Location and Landscape Support w/o pres or current with	contiguous glades. Schi because of the current hyd surrounding pinelands and g the only obstruction, not ma	osaic, on the North edge there inus terebinthifolius still exists drologic regime. That area ho plades. Wildlife utilization sho jor. Could be barrier for small the WAA is all native or restore	on un-restor wever proba uld be high in herps on the	red area but shou ably has less habit n surrounding gla e East edge, ther	ld not re-inhabit thi tat support then the des. Road on Eas e are fire ants all a	is site e other it edge is llong this
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	them. Road isn't very high a water under the road throug	an see. Road on East edge h and probably floods during hig ih the limestone. Hydro-period water have appropriate plant s leopard frog. Standing	h water. The d appears no pecies. We	ere is probably als ormal. Plants are can hear amphib	so a high rate of tra not stressed and I	ansfer of ook very
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	Plants look in good health.	ucture appears optimal. Desir Normal topographic features pecies. There is some minima	. Some poc	kets of deeper wa	ater with appropria	
Score = sum of above scores/30 (if uplands, divide by 20) current br w/o pres with	If preservation as mitigation adjustment Adjusted mitigation deli	nt factor =		For impact assessedelta x acres =	sment areas	
Delta = [with-current]	If mitigation Time lag (t-factor) = Risk factor =			or mitigation asse		
<u> </u>	J <u>L</u>					

HID_MAR_1 Wetland Rapid Assessment Procedure, page 1

Project Name: HID_MAR_1- Hole in the Donut at Everglades National Park

Date: 6/20/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: rocky glades - exposed limestone rock that had been rock plowed and used for agricultural crops. Restoration completed in 1989.

Wetland Size: 21.2 ha (52.4 ac)

FLUCCS Code/Description: 1995 SFWMD - 641 Freshwater Marshes

3.0	Wildlife Utiliz	cation (WU)	
NA	Wetland Canopy (O/S)		
3.0	Wetland Grou	nd Cover (GC)	
2.6	Habitat Support/Buffer		
3.0	Field Hydrology (HYD)		
2.5	WQ Input & Treatment (WQ)		
14.1	SUM		
5	Count		
0.94	WRAP		

HID_MAR_1 Wetland Rapid Assessment Procedure, page 2

3.0 Wildlife Utilization (WU)

Situated with Everglades National Park. Wildlife access available to and from assessment area. Near a mixture of habitats including rocky pine lands which provide food, cover, roosting, etc., for wildlife including large mammal species.

NA Wetland Canopy (O/S)

DAGLAD is a marsh. There are some patches of shrubs, but nothing that would be categorized as canopy.

3.0 Wetland Ground Cover (GC)

High diversity of groundcover species present. No exotic species identified within the assessment area, though some exotics do occur on adjacent property. The exotic species are being managed on site and hydrology has been restored which should prevent exotics from colonizing the assessment area. Mainly the concern is with *Schinus terebinthifolius* (Brazilian pepper).

2.6 Habitat Support/Buffer

The E boundary is a small paved 2-lane road that does not host heavy traffic. It has a narrow (1-2m) mowed edge. This could impede the movement of herps and act as a minor landscape barrier, because there is a change in the topography as the road is raised above the marsh surface.

Buffer Type	(Score) x	(% of Area)	= Sub Total
Everglades marsh	3	0.75	2.25
2-land road	1.5	0.25	0.38
		Total =	2.6

3.0 Field Hydrology (HYD)

Hydrologic indicators appear appropriate. No signs of unhealthy, chlorotic, spindly, or diseased plants.

2.5 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

EANDOSE CATEGORT (EU)				
Land Use Category	(Score) x	(% of Area)	= Sub Total	
Everglades marsh	3.0	0.75	2.3	
2-lane road	2.0	0.25	0.5	
			0.0	
_		LU Total =	2.8	

PRETREATMENT CATEGORY (PT)

		- ()	
Pretreatment Category	(Score) x	(% of Area)	- Sub Total
Category	(SCOIC) A	(70 Of Arca)	- Sub Total
natural undeveloped	3.0	0.75	2.3
no treatment	0.0	0.25	0.0
			0.0
		PT Total =	2.3

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

HID_MAR_1 Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Rocky Flats Glades

Assessment Team: KCR, ECH
Project Name: HID_MAR_1

Location: Everglades National Park, HID WAA 1989

Date: 6/20/05 Subclass: Rocky Flats

Function	FCI
Surface and Subsurface Water Storage	0.64
Cycle Nutrients	0.65
Characteristic Plant Community	0.72
Wildlife Habitat	0.81

Variables	Measure	Units	Subindex
VTRACT	> 500	ha	1.00
VCORE	> 73	%	1.00
VCONNECT	> 80	%	1.00
VMICRO	100	%	0.00
Vwoody	0	%	1.00
VINVASIVE	0	%	1.00
VNATIVE	≥ 20	%	1.00
VMAC	69	%	0.65
VPERI	58	%	0.73
VSURTEX	marl		1.00
VSOILTHICK	1.88	cm	0.7

HID_MAR_1 Hydrogeomorphic Approach, page 2

VTRACT > 500 ha

VCORE 73%

10091/13862

VCONNECT > 80%

VMICRO all of the wetland microtopography has been rock plowed

VWOODY 0%, 0%, 0%

VINVASIVE 0%, 0%, 0%

VNATIVE $\geq 20\%, \geq 20\%, \geq 20\%$

VMAC 1. 95% 2. 85% 3. 98% 4. 45% 5. 40%

6. 75% 7. 65% 8. 15% 9. 100%

VPERI 1. 40% 2. 45% 3. 10% 4. 92% 5. 80%

6. 60% 7. 60% 8. 100% 9. 35%

VSURTEX 1. 100% 2. 97% 3. 10% 4. 100% 5. 100%

6. 100% 7. 50% 8. 50% 9. 90%

VSOILTHICK 1. 2cm 2. 1.5cm 3. 1.7cm 4. 0.75cm 5. 1.5cm

6. 2.5cm 7. 2 cm 8. 3cm 9. 2cm

HID_MAR _2 Uniform Mitigation Assessment Method, page 1 PART I - Qualitative Description (See Section 62-345.400, F.A.C.)

I		Application Number			Assessment Area Name or Number	
Hole in the Donut Mitigation Bank, Everglades National Park				HID_MAR_2		
	Fthan alasaifias	tion (ontinual)				I
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size
FLUCCs 6000 freshwater marsh	Rocky Glades					~ 422 acres
Basin/Watershed Name/Number Af	fected Waterbody (Clas	ss)	Special Classificati	on (i.e.C	DFW, AP, other local/state/federal	designation of importance)
HUC - SE Florida Coast			OFW-Everglades National Park, Priority 3 in FNAI Habitat Cons. Priority			
Geographic relationship to and hydrol	ogic connection with	wetlands, other su	ırface water, uplar	nds		
Hydrologically connected to the rest o Biscayne Bays.	f HID and connected	to the greater Eve	erglades which bea	ars gre	eat ecological important	ce to Florida and
Assessment area description						
Southern part of DADUNE has deepe paved road (very little traffic). North o the South is another area of HID resto	of road is a wall of Bra	ızilian Pepper (Sh				
Significant nearby features			Uniqueness (collandscape.)	nsideri	ing the relative rarity in	relation to the regional
Within the Everglades National Park. Conservation lands owned by SFWMD to the East, about 7 miles away.		The Everglades is recognized through out the world as unique and ecologically and economically important ecosystem.				
Functions			Mitigation for pre-	vious p	permit/other historic use	•
Surface and subsurface water storage, biogeochemical processes, important wildlife habitat support		Historically private in holding used for agriculture inside ENP When land went fallow it was invaded by <i>Shinus terebinthifolius</i> . Part of DADUNE was part of the Nike Missle Base Historic District. This area was rock plowed.				
Anticipated Wildlife Utilization Based on Literature Review (List of species that are representative of the assessment area and reasonably expected to be found)		Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)				
Florida apple snail, crayfish, marsh rice rat, bobcat, raccoon, Florida Panther, white tailed deer, gray fox, water snakes, southern toad, mosquito, amphiuma, mosquito fish, flag fish, marsh killifish, alligator, wading birds, snail kite		Alligator mississippiensis (SSC); Rostrhamus sociabilis plumbeus (END); Haliaeetus leucocephalus (T), Puma concolor coryi (E) could potentially pass through here but probably prefer higher ground.				
Observed Evidence of Wildlife Utilizat	tion (List species direc	ctly observed, or o	ther signs such a	s track	s, droppings, casings, i	nests, etc.):
Common buckeye caterpillars and butterflies on Agalinis spp. Fire ants, grackles, red wing black birds, marsh rat numerous macroinvertebrates						
Additional relevant factors:						
This site is quite a bit drier on the North end of the WAA and has more exposed limestone than on DAGLAD. Some very young <i>Shinus terebinthifolius</i> , probably less than 1 %. Less diversity in plant cover than expected.						
Assessment conducted by:			Assessment date	e(s):		
EH, KCR						6/21/2005

HID_MAR _2 Uniform Mitigation Assessment Method, page 2
PART II - Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number	IA.	ssessment Area	a iname or numbe	f .
Hole in the Donut Mitigation Bank, Everglades National Park				HID_MAR_2		
Impact or Mitigation mitigation		Assessment conducted by: EH, KCR		Assessment date: 6/21/2005		
Scoring Guidance	Optimal (10)	Moderate(7)	Mini	mal (4)	Not Presen	t (O)
The scoring of each	Optimal (10)	Condition is less than	IVIIIII	iliai (4)	Not Flesen	1 (0)
indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	optimal, but sufficient to maintain most wetland/surface waterfunctions	wetland/si	el of support of urface water ctions	Condition is insu provide wetland water funct	l/surface
.500(6)(a) Location and Landscape Support w/o pres or current wi	wall of Brazilian Pepper (Sh or natural glades. The Braz equal to 1 % on the Norther and wildlife d	vildlife in surrounding landscap ninus terebinthifolius) on the No iilian Pepper (Shinus terebinth n end of DADUNE. Wildlife ac ownstream from this site shou	orth side of the ifolius) seems could be	e road. South a to have a very s partially limited	nd West edge are small presence les l by roads. Function	restored ss than or
8						
.500(6)(b)Water Environme (n/a for uplands) w/o pres or current wi	Macroinvertebrates and tad and wetland plants in deepe	Ipoles on site. Periphyton pres er water. Standing water looks the North edge may ha	very clear. W	Vater consistent		
.500(6)(c)Community struct 1. Vegetation and/or 2. Benthic Community w/o pres or current wi	No control structures. Major Plant condition looks good present and normal. No silta	ity or nearly all plant cover is a 1. Land management is optim ation or impeding algal growth inappropriate for a re	al for viability on plants. Div	of the wetland. 'versity and abun	Topographic featu	ires are
	<u> </u>					-
Score = sum of above scores/30 uplands, divide by 20) current or w/o pres 0.83	Preservation adjustme	nt factor =		or impact assess	sment areas	
	If mitigation					1
Delta = [with-current]	Time lag (t-factor) =			mitigation asse		
	Risk factor =		RFG =	delta/(t-factor x	risk) =	

HID_MAR _2 Wetland Rapid Assessment Procedure, page 1

Wetland Rapid Assessment Procedure (WRAP)

All Data Sheets for Existing Conditions. Sheets designed for Mitigation Bank Study - K.C.Reiss. 5/2005

Project Name: HID_MAR _2 Hole in the Donut at Everglades National Park

Date: 6/21/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: rocky glades - exposed limestone rock that had been rock plowed and used for agricultural crops. Restoration completed in 2001.

Wetland Size: 171 ha (422 ac)

FLUCCS Code/Description: 6000 freshwater marsh

0.77	WRAP		
5	Count		
11.5	SUM		
2.0	WQ Input & Treatment (WQ)		
2.0	Field Hydrology (HYD)		
2.0	Habitat Support/Buffer		
2.5	Wetland Ground Cover (GC)		
NA	Wetland Canopy (O/S)		
3.0	Wildlife Utilization (WU)		

HID_MAR _2 Wetland Rapid Assessment Procedure, page 2

3.0 Wildlife Utilization (WU)

Observed: macroinvertebrates, tadpoles, birds, fire ants, butterflies, marsh rat, red winged black bird. Heard: frogs calling, birds calling.

NA Wetland Canopy (O/S)

Herbaceous marsh.

2.5 Wetland Ground Cover (GC)

Many appropriate species. *Schinus terebinthifolius* (Brazilian pepper) present, but perhaps < 1%. Less diversity of groundcover species than expected.

2.0 Habitat Support/Buffer

N - boundary road and thick strip of Schinus terebinthifolius (Brazilian pepper) on other side. W - edge with 2-land road, not wide (<10m) or heavily traveled. E & S - restored rocky glade marshes.

Buffer Type	(Score) x	(% of Area)	= Sub Total
N-boundary rd.	1	0.25	0.25
W-smaller rd.	1	0.25	0.25
E&S wetland	3	0.5	1.50
	-	Total =	2.0

2.0 Field Hydrology (HYD)

SW corner holds lots of water, comparatively low species diversity, certainly less than expected. Limited upland and transitional species encroachment. N end if much shallower, it has been graded that way. There is more exposed rock, more vines, and more transitional species encroaching. This area also hosts some obligate wetland species however.

2.0 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
N-boundary rd.	2.0	0.25	0.5
W-smaller rd.	2.0	0.25	0.5
E-marsh	3.0	0.25	0.75
S-marsh	3.0	0.25	0.75
		LU Total =	2.5

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
N/W-no treatment	0.0	0.50	0.0
E/S-nat. undev.	3.0	0.50	1.5
			0.0
		PT Total =	1.5

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

HID_MAR _2 Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Rocky Flats Glades

Assessment Team: KCR, ECH Project Name: HID_MAR_2

Location: Everglades National Park HID WAA 2001

Date: 6/21/05 Subclass: Rocky Flats

Function	FCI
Surface and Subsurface Water Storage	0.48
Cycle Nutrients	0.68
Characteristic Plant Community	0.59
Wildlife Habitat	0.81

Variables	Measure	Units	Subindex
VTRACT	> 500	ha	1.00
VCORE	77	%	1.00
VCONNECT	93	%	1.00
VMICRO	100	%	0.00
Vwoody	0	%	1.00
VINVASIVE	0.33	%	1.00
VNATIVE	20	%	1.00
VMAC	42	%	1.00
VPERI	88	%	1.00
VSURTEX	0.7	index	0.70
VSOILTHICK	0.472	cm	0.2

HID_MAR _2 Hydrogeomorphic Approach, page 2

VTRACT > 500 ha

VCORE 77%

26632/34744

VCONNECT 93%

VMICRO all of the wetland microtopography has been rock plowed

VWOODY 0%, 0%, 0%

VINVASIVE 0%, 1%, 0%

VNATIVE 20%, 20%, 20%

VMAC 1. 15% 2. 25% 3. 35% 4. 40% 5. 75%

6. 40% 7. 50% 8. 60% 9. 35%

VPERI 1. 90% 2. 95% 3. 80% 4. 90% 5. 60%

6. 15% 7. 80% 8. 60% 9. 40%

VSURTEX 1. 100% 2. 97% 3. 10% 4. 100% 5. 100%

loamy sand 6. 100% 7. 50% 8. 0% 9. 0%

VSOILTHICK 1. 0.25cm 2. 1.5cm 3. 1cm 4. 0.25cm 5. 0.5cm

6. 0.25cm 7. 0.5cm 8. 0cm 9. 0cm

Appendix B-16. Lake Louisa and Green Swamp

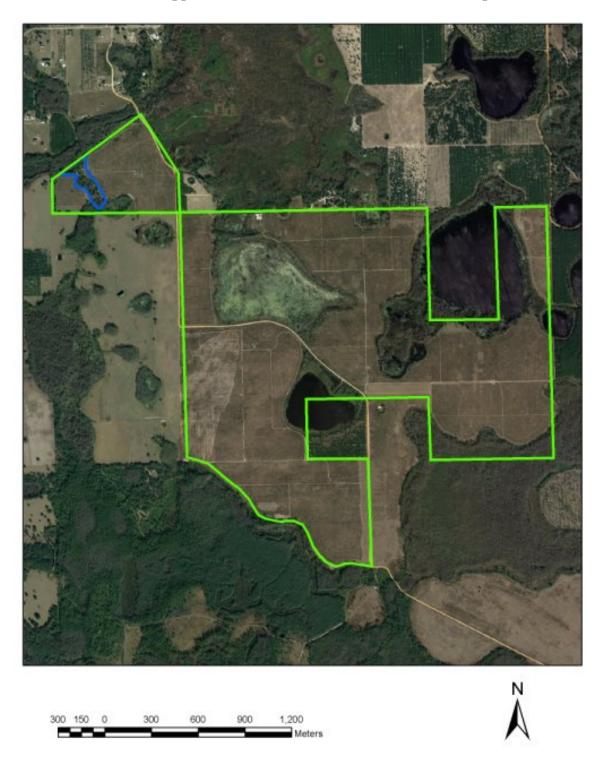


Figure B-16.1. Landscape location of Lake Louisa and Green Swamp Mitigation Bank (green line). Boundary of the wetland assessment area Loui_SHR (blue line) shown.

Figure B-16.2. Site photo of Lake Louisa and Green Swamp Mitigation Bank assessment area Loui_SHR in phase II.

Loui_SHR Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Numbe	ation Number		Assessment Area Name or Number		
Lake Louisa				NA		Loui_SHR	
FLUCCs code		Further classifica	tion (optional)		Impac	et or Mitigation Site?	Assessment Area Size
1988 611 Bay Swamp 1995 and 20 631 Mixed scrub shrub wetland	00	NWI - scrub shru	b wetland; Soils -	Myakka soil	mitiga	ation	~ 8 ac (~ 3.2 ha)
Basin/Watershed Name/Number	Affect	ed Waterbody (Clas	ss)	Special Classificati	on (i.e.	OFW, AP, other local/state/federal	designation of importance)
Basin - Little Creek; HUC - Oklawaha River		Class I	II			none	
Geographic relationship to and hyd	rologi	c connection with	wetlands, other su	ırface water, uplar	nds		
Wetland assessment area connect and is now being restored to sandh							y in citrus production
Assessment area description							
Ditched channel connects previous natural community appears shrubby small impoundment, (an old road or	y and	successional. The					-
Significant nearby features				Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional
State Park Lake Louisa shares a North West border to the r The bank is in the process of being restored from citrus to a community. Nearby pastures could affect water quality?		•			s wetland does not appe egion or in this landscap	, ,	
Functions				Mitigation for previous permit/other historic use			
Wildlife corridor and flood attenuation of wildlife species	on, pr	ovide cover and fo	orage for a variety	Historic use: citru	s gro\	es in uplands.	
Anticipated Wildlife Utilization Base that are representative of the asses be found)				· ·	T, SS	by Listed Species (List s C), type of use, and inte	
No FNAI element occurrences. As: are ribbon snake, cotton mouth, op raccoon, otter, white tailed deer						has been associated w fortoise (SSC) in adjace	
Observed Evidence of Wildlife Utiliz	zation	(List species direct	ctly observed, or o	other signs such as	s track	ks, droppings, casings, r	nests, etc.):
Deer tracks and game trails adjacent to the wetland. A pair of red shoulder hawks heard from the wetland. Vultures and wood storks seen flyir overhead. Numerous butterfly species seen at the site.				ood storks seen flying			
Additional relevant factors:							
The wetland is connected to and flot Chain of Lakes and Lake Louisa. Very plans at this time to do any addition culvert nothing else has been done	Ve do ıal enl	n't know if much a nancement. There	ttention has been are no monitorin	given to this parti g transects in the	cular v wetlar	wetland in the bank and nd. Beyond the more st	if there are future able connection of a
Assessment conducted by:				Assessment date	e(s):		
Erica Hernandez, Kelly Chinners Ro	eiss			5/9/2005			

Form 62-345.900(1), F.A.C. [effective date 02-04-2004]

Loui_SHR Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation)

(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number	Assessment	Area Name or Number
Lake Louisa			Loui_SHR	
Impact or Mitigation		Assessment conducted by:	Assessment	date:
Mitigation		EH, KCR	5/9/2005	
Scoring Guidance	Optimal (10)	Moderate(7)	Minimal (4)	Not Present (0)
Scoring Guidance The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than	Minimal (4) Minimal level of suppor wetland/surface wate functions	t of Condition is insufficient to
.500(6)(a) Location and Landscape Support w/o pres or current with	are not too much of an issue well as pasture and restored	corridor. Some exotic species Nearby road is not heavily us sandhill without major impede ependent on water discharge. benefit this wetland.	sed. There are low densi ments. Downstream imp	ty residential areas nearby as pacts are not apparent. Down
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	detected. Water levels indicated has an open center and is a very level of the content of the co		by elderberry ring around se and abundance <i>Acer r</i>	oond cypress regeneration the pond cypress, the cypress ubrum suggests a shift in water
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	wetland. The plant cover is r species observed on site, ho this wetland may not persist. flooded or too dry and this ha cordata, Juncus spp., Acer ru Taxodium ascendens, Erech	Perhaps prior to the culvert b is affected the species compo ibrum, Rubus spp., Sambucus	wetland community, mar propriate species are still eing put in place the hydr sition on site. Species se s canadensis, Magnolia v nuus, Iris spp., Urena lob	ny weedy and transitional present. In its current condition
Score = sum of above scores/30 (if uplands, divide by 20) current or w/o pres with 0.63	If preservation as mitigeners of the preservation adjustment of the preservation adjustment of the preservation and preservation as mitigation deliferation of the preservation as mitigation as mitig	nt factor =	For impact as	esessment areas
Delta = [with-current]	If mitigation Time lag (t-factor) = Risk factor =		For mitigation a	assessment areas or x risk) =

Loui_SHR Wetland Rapid Assessment Procedure, page 1

Project Name: Loui_SHR, Lake Louisa & Green Swamp Mitigation Bank

Date: 5/9/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Shrubby disturbed wetland with exotic species. Surrounded by restoration of former citrus grove to *Pinus palustris* (longleaf pine) sandhills.

Wetland Assessment Area: 2.4 ha (6 ac)

FLUCCS Code/Description: SWFWMD 2000 - 6300 Wetland Forested Mixed -Perhaps more appropriately 6310 Wetland Shrub

6	Count		
10.8	SUM		
2.8	WQ Input & Treatment (WQ)		
1.0	Field Hydrology (HYD)		
2.0	Habitat Support/Buffer		
2.0	Wetland Ground Cover (GC)		
1.0	Wetland Canopy (O/S)		
2.0	Wildlife Utiliz	ation (WU)	

Loui_SHR Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Viewed wood stork and hawk pair (perhaps nest nearby because of vocalizations) and vultures. Deer tracks in mitigation bank and game trails visible. Butterflies present.

1.0 Wetland Canopy (O/S)

Has *Taxodium ascendens* (pond cypress) fringe, no recruitment noticeable. Shrubby disturbed canopy. *Acer rubrum* (red maple) abundant in some patches.

2.0 Wetland Ground Cover (GC)

Not much of a wetland groundcover present. Less than 25% undesirable species. Few exotics in the wetland area, many on areas just adjacent to the wetland area.

2.0 Habitat Support/Buffer

·			Total =	2.0
cover, food, etc.				0.0
composed of many weedy species that do not provide optimal				0.0
than 300 ft wide not dominant desirables, area being restored,	Restoration	2	1	2.0
Connected to wildlife corridor along connected creek. Greater	Buffer Type	(Score) x	(% of Area)	= Sub Total

1.0 Field Hydrology (HYD)

Effects of ditching, filling, and impoundment obvious which changes the hydrology.

2.75 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use	(Coore) v	(% of Aroa)	= Sub Total
Category disturbed but	(Score) x	(% of Area)	Total
natural	2.5	1.00	2.5
			0.0
		LU Total =	2.5

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
nat. undev.	3.0	1.0	3.0
			0.0
			0.0
		PT Total =	3.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Appendix B-17. Lake Monroe

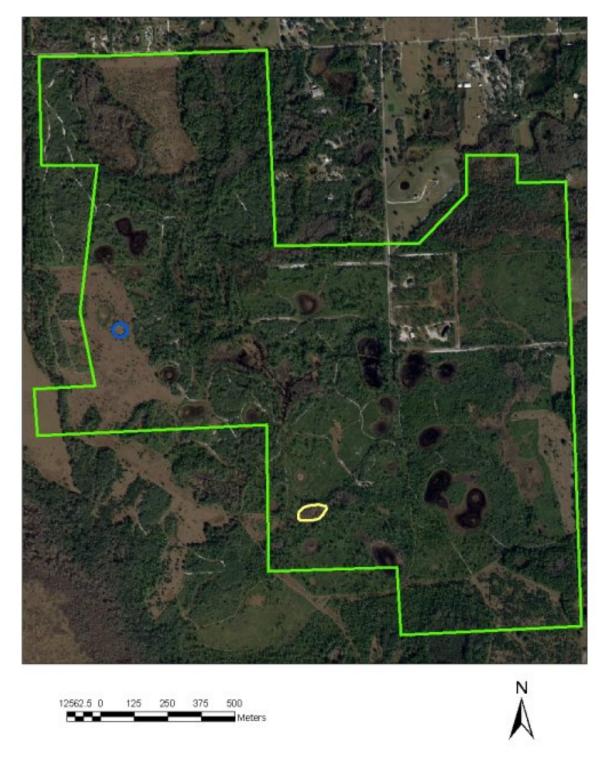


Figure B-17.1. Landscape location of Lake Monroe Mitigation Bank (green line). Boundary of the wetland assessment areas Monr_CYP (yellow line) and Monr_MAR (blue line).



Figure B-17.2. Site photo of Lake Monroe Mitigation Bank assessment areas A) Monr_CYP, a cypress dome in an intact flatwoods and scrub, and B) Monr_MAR, a marsh surrounded by pasture.

Monr_CYP Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name Application		Application Numbe	per Assessment Area Name or Numbe		or Number	
Lake Monroe Mitigation	on Bank		NA	Monr_CYP		_CYP
FLUCCs code	Further classifica	ition (optional)		Impac	t or Mitigation Site?	Assessment Area Size
SJRWMD 2000 - 6210 Cypress	SJRWMD 2000 - 6210 Cypress depressional forested - SJRW Immokalee and Pol		I MITIGATION BANK I ()		0.6 ha (1.5 ac)	
Basin/Watershed Name/Number	Affected Waterbody (Clas	ss)	Special Classification	on (i.e.C	DFW, AP, other local/state/federal	designation of importance)
HUC 03080101 St Johns Upper	Class I	III	G	SWEC	O priority 7, not critical	linkage
Geographic relationship to and hydr Connected with areas that spill ov drain off the property in times of h	ver in high water times	to a bayhead (E) a	and herbaceous mand herbaceous we	arsh (
Assessment area description						
NWI - Palustrine Forested Needle Some cut stumps visible throughou grasses, sedges, and herbaceou	ut the wetland as evide	ence of logging, par	rticularly evident in oundcover charact	SE p	ortion where ground co d by ferns and more sha	ver is characterized by ade adapted species.
Significant nearby features			Uniqueness (cor landscape.)	nsideri	ing the relative rarity in	relation to the regional
Lake Jessup Conservation Area to the south (not contiguous). Large wat body Lake Monroe to east up river corridor, state lands on west side of La Monroe. Lake Harney to the east, Lake Jessup to the south.						
Functions			Mitigation for prev	/ious p	permit/other historic use	•
Wildlife habitat and refuge, in particular waterfowl, wading birds, and aquati animals, which may depend on cypress swamps for breeding purposes. Provide water storage by holding excess water and slowly releasing it into the water table. Enhance water quality by absorbing nutrients from the water.			This parcel had cattle grazing in "native rangeland" - uplands not completely cleared for pasture lands.			
Anticipated Wildlife Utilization Based that are representative of the assess be found)				T, SSC	y Listed Species (List s C), type of use, and inte	
Odocoileus virginianus (white-tailed deer), Procyon lotor (raccoon), Lynx rufus floridanus (bobcat), Sciurus caroliniensis (gray squirrel), many species of frogs, small fish, wading birds, butterflies, aquatic insects.		quirrel), many	Mycteria americana (wood stork)E, Aramus guarauna (limpkin)SSC, Egretta thula (snowy egret)SSC, Egretta caerulea (little blue heron)SSC, Eudocimus alba (white lbis)SSC, Alligator mississippiensis (alligator)T			
Observed Evidence of Wildlife Utiliz	ation (List species dire	ctly observed, or o	ther signs such as	track	s, droppings, casings, r	nests, etc.):
Visual: skink, oak toad, grass frog,	small mammal footprii	nts, deer scat. Au from a bobcat		ine wo	oods treefrog, songbirds	s. Scratching on trees,
Additional relevant factors:						
There is a shallow ditch that is some There is evidence it conveys or hold long time. Ground cover in the dom	s water from the algal	mats and sphagnu	um growing in it. It	does	not appear to be impro	•
Assessment conducted by:			Assessment date	(s):		
Kelly Chinners Reiss & Erica Hernandez			5/18/2005			

Monr_CYP Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

		Application Number		Assessment Area	a Name or Number	
Lake Monroe Mi	tigation Bank	NA		Monr_CYP		
Impact or Mitigation		Assessment conducted by:		Assessment date		
Mitigation	Bank	Kelly Chinners Reiss & Erica	Hernandez		5/18/2005	
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present	(0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than y optimal, but sufficient to maintain most Minimal level of support of wetland/surface water provide			Condition is insuff provide wetland/s water functio	ficient to surface
.500(6)(a) Location and Landscape Support w/o pres or current with	north and west of the St Johr prescribed burning. Adjacen history requirements for expe	nd the bank. Wetland assessm n's River. Nearby airport and a t habitat has a full range of upl acted fauna. There are old pas life to access adjacent lands.	housing de lands and of stures in the	evelopment have puther wetlands in the landscape with e	placed some restric ne landscape for fulf exotic pasture grass	tions on filling life es.
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	Soil moisture appears norma Vegetation appears appropria	appropriate. Uncertain of wate I. Possible subsidence on the ate for type of wetland. No evi cies richness. No existing wate	NW edge. dence of hy	No evidence of industrial drologic stress on	nappropriate or seven n vegetation. Amphi	ere fire.
9						
9 .500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with 9	Western edge appears to ha	ant species. No exotic species ve been cut over at some point appear to be a permanent dev of refugia.	t, more ope	n and less trees b	out there are young	cypress
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with 9	Western edge appears to hat coming up and this does not microtopography and areas of	ve been cut over at some point appear to be a permanent dev of refugia.	t, more ope	n and less trees be cture is good, cav	out there are young vities available. Nor	cypress
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	Western edge appears to hat coming up and this does not microtopography and areas of the second seco	ve been cut over at some point appear to be a permanent dev of refugia.	t, more ope	n and less trees b	out there are young vities available. Nor	cypress
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with 9 Score = sum of above scores/30 (if uplands, divide by 20) current with	Western edge appears to hat coming up and this does not microtopography and areas of	ve been cut over at some point appear to be a permanent dev of refugia. ation, ht factor =	t, more ope	n and less trees be cture is good, cav	out there are young vities available. Nor	cypress
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current 9 Score = sum of above scores/30 (if uplands, divide by 20) current	Western edge appears to hat coming up and this does not microtopography and areas of the preservation as mitigation adjustment adjusted mitigation deliversely.	ve been cut over at some point appear to be a permanent dev of refugia. ation, ht factor =	t, more ope	n and less trees becture is good, cave	out there are young vities available. Nor	cypress
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with 9 Score = sum of above scores/30 (if uplands, divide by 20) current with	Western edge appears to hat coming up and this does not microtopography and areas of the preservation as mitigates. Preservation adjustments	ve been cut over at some point appear to be a permanent dev of refugia. ation, ht factor =	t, more ope viation. Stru	n and less trees becture is good, cave	out there are young vities available. Nor	cypress

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Monr_CYP Wetland Rapid Assessment Procedure, page 1

Project Name: Monr_CYP - Lake Monroe Mitigation Bank

Date: 5/18/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: depressional forested wetland

Wetland Size: 0.6 ha (1.5 ac)

FLUCCS Code/Description: 2000 SJRWMD - 6210 Cypress

3.0	Wildlife Utilization (WU)			
2.0	Wetland Cano	Wetland Canopy (O/S)		
3.0	Wetland Groun	Wetland Ground Cover (GC)		
2.5	Habitat Support/Buffer			
2.0	Field Hydrology (HYD)			
3.0	WQ Input & Treatment (WQ)			
15.5	SUM			
6	Count			
0.86	WRAP			

Monr_CYP Wetland Rapid Assessment Procedure, page 2

3.0 Wildlife Utilization (WU)

Visual: skink, oak toad, grass frog, small mammal footprints, deer scat. Audio: cricket frog, pine woods treefrog, songbirds. Many cavities for wildlife use. Food in adjacent upland useful to wildlife species.

2.0 Wetland Canopy (O/S)

Canopy nearly 100% *Taxodium ascendens* (pond-cypress) species composition. Regeneration apparent from both coppice and seed. Uneven aged stand. No apparent disease or insect damage. Historic logging evidence on south-removed many canopy trees.

3.0 Wetland Ground Cover (GC)

No exotic species visually identified. No recent evidence of human activity or disturbance (historic damage from logging). Fire evidence, perhaps a wildfire, but not atypical. Nice species composition including ferns, *Sagittaria* sp. (arrowhead), and *Drosera* sp. (sundew). Change in species composition to south where there is evidence of logging more grasses, sedges, herbaceous species.

2.5 Habitat Support/Buffer

Buffer greater than 300 ft. Mainly saw palmetto scrub under fire suppression, may hinder some ground nesting species.

The vegetation cover is much thicker than the native *Pinus palustris* (longleaf)/*Aristida stricta* var. *beyrichiana* (wiregrass) community. Ditch occurs along N border which may prohibit movement of some smaller species.

Connections (at times of high water) to a forested bay head wetland and an herbaceous marsh.

Total = 2.5

(% of Area)

= Sub Total

2.0 Field Hydrology (HYD)

Minimal soil subsidence apparent on trees on N. side. Wetland/upland boundary is not distinct because of fire suppression and a ditch. Transitional species encroachment observed. Hydrology adequate to maintain a wetland.

3.0 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
nat. undev.	3.0	1.0	3.0
			0.0
			0.0
		LU Total =	3.0

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
nat. undev.	3.0	1.0	3.0
			0.0
			0.0
	•	PT Total -	3.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Monr_CYP Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Depressions Cypress

Assessment Team: EH, KCR, TD

Project Name: Monr_CYP, Lake Monroe Cypress Dome

Location: 28 degrees 48 m 54.89s/ -81 degrees 9m 40.57s

Date: 5/18/05 Subclass: cypress dome

Function	FCI
Surface Water Storage	0.9354
Subsurface Water Storage	0.875
Cycle Nutrients	0.791
Characteristic Plant Community	0.8775
Wildlife Habitat	0.931

Variables	Measure	Units	Subindex
V CATCH	52	%	0.5
V UPUSE	100	%	1
V WETPROX	1055	meters	1
V WETVOL	no change	%	1
V surout	no effect	%	1
V SUBOUT	no effect	%	1
V ZONES	intact	number	1
V CANOPY	80	%	1
V SURTEX	no disturbance		1
V TBA	37	m²/ha	0.2
V SSD	95	%	0.88
V TCOMP	100	%	1

Monr_CYP Hydrogeomorphic Approach, page 2

Vcatch

Size of original catchment 2.87 ha Size of current catchment 1.4974 ha

Vupuse

shrub brushland cover type curve # 55 percent 60 fresh water marsh cover type curve # 55 percent 30 forested wetland cover type curve # 77 percent 10

Vwetprox

Sector 1 364m	Sector 2	Sector 3	Sector 4
36001 1 304111	40m	172m	92m
Sector 5 82m	Sector 6	Sector 7	Sector 8
36001 3 02111	121m	91m	93m

Vwetvol

diameter wetla	and	diameter	depth of	length of	width of fill	average
north-south	53m	wetland	wetland	fill	material	thickness of
		east-west	40cm	material	none	fill material
		100m		none		none

Vsurout Lowest point in ditch is higher than wetland

Vsubout n/a

Vzones intact

Vcanopy 80%

Vsurtex sand 100%

Vtba plot 1 plot 2 plot 3 plot 4 62m²/ha 14.5m²/ha 14m²/ha 56m²/ha

Vssd 95% 19/20

Vtcomp Pond cypress 100%

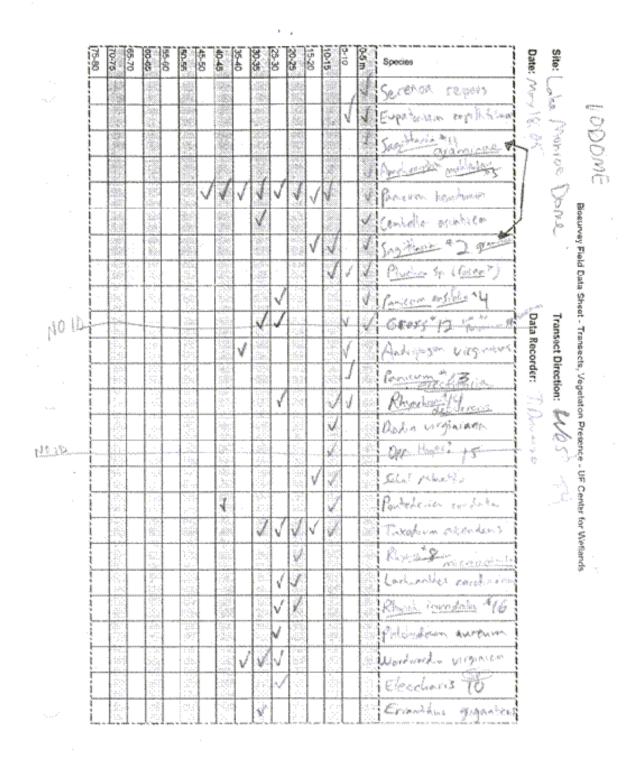
Monr_CYP Florida Wetland Condition Index, macrophyte field data sheets, page 1 *NOTE: field codes are different than reported codes, Monr_CYP = VODOME

Species Species	Site:
1 V V V Romer In	Date:
1 E Contelecco	cordina Z Z
V Tomber.	salahan 1
JV V Latomoles	Day of a said.
V J Wood 2 redin	Nesslange 3
2 / Barbant	
Gorême 1	
X X & Mycier ce	
1 / 1 Marion	enja bradene
In the land to	
V Savener 1º	
	Direct
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	······

Monr_CYP Florida Wetland Condition Index, macrophyte field data sheets, page 2 *NOTE: field codes are different than reported codes, Monr_CYP = VODOME

Sile: Cos Sheet Transactive Copies of Wednesday Persona Of Constant Wednesday Copies of Wednesday Copies of Copies o	8	70.76	100	8 8 8	90	5	65.50	60.45	35-40	30-36	25-30	20-26	5520	10-15	5-10	0-5 m	Species	Site:	
Bosoney Field Date Cheer Transaction, Vegetation Processor, Vegeta																4	Hyperisum elatifetium	3	
Bosonvey Field Date Cheer - Transection, Vegetation Processor UP Center for Wedands Gordana Cestation Direction: West page or expected to the second of th										400 400						V.	· · · · · · · · · · · · · · · · · · ·	39	
Waterpean temporal for Medians Gordana less da has s Andreape or experies Westwards catelogues Lustingues shape to be a second to be a se					25000											J	Dex globro		
Andrews or regarded to the state of the stat							*********									V	Waterneum tommbolom	C	,
Andreador or egotian Value and sheet - Transcets, Vegetation Presence - UP Center for Wednesday Transcet Direction: Transcet Directi																		. 0	
A Subal Prince to a subal Prin							-1-1-11			1	-				V	100	<u></u>	r	Bicauri
A Subal Prince to a subal Prin				8								V	٧	4	V	and the latest terminal			, and the
Subal Prince of the Control of the C	-				1	100 SVA				100			-		J	*****			eld Da
A Subal Prince to a subal Prin			-		1		p	7	7	7		13		V	V	17			86 34
A Subal Prince to a subal Prin			1		1	80				S 4				333		V	winging of ump of B	を	- A
Subal Prince of the Control of the C			7		T						-					V	Stangtonham Struckens	Reco	Caraca
A Subal Prince to a subal Prin			1		1										V	X.	Erichaltes harmoidhn	Direct order:	ds, S
A Subal Prince to a subal Prin		6									-	2 X				ij.	RAON 7 (50)	in in	getas
A Subal Prince to a subal Prin			1	3.	-										V	J	Physical S	19	90, 190
A Subal Prince to a subal Prin														7	7		Panerin exercise text	in a	Hence
Subal Prince of the Control of the C	-				7	411		100			-			1660	V	1000	Reconstruction of the second s	-	3 6
Subal Prince of the Control of the C				10.	1		V	1	J	J	7	7	J	V	1	-65			Singo
A Subal Prince to a subal Prin		100		8	1	5	_		V	V	7	7	-		1				30
Subal Prince of the Control of the C					1					1			r		-	â	War and 3.90		/etian
Brown to day	******	ă	7		+					300			-		V	38.	<u> </u>		뮵
Benefit A. Janesen			-	1851 1851	1	34 34 33				593 793	-	35	-	V	7	357			
S S S S S S S S S S S S S S S S S S S	****				1					35.4	-			7		000			
Dented Condain				24	+		_	100		3				V		28	Engineer on 1800		
18 18 18 18 18 18 DEM**/ 1940/15					1		V		7	V	1		-		-		The state of the s		
					-	(8)	*	44.0 4.00		V						12.55	Osmanda regulas		

Monr_CYP Florida Wetland Condition Index, macrophyte field data sheets, page 3


*NOTE: field codes are different than reported codes, Monr_CYP = VODOME

Site: Lake Marine Dome. Date: May 18/05	Species	25	0.10	15-20	20.25	8	30-35	85-45	45.45	45-50	50 55 55	88	00-05	65-70	70-75
3 8	elmines, 10				2.80 100		V	1							
# 5	Cage Page 21						1					Г			
3 5	Respectivespeech 59.						J							Г	
*	Myour technique							V				Г		Γ	
8	***************************************											Г		Г	
Section 1															
, vey FI											8	Г	100	Ī	
old De													300		
च १२			948							-				Ī	Ä
Trai			255 255		8.5	-			160	-	100		8	T	133
ronet sect	4	- 185 - 185	120						255	-			4	1	
ole, Ve Direct order:							82					-	l	T	860
Son:			\$3 \$3		Š,				200			r	1.7	-	90
t-Transecto, Vegetation Prefence - U Transect Direction: ビグター 7/2 Data Recorder: エルルペーシン	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				30,				700	Т					
72 2									13.00 (880) (880)				ĥ		8
12 6		180	:::3 :::3 ::5				363	-		-		l	İ	r	944 444 444
Cents	· · · ·						\$25 \$25 \$35		82	-		T		T	
ase for V	ellida da ellidad estado pe su eseg spragapeuro a le e estado destado descapaçõe, que mas degue que	340					287					T		T	8
Boourvey Field Data Sheet - Transact Direction: どかター フ/ユー・フ Data Recorder: エルルル・アン		Á							88					Ť	Ġ.
8-			88				360	-					30		2
						-	130 S		13890 1680 1680		33				
	· · · · · · · · · · · · · · · · · · ·	2000	526) -534 -534		1 50000 1 5000 1 5000				200 200 200		250	-	100	-	8
	······································	34					2000 2000 2000 2000			-	200	H	180	-	
					100		83		1300	-	313	H			100
		322				_	100			-	192	1	40		

Monr_CYP Florida Wetland Condition Index, macrophyte field data sheets, page 4 *NOTE: field codes are different than reported codes, Monr_CYP = VODOME

5	70-75	85-70	80-65	88	55.55	55	045	35-40	30.35	25-30	20-25	520	10-15	3-10	0-5 m	Species	Date:	Site:	
			333				Idi Silo								J	seresos repeni	Date: No. 18,05	Site: [L'EL /VANCOC	
			(4) (1)	1	18	Ī		Г							Ŋ	Mex glason	75	N. A.	
		Г		Γ		Г	188								4	Paner of - bureling			
***				r			75	Г								Capthin gamere #2		Ç	
****		Г	ı	Г	Ţ.	Ī		Г								Drussen brevilla	NEDOME	See.	
	22. 0.5	-				Γ		Г							1	Rhyphograce 19.3	0	1	Biosurvey Field Data Sheet - Transects, Vegetation Presence - UP Center for Wetlands
	100	Г	100	Ī		Г	100	Γ							1	Paristan anolle this	3		iey Pie
	20	Г	100		8	T					3	-			11.385	Prograpmost pockada	a		ild Dari
	Š		ľ		3	Ī	1000 1000 1000		000						V	Stra De (como)			SHS IN
			1	Ī	100							Ι,	:00 :00 :00 :00	V	V	Application phyloside Amplication phyloside Innen bandoner Tougham ascenders Sopien selferem Dishia Urganian Woodnood cagania	D E	Tran	e. ⊋
			6	Γ		Ī	53		156	V	V	V	V	1	885	Panier Wantoner	Reco	Transect Direction: Saw 15	Ensect
	197 180°		80			Γ	38				100		V		33	Paragram escenders	de:	irecti	, 1/e/
	Š						300		Ž		Š		V			Sopien selferen	3,	S. S.	jetato
	18						33			-	S		Ž.		8	Diodia Wroningan	7	1	n Produ
	Ž.						38		30		3::	V	1:52			Woodward - common	3		ence.
	46 40				8.6		100				V		989 (0)		1905 1805	Erinithus giganters	6.		F C
					1		3000 		1887		020 278							Ų.	HINE HINE
	a.		16				:53 :83 :22		833						56				for Wi
										-	-88								žland:
					13				\$5.0 885		50		100				ì		
	900 300 300 300				-65		100		200		\$85 \$85		30		å				W1.5W
	30.		1		J.S.		12	-	2.5		2		33						1
	ě		8								45		Š				1		9.3
			8				2												((() () () () () ()
	122		128												13				300

Monr_CYP Florida Wetland Condition Index, macrophyte field data sheets, page 5 *NOTE: field codes are different than reported codes, Monr_CYP = VODOME

Monr_CYP Florida Wetland Condition Index, macrophyte field data sheets, page 6 *NOTE: field codes are different than reported codes, Monr_CYP = VODOME

1 ake Monroe - Dome 1. Bunch Panicum 10 DOME - Sagithar. a graminae groetformis)? 3. Rhynchospora? rasiflow? 4. Panicum ensiblism? 5. Amphica-pum muhlenberginna 6. Wiregross champ-Aristola stricta 7. Rhexin 8. Rhynchospora micro capitala 10. Eleocharis T 11 Sagittaria graminae 12. Paspalum? praecox? setaceum? 13. Panioum exectifica 14. Rhynchospora decorres 15 Scroph (truens wash) 16. Rhynchospora inundator

Monr_MAR Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Numbe	r		Assessment Area Name or Number		
Lake Monroe Mitigation	Bank		NA		Monr	_MAR	
FLUCCs code	Further classifica	tion (optional)		Impac	et or Mitigation Site?	Assessment Area Size	
SJRWMD 2000 - 6410 Fresh water marsh	NWI - palustrin	e unconsolidated soils	bottom, Myakka		Mitigation Bank	0.2 ha (0.5 ac)	
Basin/Watershed Name/Number Affe	ected Waterbody (Clas	SS)	Special Classificati	ion (i.e.0	DFW, AP, other local/state/federal	I designation of importance)	
HUC 03080101 St Johns Upper	Class I	II	(GWEC	O priority 7, not critical	linkage	
Geographic relationship to and hydrolo	gic connection with	wetlands, other su	ırface water, uplaı	nds			
Isolated depression in a	n herbaceous fallow	v pasture and scru	b mosaic. Other	isolate	d depressions in the la	ndscape.	
Assessment area description							
Small depression marsh with a saw postanding water					sion. Scrub in the area ity and in the landscape		
Significant nearby features			Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional	
Lake Jessup Conservation Area to the body Lake Monroe to east up river corr Monroe. Lake Harney to the e	idor, state lands on	west side of Lake	Scrubby flatwo	ods an	abitat Conservation Are d rare species in the are depression in its curre	ea but this community	
Functions			Mitigation for pre	vious _l	permit/other historic use	;	
Isolation and small size supports a v than found in larger more permane breeding and forage habitat. Provide water and slowly releasing it into the w absorbing nutrient	nt wetlands. Extrenes water storage by ater table. Enhance	nely important holding excess	completely clear	ed for	e grazing in "native rang pasture lands. This we sture that has not been	etland assessment area	
Anticipated Wildlife Utilization Based o that are representative of the assessm be found)	n Literature Review	•		T, SS	y Listed Species (List s C), type of use, and inte		
Odocoileus virginianus (white-tailed o rufus floridanus (bobcat), Sciurus c cranes , many species of salamand butterflies, aq	aroliniensis (gray sq ers, frogs, small fish	uirrel), Sandhill	Egretta thula heron)SSC leucocephalus sandhill crane)	a (sno C, <i>Eud</i> (bald o T, <i>Apl</i>	vood stork)E, Aramus g wy egret)SSC, Egretta ocimus alba (white Ibis eagle) T, Grus canade helocoma coerulescens or mississippiensis (alli	caerulea (little blue)SSC, Haliaeetus nsis pratensis (Florida (Florida scrub jay) T,	
Observed Evidence of Wildlife Utilization	on (List species dire	ctly observed, or o	other signs such a	s track	s, droppings, casings, i	nests, etc.):	
At least two Florida scrub jays (Aphe grass frog (Pseudacris ocularis), Ea		*	Northern bobwhit		• •		
Additional relevant factors:							
Panicum hemitomon (maidencane) do scirpoidea (southern umbrellasedge), spp. (thoroughworth), Proserpinaca spmuhlenbergianum (blue maidencane),	Paspalum spp. (cro p. (mermaidweed),	wngrass), Sereno Diodia virginiana	<i>a repen</i> s (saw pa (Virginia buttonwe	Imetto), <i>Ludwigia</i> spp. (primro	osewillow), Eupatorium	
Assessment conducted by:			Assessment date	e(s):			
Kelly Chinners Reiss & Erica Hernande	ez		5/18/2005				

Monr_MAR Uniform Mitigation Assessment Method, page 2 PART II – Quantification of Assessment Area (impact or mitigation)

(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Number	
Lake Monroe Mit	igation Bank	NA		1	Monr_MAR	
Impact or Mitigation		Assessment conducted by:		Assessment date	e:	
Mitigation	Bank	Kelly Chinners Reiss & Erica I	Hernandez	5/18/2005		
Scoring Guidance The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Optimal (10) Condition is optimal and fully supports wetland/surface water functions	Moderate(7) Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	Minimal le wetland	nimal (4) vel of support of /surface water unctions	Not Present (0) Condition is insufficient to provide wetland/surface water functions	
.500(6)(a) Location and Landscape Support w/o pres or current with	scrub and additional isolated eventually return to a more na	species. Surrounding pasture depressions in the landscape. atural floral diversity, the adjact or low impact passive recreation	Now that t ent landuse	he bank is being r	managed with fire and may	
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	moisture is appropriate. Shal vegetation zonation. Species stress.	ate for time of year and type of llow standing water in center of composition may be off due to	f wetland. It	No evidence of se zing in the past bu	evere fire. Normal ut not a result of hydrologic	
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	some pasture grasses on drie	ar to have expected species or er wetland edge. Interior of we to previous management and h	tland is dor	minated by maider		
current with						
Score = sum of above scores/30 (if	If preservation as mitiga	ation		For impact acces	oment erece	
uplands, divide by 20)	l i i	· ·		For impact assess	Sincil alcas	
current with	Preservation adjustmer Adjusted mitigation delt		FL = 0	delta x acres =		
0.80	i isjastos i i i i gation dole					
Delta = [with-current]	If mitigation Time lag (t-factor) =		F	or mitigation asse	essment areas	
Some [man carrott]	Risk factor =		RFG	= delta/(t-factor x	risk) =	
	<u> </u>					

Monr_MAR Wetland Rapid Assessment Procedure, page 1

Project Name: Monr_MAR - Lake Monroe Mitigation Bank

Date: 5/18/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: depressional herbaceous marsh

Wetland Size: 0.15 ha (0.4 ac)

FLUCCS Code/Description: 2000 SJRWMD - 6410 Freshwater Marshes

2.0	Wildlife Utiliz	ation (WU)							
NA	Wetland Canopy (O/S)								
2.0	Wetland Ground Cover (GC)								
2.0	Habitat Suppo	rt/Buffer							
3.0	Field Hydrology (HYD)								
2.5	WQ Input & T	reatment (WQ)							
11.5	SUM								
5	Count								
0.77	WRAP								

Monr_MAR Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Visual: meadowlark, scrub jay on nearby tree, game trails. Adequate adjacent food source, questionable because left as pasture land with trees plants at low density (~50 trees/ac) and no removal of *Paspalum notatum* (Bahia grass), so species composition is less than ideal for wildlife food, cover, etc.

NA Wetland Canopy (O/S)

No canopy layer.

2.0 Wetland Ground Cover (GC)

No exotic species apparent. No human management apparent. Had cattle throughout prior to 1996. *Serenoa repens* (saw palmetto) fringe all around. Two vegetation zones not in complete circles. Zone 1 closest to uplands included a mix of grasses, sedges, and herbaceous species. Zone 2 was deeper and consisted mainly of *Panicum hemitomon* (maidencane).

2.0 Habitat Support/Buffer

Greater than 300 ft buffer all around. Mostly pasture left to	Buffer Type	(Score) x	(% of Area)	= Sub Total
succession. Still contains remnant pasture grasses from	Remnant Pasture	2	1	2
1996. Has some nearby wetlands.				
			T-4-1	•

3.0 Field Hydrology (HYD)

Appears appropriate to maintain viable wetland. No signs of hydrologic stress.

2.5 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
	(Score) x	(% of Area)	Total
Category	(Score) X	(% of Area)	10tai
Restoration from			
Improved Pasture	2.0	1.0	2.0
			0.0
•		LU Total =	2.0

PRETREATMENT CATEGORY (PT)

		PT Total =	3.0
nat. undev.	3.0	1.0	3.0
Pretreatment Category	(Score) x	(% of Area)	= Sub Total

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Monr_MAR Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Depressions Marsh

Assessment Team: KCR, ECH

Project Name: Monr_MAR, Lake Monroe Depression Marsh **Location:** 28 degrees 49m 17.42s / -81 degrees 10m 6.79s

Date: 5/18/05

Subclass: Depression Marsh

Function	FCI
Surface Water Storage	1.00
Subsurface Water Storage	1.00
Cycle Nutrients	0.99
Characteristic Plant Community	0.99
Wildlife Habitat	0.99

Variables	Measure	Units	Subindex
V CATCH	0	%	1.00
V UPUSE	100	%	1.00
V WETPROX	2154	meters	1.00
V WETVOL	no change	%	1.00
V surout	no ditch	%	1.00
V subout	no ditch	%	1.00
V ZONES	no change	number	1.00
V MAC	92.5	%	0.98
V SURTEX	no change		1.00
V HCOMP	100	%	1.00

Monr_MAR Hydrogeomorphic Approach, page 2

Vcatch no change Size of original catchment ha Size of current catchment ha

Vupuse

open space good condition cover type curve # 61/80 percent 100%

Vwetprox

Sector 1 Sector 2 Sector 3 Sector 4 165m 500m 220m 191m Sector 5 Sector 6 Sector 7 Sector 8 500m 500m 37m 41m

Vwetvol no change

diameter diameter depth of length of width of fill average wetland wetland fill material thickness of north-south east-west material fill material

50m 51m

Vsurout no ditch

Vsubout no ditch

Vzones no change

Vmac 92.50% 37/40

Vsurtex loamy sand

Vhcomp 100% wet meadow 100% Panicum hemitomon shallow marsh 100% Panicum hemitomon

Monr_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 1 *NOTE: field codes are different than reported codes, Monr_MAR = VOMONA

75 25 26	70-76	00-05	55-60	88	8	40.45	35-40	30-35	25-30	20-25	15-20	10-15	5-10	051	Species	Date:	Site: Minried - Nessan
		-68												J	Wiregons > Archae	3	No.
		T	ľ	T	Г									J	Paranage Citais	oç	
		7											J	4	Euthorio prince	5	13
-			L		-	F					-		V	V	Giorn & 3 moid		3
-		ı									Γ		1	7	Erichthes hierartha		
	225	35		18		5)6: -9:4		100		63	Г	10	V	1	Hypercum million		
		9		100	T	536 888						S.		1	Hedges until 44		
		15.		-5	Γ		,·.			-00		-50 (Helic			Secenci report		
	Ğ.		1											1	Pagishum notatum		
_	365 55			-8		98				8-4 188			1	V	Eupabrium apullation	Data	Trans
						63 33							V	1	Anterpropor vingualists	Data Recorder: T. Ogvernzo	Transect Direction: // 🕬
								SZ.		333		183	V	3500 3500	Faver Toursday 5	der	irection
	4-1							320					J	Š	Mikania scanders	3	on: /c
								388 388		V	J	1	V		Paretum heartwood	16.55	9
				3										-60		Ĵ	45.0
	\$4 \$4					100 100		(343) (343)						-89			
	120 1000	30						726 24		1.3							
	234	3						283									
						38		Ò.						300			
		10		1		38		84.				383 886		-81 180			
	30			8		98		200		508 1585							
										33		18					
	280 280 280	92	ı.	23		915		***		Şp							
	13.1														·		
				3							-						

Monr_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 2 *NOTE: field codes are different than reported codes, Monr_MAR = VOMONA

										*	*						
	75-80	70-70	00-05	56-60	8	45-50	45.45	846	30-35	25,52	20.25	15.20	10.15	5-10	06 10	Species	Site: Unit Assem Process
and the			200		(II) (A)											screen region	375
											365 (2)		E		V	Bulgaria Francisco	113
Noid-	<u> </u>		唐											4		Grass +3 & 2000	- S 3 - S
			-												1	P-1-2-16	水量量
	L														V	Eristhles Lewishia	9
	_	20		L		<u></u>			160 160 160						V.	Hedrin +4 willow	Bioourvey Field Data Sheet - Transcets, Vegetation Presence - UF Center for Wetlands Transact Direction: (アル・アル・アル・アル・アル・アル・アル・アル・アル・アル・アル・アル・アル・ア
	ļ 	50		L	100	L			200	<u></u>					- contract of	Frigue Riverber 5	, 10 55
				L	8							Ŀ	20	V	ý.	Hyporican making	0
		20	130			<u> </u>			300	L		L		4		Eupatorium Capitalian	ST 80
			100	L		<u>_</u>			##S	L		_	8	V		Antropor vigures	t - Tre
	Ĺ		111	-						_				V,	damenta.	Propertionen perhante	et - Transcets, Vegetation Presence Transact Direction: (2) Data Recorder: (2)
	_			-		_	46		200	_	90			4		Enthania minor	rection
g(x')	ļ		10	-		ļ						_		¥	1	Mikania scandens	52
	_		14	-									V	1		Basepe careleseen	Prese
			1	-		_			Tipol Since Since					the same of the same of	Contract of	Ludwigat II repeas	2
	_	\$. X		-		_			E COL			١.,		4		Cocheening ambigue	0 0
			1.0	-	100		3				V	V	V	4		Panies in headlywer	oter fo
		:58 X	18	-													r Wet
	_			ļ	400 460	_	232						25				ands
			100	ļ.,		_					236		800	_			
			28	-	8	-										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			88	ļ	30	-		_	700 600			-	100 A		36	***************************************	
		.is>).	133	_									- 14 S		40		
				-	2												
Syv	L.			ļ.,						L.,		. me		L.,		4 Mars 4, John 41 ares or deposits as associations as associations as association	

Monr_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 3 *NOTE: field codes are different than reported codes, Monr_MAR = VOMONA

75-80	70-75	65-70	50-65	88	50-55	45-50	40.45	35.40	30-36	25-30	20-25	15-20	10-15	5-10	05m	Species Sentinon report Experiment copylishing Hyperiment multi- CAMPalant & pensylv Pensylv Pensylv	Site:
1	100		1													Sevenon repens	31
		Ī	120	Г										V	Ų.	Enlayeren alygini	30 3
-				T		Г				Г					7	Hyperium makibin	0
1		T		T						Г		-			7	Chaptalina & Pensul	anitum ?
ļ						ļ.,								-	V	Gav#3	noil 3
-	33		4	l		1			C000	1				V		Fusiena scalater 95	
ŀ			120	t										-		Andropogon riegineus	,
-		Ì		T		T		-		T		-		J		Proserpinose pectionin	
ŀ			t	t	3		ħ	1				Г			2.3	Out TOMOR 18	
Ì			100	t			t					-		V		Erichtedes hierardia	Tran Data
-										-	250				¥	317 Riber	1Sect
-	8			t		1		-		-		-			1	Papel 16 Prices	Transect Direction: Sawth
-				+	ŝ				200	T		T		V		Amplications multiplican	Transect Direction: Saven
ŀ					18	1	ts		Š	T		-		7		Ludwigton 11 repres	2 × 3
-				1		1				t		-		V		Backers Warter	€
i			İ			1	186			T	100	T	-29	V		Clucken Kosen	h
-		T		T		t			100	T	2	7	J	V		Paran hembur	1
-	1	T	- 6	1		t			S			t		7		Hyperiam accorde	
ļ		T	Î	T	T	T		T		T		T					
1		t				Ť	33		100	T		T		T		1	
ŀ			3				389 389 385	T		l		t		1	:6::	1	
-							100		1884		25.9	-	153		200		
ŀ		11			83	-			30	t			k	t			
Ì				-	8			1	83		18	t			.8		
-	-			t		-	10			†		T		-			

Monr_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 4 *NOTE: field codes are different than reported codes, Monr_MAR = VOMONA

,	75-86 75-86	80-85 80-86	45-50 86 98	6-45	35	25-30	15.28 28	10.15	9	0 3	Species Since Sinc
7							L			f.	coreopis "6 leverastiis" }
			886 86	337	400					V.	Rydon 7 200 I
			100 100 100		8					J	Grape day pending
			5				Г			V	Coren didition 89 3
	435						Г			V	Cheen #10 Caberdococos
							Γ		V	J	Lududia 411 (mirepoil - son reper
	100	100 100					T			V	Cupher confugencies .
	33.7 53				30		T	300	V	V	Experiment expelliblisher
							T	7			Proserpinale perturba
			26				T		7	v	
					W			253		V	Oxalis and 1/2 8 9
	180	12.5			100		Ī	É	1	V	Kazación umbalata de de
	8.4							538	1	V	Diegra Airdinger 3 8
			***					100	Г	V	Centella osiation Data Recorder: Dealis consiste Manual Dealis Consiste Manual Dealis Consiste Manual Dealis Virginians Consiste Virginians Consiste Virginians Consiste Virginians Consiste VIII atropropries
				84			Ī	288		1	Badleris halmifold
				36	188				V	1	
			2.2				T				Paspilin policie
				130	i i i		T				Erroldites brevolfalor of Pagenton patricia de la Conferma de Conf
											Galacha ethothi
			1.80		30						Andropen Migners
								188		-	Reportmation 14@
	- 25 - 3 - 4 - 4		34	100	- 100 - 100			.Sec.		V	Deal spike #15 Planting
				200	- 145 145 146			100		17	BAN (27)
biox.				55	40				1		Grast 3
				133	- 1			V	7	5.0	FULLER PLANTY

Monr_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 5 *NOTE: field codes are different than reported codes, Monr_MAR = VOMONA

Date: ///	Species		o o	10-15	15-20	20-25	25-30 30-35	5 40	55 SS	8 8 8	70-76	75-80
. Ş	Fried of Oly		V.				H	-	dig			d
- (A)	Hyperten Gregorian		V,				G/00					
**	D		¥								100	
	Harrice mother		V									
	Rhane (50) Amphicopain molauberg Plucher cosen Banican hamilana		M. Jan			86	100					
Data Recorder: * 1 1 2000 20	Ampharpun wheelers		V			948						1
	Plusher rosen		V.	1				890. 830.		58 58		
	Panieur hemiliana.		Į	J	V	V		200 200		188	62	
						138			124	3		
Data								32	900 900		(8) (8)	1
Data Recorder: 🤻 🖟	i.	#\$ \$36								1.55	X	
der:				::X:				384	\$	100	## 90	
45		Sec		8		83	4845 4864 	38	800 980		37 EK	
Data Recorder: 7 Javan 26		- Ne Ea						88				1
8		:400 :000								3		
		(6).1 2001		305			265 3243		答		54 54.	
				9100 845			974 1972				47.	
							36 36					
						À	\$1.1 2.1					
		1000 1000 1000 1000 1000 1000 1000 100				S:		396) 1398		61		1
			L	13				1000 1000 1000	138		12. 1301	1
				3	L		500 925	25	P.	200	18. 17.	
			L		L							
ej.		:58			-			100	- 1111	189 2.5	-85	

Monr_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 6 *NOTE: field codes are different than reported codes, Monr_MAR = VOMONA

Lake Mongoe - Marsh VIDMONA 1 waregross clump -Anst. to short-2 Ropation? Ascorpus Breaks 3. Grass Moid 5. Fuirena scirpadea.
6. Coreopsis laevenworthis? 7. Rhymchospota Janers dichotomus
8 Gnaphalnum fotestum? Consequentum 9. Carex abolutescens 10? Cyperus? - Cyperaceae 11 Cudwigia report 2 Oxalis corniculata? 13 Eleocharis chiepurpurea 14 Rhynchospora 5 15 Plantone Wignels
16 Parpolem Accorders Cockes 17 Comment man week - side Plantin destatation 3 plants

Appendix B-18. Little Pine Island

Figure B-18.1. Landscape location of Little Pine Island Mitigation Bank (green line). LPI_MAR is a marsh assessment area outlined in orange. LPI_ SLT_1 outlined in yellow was assessed prior to restoration activities involving removal of melaleuca trees. LPI_ SLT_2 is a restored salt marsh area outlined in blue.

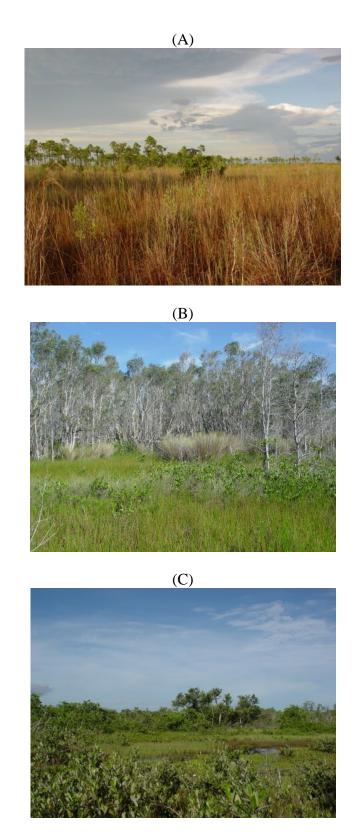


Figure B-18.2. Site photos of Little Pine Island Mitigation Bank. A) LPI_MAR B) LPI_ SLT_1 C) LPI_ SLT_2.

LPI_MAR Uniform Mitigation Assessment Method, page 1 PART I - Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	er		Assessment Area Name	ssessment Area Name or Number			
Little Pine Island Mitig	ation Bank		NA		LPI_	_MAR			
FLUCCs code 641 Freshwater Marsh	SFWMD Land U	ition (optional) as 411 Pine Flatw Jse cover - entire a ased on monitorin	area seems to be	Impac	t or Mitigation Site? Mitigation Bank	Assessment Area Size			
		site notes	1						
Basin/Watershed Name/Number	Affected Waterbody (Clas		Special Classificat	ion (i.e.C	DFW, AP, other local/state/federa	I designation of importance)			
HUC 03100103 Charlotte Harbor	Class	 			no				
Geographic relationship to and hyd This marsh is located on Little Pine down to the coastal water surface t	Island, which is surrou his marsh transitions in	nded by coastal w	raters including the then mangrove fo	e Matla rest.	•	·			
Assessment area description									
Freshwater marsh species domina pine flatwoods/cabbage palm ha	•	ored, <i>Melaleuca q</i>	uinquenervia rem	oved.	2-lane road bounds no	, ,			
Significant nearby features			Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional			
The assessment area is located or restored or enhance	on an island, almost all on the desired and th	•	Small patch of freshwater (somewhat brackish) marsh - more continuous freshwater marsh farther inland (east).						
Functions			Mitigation for pre	vious p	permit/other historic use	9			
trap and cycle organic materials important food chain resources wit habitat and nursery grounds for buffering wind and wave action in habitat for many transient an	h high rate of primary par many species; offshore acluding sediment stabil	roduction; provide e protection by ization; provides	Had E/W ditches along SR78 and a N/S ditch separating this mars from the downslope mangrove forest which have been filled.						
Anticipated Wildlife Utilization Base that are representative of the assesbe found)		•	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)						
Odocileus virginianus (white-tail Peromyscus gossypinus (cotton m palustris (marsh rabbit), Callineci (great-blue heron), Butorides st (fiddler crabs), Sesarma cinere abunc	ouse), Procyon lotor (ra tes sapidus (blue crab), riatus (green-backed he	acoon), Sylvilagus Ardea herodias eron), Uca spp.	Egretta caeru he	lea (litt ron) ^{SSO}	le blue heron) ^{SSC} , Egre ⁵ , Egretta thula (snowy	etta tricolor (tricolored egret) ^{SSC} .			
Observed Evidence of Wildlife Utiliz	zation (List species dire	ctly observed, or o	ther signs such a	s track	s, droppings, casings,	nests, etc.):			
rabbit scat; Haliaeetus leucocephiflying overhead; tadpoles in water;		ad), <i>Bufo terrestris</i>	s (southern toad),	Rana	sphenocephala (leopa				
Additional relevant factors:									
Site visit conducted in early evenin	g after 1 hour rain eveni	t.							
Assessment conducted by:			Assessment date	e(s):					
Kelly Chinners Reiss and Erica Her	nandez	16-Aug-05							

LPI_MAR Uniform Mitigation Assessment Method, page 2
PART II - Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Numbe	Г			
Little Pine Isla	and Mitigation Bank	NA			LPI_MAR				
Impact or Mitigation		Assessment conducted by:		Assessment date	9:				
Mitigation E	Bank Assessment	Kelly Chinners Reiss & Erica	Hernandez		8/16/2005				
0	2 11 11(2)	Moderate(7)		nimal (4)	Not Presen	. (2)			
Scoring Guidance The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Optimal (10) Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal and fully upports wetland/surface maintain most Minimal level of supp wetland/surface wa							
.500(6)(a) Location and Landscape Support w/o pres or current w	terebinthifolius, Casuarina s road (very busy) within 300m limited by road barrier, most	tory requirements. Greater that pp. in proximity of the assessm of marsh. Connections to off likely historically connected to ogic impediments or flow restrictly dependent however.	nent area bu site wetland the habitat r	t being controlled s and upland hab north of the road a	. Barrier is a 2-lan itats. Downstream and spilled over in	ne paved n benefits times of			
.500(6)(b)Water Environm (n/a for uplands) w/o pres or current w	anyway. Soil saturated and vegetation zonation problem Plant community compositio appropriate, no turbidity or o	or appropriate. No apparent wa in parts inundated, no evidence s. No apparent hydrologic stre n is not indicative of species su il sheen visible. Residual effec effects? [Not covered by this a	e of soil sub ess. Many ta uggesting wa cts of pestici	sidence. No atypi adpoles, frogs, an ater quality degrad	ical fire history. No d wading birds pre dation. Water clar	sent.			
.500(6)(c)Community struct 1. Vegetation and/or Benthic Community w/o pres or current w	Ground stratum covered by assessment area including sand a single sizable Syzygiu Melaleuca quinquenervia rei	predominantly desirable speciesmall <i>Melaleuca quinquenervia m</i> spp. (to 2 m tall). Structura moved. Land management op - in fruit and flower. Amount a ter than expected.	growing fre I habitat app otimal (includ	ely or associated ropriate - snags v led exotic species	with old treated cu were left and most removal, prescrib	it stumps treated ed			
Score = sum of above scores/3	If preservation as mitig	gation,		For impact asses	sment areas				
uplands, divide by 20) current br w/o pres 0.87	Preservation adjustme Adjusted mitigation de		FL = (delta x acres =					
 	If mitigation					i			
Delta = [with-current]	Time lag (t-factor) =			· · · · · · · · · · · · · · · · · · ·	ation assessment areas				
	Risk factor =		RFG = delta/(t-factor x risk) =						

LPI_MAR Wetland Rapid Assessment Procedure, page 1

<u>Project Name: LPI_MAR - Little Pine Island Mitigation Bank</u>

Date: 8/16/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: freshwater marsh - perhaps slightly brackis

Wetland Size: 6 ha

FLUCCS Code/Description: 641 Freshwater Marshes

2.5	Wildlife Utiliz	cation (WU)	
NA	Wetland Canopy (O/S)		
2.5	Wetland Ground Cover (GC)		
3.0	Habitat Support/Buffer		
3.0	Field Hydrology (HYD)		
3.0	WQ Input & Treatment (WQ)		
14.0	SUM		
5	Count		
0.93	WRAP		

LPI_MAR Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

rabbit scat, barn swallows overhead, tadpoles in water, oak toad, southern toad, leopard frog, highway noise may disturb species, very open vegetation without game trails visible, abundant upland food sources and cover, also available within the wetland, bald eagle perched on tree on fringe. Human disturbance includes the 2-lane road. Also, roads in place for exotic species removal have cause soil compaction. Cut stumps of exotic species had been treated with pesticides. There is a powerline on the 2-lane road that borders the hydric pine/cabbage palm upland fringe.

NA Wetland Canopy (O/S)

marsh - no canopy score appropriate

2.5 Wetland Ground Cover (GC)

Blechnum serrulatum, Sarcostemma clausum, Andropogon virginicus, Myrica cerifera (appropriate because in small patches), Bacharis sp., Sabatia sp., Rhynchospora spp., Pluchea sp., Euthamia minor, Polygala ?rugelli, Juncus roemerianus, Mikania scandens, Setaria geniculata, Centettla asiatica, Panicum spp., Phyla nodiflora, Sagittaria graminea, Sagittaria lanceolata, Coreopsis sp., Cyperus ligularis. Small Melaleuca quinquenervia coming back in and cut stump remains and debris. Also Syzgium sp. exotic tree species present.

3.0 Habitat Support/Buffer

Buffer greater than 300 ft of hydric pine/palmetto flatwoods low pine density. Less than 10% nuisance and exotic species. Connected to other wetlands. Did not take off for 2 land road because it is farther than 300 ft away.

Buffer Type	(Score) x	(% of Area)	= Sub Total
natural/undeveloped	3.0	1.00	3.0
		Total =	3.0

3.0 Field Hydrology (HYD)

Palnts do not appear stressed. No upland/transitional species encroachment observed. Some grasses forming tussocks (hydrologic indicators).

3.0 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Ern Debl ern			
Land Use			= Sub
Category	(Score) x	(% of Area)	Total
undeveloped	3.0	1.00	3.0
			0.0
			0.0
		LU Total =	3.0

PRETREATMENT CATEGORY (PT)

Dustus stars and			
Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
undeveloped	3.0	1.00	3.0
			0.0
			0.0
		PT Total =	3.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LPI_SLT_1 Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Numbe	er		Assessment Area Name	or Number
Little Pine Island Mitigati	ion Bank		NA		LPI_:	SLT_1
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size
642 Saltwater Marshes		none			Mitigation Bank	10 ha
Basin/Watershed Name/Number Af	ffected Waterbody (Clas	ss)	Special Classificati	on (i.e.C	DFW, AP, other local/state/federa	designation of importance)
HUC 03100103 Charlotte Harbor	Class I	II			no	
Geographic relationship to and hydrol	logic connection with	wetlands, other su	urface water, uplar	nds		
This marsh is located on Little Pine Is down to the coastal water surface thi	is marsh transitions in	nto mangrove fore		: Pinus	s <i>elliottii</i> (slash pine)/Sa	
Assessment area description						
The assessment area includes a sa grading into open estuarine waters. completed in the ir	This are is located N	of SR78 and W	of the office facilities	es. Ex		ctivates have not been
Significant nearby features Uniqueness (considering the relative rarity in relation to landscape.)				relation to the regional		
The assessment area is located on restored or enhanced	an island, almost all o		FNAI Bird Aggregation Area - Bird Rookery; FWCC Strategic I Conservation Areas - Priority Habitat			
Functions			Mitigation for prev	vious p	permit/other historic use	;
trap and cycle organic materials wit important food chain resources with h habitat and nursery grounds for m buffering wind and wave action incl habitat for many transient and i	high rate of primary pr nany species; offshore uding sediment stabili	roduction; provide e protection by zation; provides		V ditch	es along SR78 which h	ave been filled.
Anticipated Wildlife Utilization Based that are representative of the assessr be found)				T, SS	y Listed Species (List s C), type of use, and inte	
Odocileus virginianus (white-tailed deer), Oryzomys palustris (rice rat), Peromyscus gossypinus (cotton mouse), Procyon lotor (racoon), Sylvilagus palustris (marsh rabbit), Callinectes sapidus (blue crab), Ardea herodias (great-blue heron), Butorides striatus (green-backed heron), Uca spp. (fiddler crabs), Sesarma cinereum (marsh crab), arachnids (spiders), abundant insects.			Egretta caerulea (little blue heron) ^{SSC} , Egretta tricolor (tricolored heron) ^{SSC} , Egretta thula (snowy egret) ^{SSC} .			
Observed Evidence of Wildlife Utilizat	tion (List species direc	ctly observed, or o	other signs such a	s track	s, droppings, casings,	nests, etc.):
Our visit was in the heat of the day,	so wildlife evidence w rning dove, and a bro				-	, fish, a leopard frog, a
Additional relevant factors:						
This area is part of the larger Little Pin permit release criteria based on the p	-	-	joing extensive ex	otic sp	ecies removal. This se	ection does not meet
Assessment conducted by:			Assessment date	e(s):		
Kelly Chinners Reiss and Erica Herna	andez		17-Aug-05			

LPI_ SLT_1 Uniform Mitigation Assessment Method, page 2
PART II – Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Number	ī
Little Pine Island	Mitigation Bank	NA		1	LPI_SLT_1	
Impact or Mitigation		Assessment conducted by:		Assessment date	: :	
Mitigation Bank	Assessment	Kelly Chinners Reiss & Erica	Hernandez		8/17/2005	
Sooring Cuidonoo	Ontimal (40)	Moderate/7\	I 84:	nimal (4)	Net Dresent	(0)
Scoring Guidance The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Optimal (10) Condition is optimal and fully supports wetland/surface water functions	Moderate(7) Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	Minimal le wetland	nimal (4) evel of support of /surface water unctions	Not Present Condition is insuf provide wetland/ water function	fficient to /surface
.500(6)(a) Location and Landscape Support w/o pres or current with	quinquenervia to the west. S species control. A 2-lane roa land uses do not have negati issue, except perhaps that so quantity that would have run- benefits because of the high	nent area provide better habita Some adjacent areas also hav ad cuts the mitigation bank in I ive impacts, except fo rthe roa ome of the historic catchment in from the upland may have I primary productivity of the sall ne expected change in outflow	e some exo nalf and acts d, Hydrolog area may be been small, t marsh spe	tics, but this area as a barrier for which restrictions and a lost due to the robut still important, cies and the exchange.	is managed by exc vildlife access. Sur flow restrictions ar oad separating the Connected habita ange with tidally inf	rounding re not an areas, ats derive fluenced
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	Melaleuca quinquenervia (ex No distinct water level indical quinquenervia duff. Erosion interspersed black mangrove tolerant of and associated wi	iate though some changes in I c. hummock building and creat tors apparent. Soils are inund and deposition not noted, no se look healthy. Visited in mid- th water quality degradation, fo epth, and saturation. No wate	tion of duff la lated except signs of atyp dle of day, d or example	ayer). Full of oblig the high and dry a pical fire. No hydro id see tadpoles, le Melaleuca quinque	gate species. Much areas of <i>Melaleuca</i> ologic stress noted eopard frog. Some	ky soil. a I, the e species
.500(6)(c)Community structure 1. Vegetation and/or 2 Benthic Community w/o pres or current with 5	Canopy composed of a majo mangroves. Shrub layer also species, but there is no desir recruitment and regeneration under the exotic species will appear healthy, though a ma practices by filling a ditch alo	ority of undesirable species, Moodominated by exotic species able groundcover under the carrier or open patches without the elead to a permanent deviation jority were the exotic species. In the road to restore the hydrour in the open areas, so not we	. Ground st anopy of Me exotic specie from expec Land mana rology (as be	ratum is appropriation is appropriated and appropriate community is agement has correst as possible with the community is agement has correst as possible with the correst as possible with the correst as possible with the correst as possible with the correst as possible with the correst as possible with the correst as possible with the correst as possible with the correst as possible with the correct and the correct as the	ate in areas without ervia. Evidence of ick of appropriate s unmanaged. Plant ected for some prev	t exotic species ts did vious
Score = sum of above scores/30 (If preservation as mitig	ation,		For impact assess	sment areas	
uplands, divide by 20) current or w/o pres 0.67	Preservation adjustme Adjusted mitigation del		FL =	delta x acres =		
 	If mitigation		_			
Delta = [with-current]	Time lag (t-factor) =		F	or mitigation asse	essment areas	
	Risk factor =		RFG	= delta/(t-factor x	risk) =	
	J					

LPI_SLT_1 Wetland Rapid Assessment Procedure, page 1

Project Name: LPI_SLT_1 - Little Pine Island Mitigation Bank

Date: 8/17/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: salt marsh - with islands of Melaleuca quinquenervia

Wetland Size: 10 ha

FLUCCS Code/Description: 642 Saltwater Marshes

2.0	Wildlife Utilization (WU)			
0.5	Wetland Canopy (O/S)			
1.0	Wetland Ground Cover (GC)			
1.5	Habitat Suppo	rt/Buffer		
1.5	Field Hydrology (HYD)			
2.4	WQ Input & Treatment (WQ)			
8.9	SUM			
6	Count			
0.49	WRAP			

LPI_SLT_1 Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Carolina wren, damsel flies, fish, leopard frogs, brown anole, towhee (heard call), cycads calling, old hog rooting throughout, morning dove, dragonflies. Woody debris from old exotic species control hinders habitat for some species. Macroinvertebrates and fish are probably ok (connection to off site wetlands), also off site food sources and adequate cover and food. Human disturbance visible because of exotics presence and cut stumps with treatment, debris piles left on site.

0.5 Wetland Canopy (O/S)

Melaleuca quinquenervia islands throughout salt marsh, perhaps 15-30 ft tall. Provides structure in marsh habitat, which would otherwise not be there. There is also sparse Australian pine, buttonwood, and black mangrove. The canopy is easily greater than 75% *Melaleuca quinquenervia* but some native species are mixed in.

1.0 Wetland Ground Cover (GC)

Patches under *Melaleuca quinquenervia* with no species cover, patches without *Melaleuca quinquenervia* had appropriate species - each area covers approximately 50% of the wetland area. Muckier soils in this wetland than expected perhaps because of *Melaleuca quinquenervia* duff. Ground cover full of *Andropogon* sp., *Cuscuta* sp. (dodder), small *Eleocharis* sp., large *Eleocharis cellulosa*, *Distichilis, Alternanthera maritima, Spartina bakerii, Salicornia* sp. Short patches of buttonwood and black mangrove. Less diversity of ground cover than expected, not the mosaic you would expect in a restored or pristine salt marsh. Human disturbance evident.

1.5 Habitat Support/Buffer

Buffer on one side <30 ft wide with 2-lane busy road on the other side of a thick *Melaleuca quinquenervia* forest. Some buffer >300 ft but with predominantly undesirbale species. On fourth side, marsh is greater than 300 ft wide, has been restored and hosts desirable species. There is support for wildlife species from this restored marsh.

Buffer Type	(Score) x	(% of Area)	= Sub Total
disturbed forest & rd	1.0	0.25	0.3
disturbed forest	1.0	0.50	0.5
restored marsh	3.0	0.25	0.8
		Total =	1.5

1.5 Field Hydrology (HYD)

Hummocks of *Melaleuca uinquenervia* throughout marsh. Obligate wetland species present. Though *Melaleuca quinquenervia* changes the hydrology by building a duff layer and raising the elevation, no obligate species were growing under the *Melaleuca* trees on the hummocks. The ditch which has been credited with causing/allowing exotic species encroachment has been restored - the hydrology should improve because what we see is a symptom of previous land management practices. The hydrology is currently adequate for wetland regeneration.

2.4 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

LANDUS	E CATEGO	KI (LU)		
Land Use				= Sub
Category		(Score) x	(% of Area)	Total
disturbed t	forest & rd	2.0	0.25	0.5
disturbed t	forest	2.5	0.50	1.3
restores m	arsh	3.0	0.25	0.8
			LU Total =	2.5

PRETREATMENT CATEGORY (PT)

TILD TILD TITLE TO	0	- ()	
Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
undeveloped	3.0	0.25	0.8
undeveloped	3.0	0.50	1.5
no treatment	0.0	0.25	0.0
	•	PT Total -	2.3

LPI_ SLT_2 Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	er	/	Assessment Area Name	or Number
Little Pine Island Mitigat	tion Bank		NA		LPI_	SLT_2
FLUCCs code	Further classifica	tion (optional)		Impact	or Mitigation Site?	Assessment Area Size
642 Saltwater Marshes	Soil	ls FL071 Estero M	luck		Mitigation Bank	24 ha
Basin/Watershed Name/Number A	Affected Waterbody (Clas	ss)	Special Classificati	ion (i.e.O	FW, AP, other local/state/federa	I designation of importance)
HUC 03100103 Charlotte Harbor	Class I	II			no	
Geographic relationship to and hydro	ologic connection with	wetlands, other su	ırface water, uplaı	nds		
This marsh is located on Little Pine I down to the coastal water surface th	nis marsh transitions in	ito mangrove fore		c Pinus	elliottii (slash pine)/Sa	
Assessment area description						
The assessment area includes a s grading into open estaurine waters completed in the imit	. This are is located N	of SR78 and E o	f the office facilitie	s. Mos		val activites have been
Significant nearby features			Uniqueness (co landscape.)	nsiderii	ng the relative rarity in	relation to the regional
The assessment area is located or restored or enhance	n an island, almost all o	•			Area - Bird Rookery; F vation Areas - Priority	WCC Strategic Habitat Habitat
Functions			Mitigation for pre	vious p	ermit/other historic use	9
trap and cycle organic materials w important food chain resources with habitat and nursery grounds for r buffering wind and wave action inc habitat for many transient and	high rate of primary pr many species; offshore luding sediment stabili	oduction; provide protection by zation; provides		_	g SR78 and a N/S ditch e mangrove forest which	n separating this marsh ch have been filled.
Anticipated Wildlife Utilization Based that are representative of the assess be found)		•		T, SSC	v Listed Species (List s c), type of use, and inte	
Odocileus virginianus (white-tailed Peromyscus gossypinus (cotton mou palustris (marsh rabbit), Callinecte (great-blue heron), Butorides stria (fiddler crabs), Sesarma cinereur abunda	use), <i>Procyon lotor</i> (ra es sapidus (blue crab), atus (green-backed he	coon), <i>Sylvilagus</i> <i>Ardea herodias</i> ron), <i>Uca</i> spp.	limited to Volu	usia, Br olue her	ata (Atlantic salt marsh revard, and Indian Rive ron) ^{SSC} , <i>Egretta tricolo</i> etta thula (snowy egret	er Counties. <i>Egretta</i> r (tricolored heron) ^{SSC} ,
Observed Evidence of Wildlife Utiliza	ation (List species dire	ctly observed, or o	other signs such a	s tracks	s, droppings, casings,	nests, etc.):
Hirundo rustica (barn swallow), Hyla heron) SSC,	a cinerea (green treefr hog tracks - visit late i					gretta tricolor (tricolored
Additional relevant factors:						
Assessment conducted by:			Assessment date	5(8).		
Kelly Chinners Reiss and Erica Hern	andez		17-Aug-05	·(O).		

LPI_SLT_2 Uniform Mitigation Assessment Method, page 2
PART II - Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Numbe	Г
Little Pine Island	d Mitigation Bank	NA			LPI_SLT_2	
Impact or Mitigation		Assessment conducted by:		Assessment date	9:	
Mitigation Bar	k Assessment	Kelly Chinners Reiss & Erica	Hernandez		8/17/2005	
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present	t (0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	wetland	vel of support of /surface water unctions	Condition is insu provide wetland water functi	/surface
.500(6)(a) Location and Landscape Support w/o pres or current with	adjacent to this site have exc terebinthifolius (Brazilian per road (SR 78) on one side of limited by distance or barrier road). No flow restrictions or	essment area provide habitat, contic species present including loper), Casuarina sp. (Australia the marsh that separated area s. Land uses outside the asser hydrologic impediments (cen ischarge, though this area doe	Melaleuca quan pine). Wi an pine). Wi as of different essment area tral N/S ditcl	uinquenervia (mel Idlife access is pa t habitat type. Do a have some impa n has been restore	laleuca), Schinus artially limited by a ownstream benefits acts on wildlife (pri ed). Dowstream n	2-lane are not marily the ot solely
.500(6)(b)Water Environmen (n/a for uplands) w/o pres or current with	appear appropriate - there is appropriate for each strata, in evidence of species with spe tadpoles, snails, Ceryle alcycles	, pneumatophors of Avicennia no indication otherwise. Soil ncludes a mosaic of vegetation cific hydrologic requirements (on (kingfisher), wading birds. tanding water is clear. Periphy	erosion and n types. No (though visit No characte	deposition are no signs of hydrologi ed in heat o fthe d eristic species pres	ot apparent. Vegeto ic stress apparent. day), including sma	ation is Some Ill fish,
.500(6)(c)Community structur	0					
	All plant cover is by approprisussessment area. Strong evercuitment as small ground Plants in good condition - no appears optimal - includes princluding standing water poo	ate species in canopy, shrub, a ridence of Avicennia germinan species (<1m tall) in fruit. Der evidence of chlorotic leaves, so tential burning and exotic spels, hummocks, tussocks (with to impede normal plant growth.	s (black mansity and quaspindly growecies removes Spartina sp	ngroves) and (but ality of coarse woo th, or insect dama al/control. Microto	ttonwood) regenera ody debris appropr age. Land manage opography appropr	ation and iate. ement iate,
Score = sum of above scores/30	(if If preservation as mitig	ation.		For impact assess	sment areas	
uplands, divide by 20)				. opaor acces	omoni aroao	
current pr w/o pres with 0.93	Preservation adjustme Adjusted mitigation del		FL =	delta x acres =		
	_					
	If mitigation		F	or mitigation asse	essment areas	
Delta = [with-current]	Time lag (t-factor) =			1.11111.5	2-13	
	Risk factor =		RFG	= delta/(t-factor x	risk) =	

LPI_SLT_2 Wetland Rapid Assessment Procedure, page 1

Project Name: LPI_SLT_2 - Little Pine Island Mitigation Bank

Date: 8/17/2005

Evaluator(s): Kelly Chinners Reiss, Erica Hernandez, & Tony Davanzo

Wetland Type/Description: salt marsh

Wetland Size: 24 ha

FLUCCS Code/Description: 642 Saltwater Marshes

2.5	Wildlife Utilization (WU)		
3.0	Wetland Canopy (O/S)		
3.0	Wetland Ground Cover (GC)		
2.5	Habitat Support/Buffer		
3.0	Field Hydrology (HYD)		
2.5	WQ Input & T	reatment (WQ)	
16.5	SUM		
6	Count		
0.92	WRAP		

LPI_SLT_2 Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Anticipated wildlife species should have adequate cover and habitat support in marsh. Barn swallow, green treeforg, small spiders with webs throughout the vegetation, small fish, tricolored heron, hog tracks, game trails, tricolored heron, snails on vegetation, kingfisher, little green heron, common grackle, buckeye butterflies, skipper butterflies, *Argiopie* spiders. Abundant food and cover in the surrounding areas. Busy 2-lane road to S, with 5-10 m wide buffer strip of red mangrove (*Rhizophora mangle*) between the marsh and the road.

3.0 Wetland Canopy (O/S)

Sparse, patchy black mangrove and buttonwood throughout area, grades into thicker mangrove patches and eventual mangrove forest. No invasive species in the canopy or midstory. Good structural support for birds. Much evidence of natural recruitment. Many snags available as cavities and perches. Mix of black mangrove that grades into red, though we did not transverse into the depths of the red mangroves.

3.0 Wetland Ground Cover (GC)

Distichilis spicata, Juncus roemerianus, Salicornia sp., Batis sp., Cuscuta sp., Sesuvium sp., Agalinis sp., sea lavendar, Alternanthera maritima, Limonium carolinianum, buttonwood. A mosaic of species. Minimal disturbance to the ground cover. Ditch features along road and extending N/S through marsh have been restored, and are nor covered with ground cover species. Land managament practices will keep removing exotic species, a prescribed fire burn plan has been drafted (though not yet used).

2.5 Habitat Support/Buffer

One edge has a 5-10m mangrove border and then a busy 2-lane road. Three sides have >300 ft buffer. Exotic species do occur in the vicinity of the assessment area. Area is connected to other wetland habitats including mangrove and fresh/brackish marsh.

Buffer Type	(Score) x	(% of Area)	= Sub Total
road	1.0	0.25	0.3
undeveloped	3.0	0.75	2.3
			0.0
		Total =	2.5

3.0 Field Hydrology (HYD)

Standing water is clear, no turbidity or oils sheen issues. Plants are healthy, no stress apparent beyond what one would anticipate for the harsh salt marsh environment. No upland or transitional species encroachment observed.

2.5 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
road	2.0	0.25	0.5
undeveloped	3.0	0.75	2.3
			0.0
•	•	LU Total =	2.8

PRETREATMENT CATEGORY (PT)

Pretreatment							
Category	(Score) x	(% of Area)	= Sub Total				
no treatment	0.0	0.25	0.0				
undeveloped	3.0	0.75	2.3				
			0.0				
-	•	PT Total =	2.3				

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Appendix B-19. Loblolly Mitigation Bank

Figure B-19.1. Landscape location of Loblolly Mitigation Bank (green line). Boundary of the wetland assessment areas are outlined in orange (Lob_CYP_1) and yellow (Lob_CYP_2).

Figure B-19.2. Site photos of Loblolly Mitigation Bank. (A) Lob_CYP_1 is located in an area still planted in rows for silviculture at the time of the assessment. (B) Lob_CYP_2 is located within an area that had been clear cut prior to the time of wetland assessment.

Lob_CYP_1 Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	er		Assessment Area Name	or Number		
Loblolly Mitigation	Bank		NA		Lob_(CYP_1		
FLUCCs code	Further classification	tion (optional)		Impact	t or Mitigation Site?	Assessment Area Size		
6210 Cypress	depressional for	rested wetland - pa	alustrine forested		Mitigation Bank	1.1 ha (2.7 ac)		
	Affected Waterbody (Clas	ss)	Special Classificati	ion (i.e.O	DFW, AP, other local/state/federal	designation of importance)		
HUC 03080103 Lower St. John's River	Class I	111			None			
Geographic relationship to and hydr	ologic connection with	wetlands, other su	urface water, uplar	nds				
Depressional wetland, receives run- Many	off from surrounding pi other depressional or s					vithin wetland boundary.		
Assessment area description								
Depressional forested wetland, dominant canopy species was pondcypress (<i>Taxodium ascendens</i>), low species richness in support habitat. Wetland canopy thin from past logging and perhaps hydrologic stress or even insect damage (uncertain of direct cause). Ground cover richness very low inside wetland, with only 3 herbaceous species and a few graminoid species recorded.								
Significant nearby features			Uniqueness (collandscape.)	nsideri	ng the relative rarity in	relation to the regional		
Connected to or corridor to S. Taylor Creek Preserve, Jennings State Forest, Peterson Tract (private ownership), Cecil Field Conservation Corridor, Yellow Water Branch Trail Head. Though some areas may be separated by a busy Jacksonville roadway. Northwest 3/4 of bank overlaps with Florida Ecological Greenways high priority, critical linkage Camp Blanding-Osceola National Forest corridor, based on black bear focal species.			Net coince many decreasing to estande in second marks.					
Functions			Mitigation for prev	vious p	permit/other historic use	;		
Wildlife habitat and refuge, in partice animals, which may depend on cy provide water storage by holding e the water table; enhance water qual	press swamps for bree excess water and slowly	eding purposes; y releasing it into	Surrounding lands in active silviculture land use.					
Anticipated Wildlife Utilization Based that are representative of the assess be found)		•	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)					
Odocoileus virginianus (white-tailed many species of frogs, small fish, w	,, ,		Mycteria americana (wood stork) ^E , ? Ursus americanus floridanus (Florida black bear) ^T , Alligator mississippiensis (alligator) ^T , Aramus guarauna (limpkin) ^{SSC} .					
Observed Evidence of Wildlife Utiliz	ation (List species direc	ctly observed, or o	other signs such a	s track	s, droppings, casings, i	nests, etc.):		
Common yellow throat, red spide buffer, cri	ers, buck rub on black g cket frogs, damsel flies					, medium size frog in		
Additional relevant factors:								
	rea has not been restored at all - upland pine will be harvested - used in companion to DUTOAD. FWCC Biodiversity Hotspots with 5-6 focal becies overlap. FWCC Priority Wetlands with 1-3 species and upland habitat.							
Assessment conducted by:			Assessment date	e(s):				
Kelly Chinners Reiss, Erica Hernand	Kelly Chinners Reiss. Erica Hernandez				9/29/2005			

Lob_CYP_1 Uniform Mitigation Assessment Method, page 2
PART II - Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Number	
Loblolly Mitigation Bank		NA	NA Lob_CY		_ob_CYP_1	
Impact or Mitigation		Assessment conducted by:		Assessment date) :	
Mitigati	on Bank	Kelly Chinners Reiss, Erica Hernandez			9/29/2005	
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present	(0)
The scoring of each	Opamai (10)	Condition is less than	IVII	ai (- /	HOLITESEIIL	(3)
indicator is based on what	Condition is optimal and fully	1 '		evel of support of	Condition is insuffi	
would be suitable for the	supports wetland/surface	maintain most		/surface water	provide wetland/s	
type of wetland or surface water assessed	water functions	wetland/surface water functions	"	unctions	water function	เเร
		1.23800				
.500(6)(a) Location and Landscape Support w/o pres or current with	species present. Some nuise impede some wildlife access harvested shortly as it is in a	essment area provide suppor ance cattail (<i>Typha sp.</i>) in road to the cattail (<i>Typha sp.</i>) in road to the cattail (<i>Typha sp.</i>) in road to the cattain described and cover).	adside ditche nent area ha Habitats out	es. Bedding acts a ve moderate impa side wetland asse	as a barrier and thicl acts. These areas w essment area are fai	k brush ill be r,
6	7					
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	anticipated, perhaps due to c changes, however some very soil subsidence or atypical fir ascendens) trees did not gro showing water quality degrac activity). Many gas bubbles optimal because of coating. logging activities. In general the strength of this score (it specifically at the UMAM rule	,	Iding activities (could be from minity zor - suggested in water surfa Darker water de pine and be swere uncle tite condition	es. No distinct evi- om previous earth- nation appropriate. I indicator of hydro- ace and vegetation than anticipated. bedding with ditche- ear and so we are s, but a lack of sp	dence of water level moving). No evide Pondcypress (Taxologic stress. No spin (expected bacteria Light penetration nees. Hummocks from not completely confecific evidence and	ence of codium ecies al ot n initial fident in looking
.500(6)(c)Community structur w/o pres or current with	species. No exotic or invasive distribution approximates type trees. No very large pondcype lower than anticipated. Plant were completely covered with suppressed). Land manager hydrology because of beddin beds in wetland. Topographi bedding and perhaps extra la	and desirable species - thouge species. Evidence of near-ical conditions but temporary press (<i>Taxodium ascendens</i>), a condition generally good, the hichens and larger pondcypment practices include bedding - removed natural structure ic features somewhat approprarge hummocks/mounds) thouring water surface and imped	normal recrudeviations a Snags and ugh pondcyless did not he into the weby bedding a riate (slightly ught to be pro	pparent or regeneral pparent with cut sill dens limited, tree press had anomal have full canopies ethand, fire suppressand logging and a less than optimal evious evidence o	ation. Age and size tumps and small (lor swere small, so lev ies - small pondcypr (branch growth ssion, and change ir lso created troughs) except in fringes w	w dbh) rels ress n and
	_		-		-	
Score = sum of above scores/30	(if If preservation as mitig	ation,		For impact assess	sment areas	
uplands, divide by 20)	Preservation adjustme	nt factor =				
current pr w/o pres with			FL =	delta x acres =		
0.67	Adjusted mitigation del	ıa =				
	_					
	If mitigation		_	or mitigation asse	esement areas	
Delta = [with-current]	Time lag (t-factor) =		<u> </u>	or miligation asse	Someth areas	
	Risk factor =		RFG	= delta/(t-factor x	risk) =	
Form 62 345 000(2) E A C Tof	factive date 02 04 20043					

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Lob_CYP_1 Wetland Rapid Assessment Procedure, page 1

Project Name: Lob_CYP_1- Loblolly Mitigation Bank

Date: 9/29/05

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Depressional forested wetland, dominant canopy species was pondcypress (*Taxodium ascendens*), low species richness in support habitat. Wetland canopy thin from past logging and perhaps hydrologic stress or even insect damage (uncertain of direct cause). Ground cover richness very low inside wetland, with only three herbaceous species and a few graminoid species recorded.

Wetland Assessment Area: 1.1 ha (2.7 ac)

FLUCCS Code/Description: 6210 Cypress

2.0	Wildlife Utiliz	cation (WU)	
2.0	Wetland Canopy (O/S)		
2.0	Wetland Ground Cover (GC)		
2.5	Habitat Support/Buffer		
2.0	Field Hydrology (HYD)		
1.0	WQ Input & Treatment (WQ)		
11.5	SUM		
6	Count		
0.64	WRAP		

Lob_CYP_1 Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Evidence of small mammals and reptiles, macroinvertebrates, amphibian, and fish. Low species richness in support habitat. Lack of appropriate structure for food and cover providing adequate adjacent food sources. Cover available within wetland but trees small and limited large cavities and dens should provide adequate (but not optimal) protective cover. Cover in upland is thick vegetation. Common yellow throat, *red spiders, *buck rub on black gum (*Nyssa sylvatica var. biflora*), spiders, cat bird (a migrant), small fish, *medium size frog, *cricket frogs, *damsel flies, *leopard frog, [* means in buffer support area]. Not abundant upland food sources, some available but difficult for many species to get access because of thick growth. Human disturbance apparent (though considered minimal) with planted pine and deep troughs and tall beds for slash pine (*Pinus elliottii*).

2.0 Wetland Canopy (O/S)

Desirable canopy and shrub species. No invasive or exotic species. Evidence of natural recruitment. Very shrubby. Some cavity space on hummocks with limited snags and den trees. All trees are small dbh. Mixed age class distribution of pondcypress (*Taxodium ascendens*), heavy on the small dbh trees, young pondcypress not robust - filled with lichens. Thick shrubs. Slash pine (*Pinus elliottii*) with buttresses. Pondcypress have thin and narrow canopy and do not branch out far from trunk. Small pondcypress trees (small dbh). Pondcypress recruitment noted, cut stumps apparent, much down/woody debris. Much black gum (*Nyssa sylvatica* var. *biflora*) recruitment, especially at around 5cm dbh. Turpentine remnants on burnt-out stumps. Myrtle dahoon holly (*Ilex myrtifolia*) and black gum regeneration and recruitment.

2.0 Wetland Ground Cover (GC)

No exotic species, no nuisance species. Mostly beaksedges (ex. *Rhynchospora* spp.) and Virginia chain fern (*Woodwardia virginica*). Much open water. Lack of species richness throughout. Disturbance apparent with bedding up into wetland boundary. No managed or periodic burns. Eastern purple bladderwort (*Utricularia purpurea*) on south edge.

2.5 Habitat Support/Buffer

Bedded pine plantation, dark stain from receded water (with black coating on water surface) on Carolina redroot (Lachnanthes caroliniana) in troughs of beds. Has pitcherplants (Sarracenia spp.) and warty sedge (Carex verrucosa) on perimeter and tenangle pipewort (Eriocaulon decangulare). Greater than 300' buffer with lack of species richness - canopy of slash pine (Pinus elliottii) and limited other species, though no exotic, invasive, or nuisance species. Ditch at roadside. Score raised because of open forest areas with decent access routes and vastness of landscape.

	Buffer Type	(Score) x	(% of Area)	= Sub Total
	Pine Plantation	2.5	1	2.5
ŝ.				
			Total =	2.5

2.0 Field Hydrology (HYD)

Darker water, brown/black coating (thought to be from bacteria), stain lines visible, lichens all the way down to moss collars. Ditch at roadside ~ 0.75 m deep, with water depth ~ 0.5 m, effecting hydrology. Hydrology adequate to maintain viable wetland. External influences present. No upland species encroachment.

1.0 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
Pine Plantation	2.0	1.00	2.0
			0.0
			0.0
•	2.0		

PRETREATMENT CATEGORY (PT)

TRETTERTIME	CHILDOON	1 (1 1)	
Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
No Treatment	0.0	1.00	0.0
			0.0
			0.0
•	•	PT Total =	0.0

Additional Notes:

Plantation Pine given the land use score of citrus due to the bedding, changes to hydrology, and potential application of fertilizers and pesticides.

Lob_CYP_2 Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name	Site/Project Name Application Number		ber Assessment Area Name or Number		or Number	
Loblolly Mitigation	Bank		NA		Lob_	CYP_2
FLUCCs code	Further classifica	tion (optional)		Impact of	or Mitigation Site?	Assessment Area Size
6210 Cypress	depressional for	rested wetland - pa	alustrine forested	N	Mitigation Bank	0.7 ha (1.7 ac)
Basin/Watershed Name/Number HUC 03080103 Lower St. John's River	Affected Waterbody (Class I	•	Special Classificat	ion (i.e.OF)	W, AP, other local/state/federa	I designation of importance)
Geographic relationship to and hydronic	rologic connection with	wetlands, other su	urface water, upla	nds		
Depressional wetland, receives run Many	-off from surrounding p other depressional or s					vithin wetland boundary.
Assessment area description						
Depressional forested wetland, do	ominant canopy species	was pondcypress (removal of		ndens), :	support habitat has b	een recently harvested
Significant nearby features				nsiderin	g the relative rarity in	relation to the regional
Connected to or corridor to S. T Forest, Peterson Tract (private Corridor, Yellow Water Branch Tr separated by a busy Jacksonville n with Florida Ecological Greenwa Blanding-Osceola National Fore s	ownership), Cecil Field rail Head. Though som padway. Northwest 3/4 ays high priority, critical	Conservation e areas may be of bank overlaps linkage Camp	landscape.) Not unique,		epressional wetlands ation or conservation	
Functions			Mitigation for pre	vious pe	ermit/other historic use	9
Wildlife habitat and refuge, in partic animals, which may depend on c provide water storage by holding of the water table; enhance water qua	ypress swamps for bree excess water and slowly	eding purposes; y releasing it into	Surro	unding la	ands in active silvicult	ure land use.
Anticipated Wildlife Utilization Base that are representative of the asses be found)		•	•	T, SSC)	Listed Species (List s , type of use, and inte	•
Odocoileus virginianus (white-tailed many species of frogs, small fish, v			Mycteria americana (wood stork)E, Ursus americanus floridanus (Florida black bear)T, Alligator mississippiensis (alligator)T, Aramus guarauna (limpkin)SSC.			
Observed Evidence of Wildlife Utiliz	zation (List species dire	ctly observed, or o	ther signs such a	s tracks,	, droppings, casings,	nests, etc.):
Spider eggs, palm warbler, *game noise of animals scurrying away a because of piled up vegetation dragonflies for example), dragonfly in trees, small mammal nest of cyl insects, *common buckeye bu	at wetland edge - couldi and location on water , fish (small), red should press bark in tree cavity	n't find, common y banks. Deer use dered hawk call, la on hummock, gro	yellow throat, down in support area, so arge insect casing een anoles, many	ny wood mall fish , blue gra overhea	pecker, *scat in uplan and expect macroinv ay gnatcatcher, poter ad red spiders, grassh	d/edge (perhaps otter vertebrates (did see utial gator hole, bird nest proppers variety of flying
Additional relevant factors:						
Area has not been restored at all - ι	upland pine has just bed	en harvested. FW	/CC Priority Wetla	ınds with	1-3 species and upla	and habitat.
Assessment conducted by:			Assessment date	e(s):		
Kelly Chinners Reiss, Erica Hernan	dez		9/29/2005			

Lob_CYP_2 Uniform Mitigation Assessment Method, page 2
PART II - Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Number	r
Loblolly Mitiga	ation Bank	NA		Lob_CYP_2		
Impact or Mitigation		Assessment conducted by:		Assessment date):	
Mitigation	Bank	Kelly Chinners Reiss, Erica	Hernandez		9/29/2005	
	0 11 1/10					(0)
Scoring Guidance The scoring of each	Optimal (10)	Moderate(7) Condition is less than	Mi	nimal (4)	Not Present	(0)
indicator is based on what	Condition is optimal and fully	optimal, but sufficient to	Minimal le	evel of support of	Condition is insuf	fficient to
would be suitable for the	supports wetland/surface	maintain most		/surface water	provide wetland	
type of wetland or surface	water functions	wetland/surface water	fı	unctions	water functi	ons
water assessed		functions				
	Indiated decreasing the day.					
	· ·	nstream effects/flows. Habits support for all species especia				
.500(6)(a) Location and		Support for all species especies Cattail (<i>Typha</i> sp.), a nuisan				
Landscape Support	II:	y limited by distance from har		•	•	
	, ,	train tracks to west. Adjacent	•	•		
		er species richness. Wildlife a				
w/o pres or		st further to west. Embedded				
current with	been thinned, slash pine (<i>Pinus elliottii</i>) are taller and older with some development of appropriate understory species. Wetland assessment area edge is harvested pine resulting in a fairly open landscape, grades into dir					-
8	and pine plantation.	ni area euge is narvesteu pine	e resulting ii	га тапту орен тапс	iscape, grades into	dirt road
	Water level appeared approp	riate. Water level indicators v	vere approp	riate with cypress	knees, loop roots,	moss
.500(6)(b)Water Environment		and tree bases, lenticels on bl				
(n/a for uplands)		pecies indicative of water quali	, ,			
	1	cidation. Vegetation zonation appropriate for type of system. No vegetation stress condition. Use by species such as frogs and small fish (with specific hydrologic				
wo pros or		ion, turbidity, or oil sheen in st				
w/o pres or current with		tchment has been reduced be	•			
	flowing into wetland as it histo	orically would.		· ·		
9						
-		in all strata. Invasive or exot				
.500(6)(c)Community structure		axodium ascendens; black gu				
	j. 0	ssing older cohorts (largest db ition. No insect disease, stres	, ,		, •	-
	,	ound cover species planted. I			•	
Vegetation and/or		present and normal within wetl				
2. Benthic Community	area) suffers from rutting. No	evidence of siltation and alga	ae growth to	impede vegetation	on.	
w/o pres or						
current with						
9						
Score = sum of above scores/30 (if	If preservation as mitigate	ation,		For impact asses	sment areas	
uplands, divide by 20) current	Preservation adjustmen	nt factor =				
or w/o pres with	Adjusted mitigation delt	to =	FL =	delta x acres =		
0.87	Adjusted mitigation del	.a =				
	J					
	If mitigation		F	or mitigation asse	ssment areas	
Delta = [with-current]	Time lag (t-factor) =			-		
	Risk factor =		RFG	= delta/(t-factor x	risk) =	
	, and radio.					
Form 62-345.900(2), F.A.C. [effect	ctive date 02-04-2004]					

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Lob_CYP_2 Wetland Rapid Assessment Procedure, page 1

Project Name: Lob_CYP_2 - Lololly Mitigation Bank

Date: 9/29/05

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Palustrine forested wetland, clear tannic water, some algal growth on submerged woody debris and vegetation. Support area immediately adjacent to wetland has been timbered within the past two years.

Wetland Assessment Area: 0.7 ha (1.7 ac)

FLUCCS Code/Description: 6210 Cypress

2.5	Wildlife Utilization (WU)		
3.0	Wetland Cano	py (O/S)	
2.5	Wetland Grou	nd Cover (GC)	
2.5	Habitat Support/Buffer		
2.5	Field Hydrology (HYD)		
3.0	WQ Input & Treatment (WQ)		
16.0	SUM		
6	Count		
0.89	WRAP		

Lob_CYP_2 Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Spider eggs, palm warbler, *game trails, *dees tracks and turkey in support area, spiny cral-like orb weaver spider, *oak toad, leopard frog, heard noise of animals scurrying away at wetland edge - couldn't find, common yellow throat, downy woodpecker, *scat in upland/edge (perhaps otter because of piled up vegetation and location on water banks. Deer use in support area, small fish and expect macroinvertebrates (did see dragonflies for example). Abundant upland food sources. Greater than minimal human disturbance, adjacent pine harvested and rutted uplands surrounding wetlands. Dragonfly, fish (small), red shouldered hawk call, large insect casing, bluegray gnatcatcher, potential gatore hole, bird nest in trees, small mammal nest of cypress bark in tree cavity on hummock, green anoles, many overhead red spiders, grasshoppers variety of flying insects, *common buckey butterfly, *cricket frogs, Carolina wren calling, *sleepy orange butterfly. (* signifies evidence is support area).

3.0 Wetland Canopy (O/S)

Pondcypress (*Taxodium ascendens*) regeneration (cones) and recruitment. Black gum (*Nyssa biflora*) recruitment too. Large pondcypress snags, fire scars on east edge. Slash pine (*Pinus elliottii*) regeneration on edge. No invasive canopy or midstory trees. Good habitat support - some dead low branches (result of fire suppression). Age and size class distribution lower end (younger, smaller dbh), but nice uneven aged stand. Did let in more light than perhaps should and shrubs at higher density than optimal. Some snags with cavities and dens. Canopy appeared healthy.

2.5 Wetland Ground Cover (GC)

No exotic species noted. Tire left in wetland. Few open patches with pickerel weed (*Pontederia cordata*), otherwise limited of understory because of shade from trees and shrubs. Suffering from lack of periodic burning and now that the pines have been harvested there is nothing to carry a fire to the ecotone.

2.5 Habitat Support/Buffer

Rutting up of ground on northwest and northeast edge where we walked out into the buffer, not so much on east edge.

Buffer >300 feet with great plant species richness, but missing species necessary for fine fuels. Perhaps the seed bank would come back with a series of winter burns? No exotic species identified. The nuisance species cattail (Typha sp.) in roadside ditches on property.

Buffer Type (Score) x (% of Area) = Sub Total

2.5

Disturbed land

2.5

Total = 2.5

2.5 Field Hydrology (HYD)

Lenticels on black gum (*Nyssa biflora*), moss collars intact on hummocks and tree bases, cypress knees and loop roots, large hummock development, stain lines. No upland species encroachment. No soil subsidence. Hydrology adequate to maintain viable wetland. Hydroperiod recovering - lichen line not as distinct as anticipated. Adjacent to negetive impacts - rutted up areas pool water, diverts water away, and not feeding the wetland as anticipated.

3.0 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

EI II (B C BE CI II I	\ -/		
Land Use			= Sub
Category	(Score) x	(% of Area)	Total
Natural Undev.	3.0	1.00	3.0
			0.0
			0.0
-		LU Total =	3.0

PRETREATMENT CATEGORY (PT)

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
Natural Undev.	3.0	1.00	3.0
			0.0
			0.0
	•	PT Total -	3.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Appendix B-20. Loxahatchee Mitigation Bank

Figure B-20.1. Landscape location of Loxahatchee Mitigation Bank (green line). Boundary of the wetland assessment areas Lox_SHR outlined in orange, Lox_CYP outlined in blue, and Lox_FOR outlined in yellow.

Figure B-20.2. Site photos of (A) Lox_SHR, and (B) Lox_CYP. Lox_FOR does not have a site photo.

Lox_SHR Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Numbe	r		Assessment Area Name	or Number
Loxahatchee Mitigatio	n Bank		NA		Lox	_SHR
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size
1995 - 6172 Mixed Wetland Hardwo mixed shrub	NWI - Palustrine	e Forested; soils -	- Okeelanta muck		Mitigation Bank	184 acres
Basin/Watershed Name/Number A	ffected Waterbody (Clas	SS)	Special Classificati	on (i.e.C	DFW, AP, other local/state/federa	al designation of importance)
HUC - SE Florida Coast;	Class I	III			no	
Geographic relationship to and hydro	logic connection with	wetlands, other su	ırface water, uplar	nds		
The North Parcel of Lox. Mitigation I Lox bank wetlands only connect as a	a source of discharge		high water which h			
Assessment area description Impounded contiguous wetland. Th areas of shrubby wetlands with willo (Annona glabra). Also areas of red includes n	e wetland mosaic is a w (<i>Salix caroliniana</i>),	n organic flat, hist wax myrtle (<i>Myric</i>) and some more	orically part of the ca cerifera), buttor open spots have s ss. There is at leas	bush some s	(Cephalanthus occide sawgrass (Cladium jan ot of standing water.	ntalis), and pond apple naicense). Understory
Significant nearby features Loxahatchee National Wildlife Refu berm and canal. SFWMD water res the other side o			landscape.) West of the banl the landscape ch	k is the nanges pank a	e Loxahatchee wildlife s s to sugar cane agricult	relation to the regional refuge and further West ture. Land North, South idential and are already ed.
Functions			Mitigation for previous permit/other historic use			
Surface and subsurface water storage. Nutrient cycling. Provide wildlife habitat.			Mitigation bank in year 2 of restoration.			
Anticipated Wildlife Utilization Based that are representative of the assess be found)			•	T, SSC	y Listed Species (List s C), type of use, and inte	
Turtles, frogs, alligators, woodpeckers, wading birds, osprey, raccoon, bobcat, deer, fish, salamanders, complete spp. list in the 2005 monitoring report.			during site visit.	Snail	Kite END - has not bee	odstork END - observed en observed; Little Blue Egrets, Tri Color heron,
Observed Evidence of Wildlife Utiliza	tion (List species dire	ctly observed, or c	ther signs such a	s track	s, droppings, casings,	nests, etc.):
Saw numerous wading birds incl	luding Limpkin SSC. s caterpillars. Saw ap					ity of butterflies and
Additional relevant factors:						
Biologist guiding us on the site visit c target for wetland hydrology. This an community on the North Parcel of the	ea will probably never					
Assessment conducted by:			Assessment date	e(s):		
Erica Hernandez & Kelly Chinners Reiss			6/29/2005			

Lox_SHR Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area Name or Number	
Loxahac	tchee	NA		Lox_SHR	
Impact or Mitigation		Assessment conducted by:		Assessment date:	
Mitigation	n Bank	Kelly Chinners Reiss & Erica	Hernandez		6/29/2005
Scoring Guidance The scoring of each	Optimal (10)	Moderate(7) Condition is less than	Mi	nimal (4)	Not Present (0)
indicator is based on what	Condition is optimal and fully		Minimal le	evel of support of	Condition is insufficient to
would be suitable for the	supports wetland/surface	maintain most		/surface water	provide wetland/surface
type of wetland or surface	water functions	wetland/surface	fu	unctions	water functions
water assessed		waterfunctions			
.500(6)(a) Location and Landscape Support w/o pres or current with 6	Adjacent landscape to the West is a berm, canal then Lox. Refuge. Completely surrounded by berms and canals. Florida Power and Light in-holding to the South and on other side of canal area there is an urban interface with residential homes to the East. No real upland support or natural edge or grading into an upland. There are engineered gator crossings on the berm. Wildlife that can move about easily like birds can travel between the refuge and the bank easily. Many exotics on the berms and on bordering properties, agricultural fields and fallow lands. Canals can be an obstruction to some animals but bobcats and raccoons could probably cross it. No downstream effects, the wetlands are not connected to the canals. Adverse impacts to wildlife, on East edge, 441 and residential homes, vector for nuisance animals like feral cats and dogs. Lawn chemicals wouldn't effect bank because urban runoff flows into the canals that would by pass the WAA, though they do experience seepage from the berm banks.				
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	Water levels are lower than and slightly different than target hydrology for the success criteria. Monitoring report said water levels are inappropriate. Site has standing water during site visit. Soils are inundated. Dead and dying trees from intentionally killing of exotics and hurricane damage. There was more hurricane damage to trees (red maple, <i>Acer rubrum</i>) maybe because hydrology wasn't right and trees are stressed? Wading birds observed, heard frogs. Water clarity looked good. In some open areas saw some cattail (<i>Typha</i> spp.) near the berm. Some of the species present can be tolerant of moderate water degradation. Water is very tannic.				
.500(6)(c)Community structure					
Vegetation and/or Benthic Community .	evidence of regeneration. N	e plant species. Exotics are mo comment on age and size diria. Vegetation looks very hea features, refugia ponds, hum	istribution. Ithy. Water	Snags of dead tre control features of	es standing due to killing of
w/o pres or current with					
	+				
7					
Score = sum of above scores/30 (if	If preservation as mitig	ation,		For impact assess	sment areas
uplands, divide by 20)	Preservation adjustmen	· ·	\vdash		
current	rieservation adjustmen	it iactor -	FL =	delta x acres =	
with	Adjusted mitigation del	ta =			
0.67			-		
	If mitigation				
Delta = [with-current]			F	or mitigation asse	ssment areas
Deita – [With-Current]	Time lag (t-factor) =		DEC	- dalka //k 5 k-	minte) —
	Risk factor =		RFG	= delta/(t-factor x	risk) =
			<u> </u>		
Form 62-345.900(2), F.A.C. [effe	ctive date 02-04-2004]				

Lox_SHR Wetland Rapid Assessment Procedure, page 1

Project Name: Lox_SHR, Loxahatchee Mitigation Bank

Date: 6/29/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Shrubby wetland - towards the center of the wetland

is an open area with cut-over Melaleuca quinquenervia with stumps cut and treated and woody

debris left in the wetland, farther to the E the presence of Acer rubrum becomes more apparent.

Wetland Assessment Area: 113 ha (184 ac)

FLUCCS Code/Description: SFWMD 1995 6300-Wetland Forested Mixed & 6172-Mixed Wetland

Hardwood/Mixed Shrub

1.5	Wildlife Utiliz	cation (WU)	
2.5	Wetland Cano	py (O/S)	
2.5	Wetland Groun	nd Cover (GC)	
1.0	Habitat Suppo	rt/Buffer	
2.0	Field Hydrology (HYD)		
1.4	WQ Input & Treatment (WQ)		
10.9	SUM		
6	Count		
0.60	WRAP		

Lox_SHR Wetland Rapid Assessment Procedure, page 2

1.5 Wildlife Utilization (WU)

Moderate evidence of wildlife use, though visit was on a rainy/overcast day. Visual identification of limpkins and cardinals. Limited adjacent food, cover, etc. for wildlife species. Adequate cover in the wetland, difficult to access adjacent areas (for wildlife) because of berms without cover (mower roads) and canals with steep banks, also somewhat limited availability because some surrounding landuses have predominantly invasive or nuisance species.

2.5 Wetland Canopy (O/S)

Less than 10% invasive canopy and midstory. Some natural recruitment of *Annona glabra*, though no strong evidence it is in fruit. No evidence of den trees but some snags, much of these areas dominated by pockets of *Acer rubrum*, perhaps relics of some past hydrologic changes. Large *Salix caroliniana* stems. Some concern about current species composition, for example, one large *Taxodium ascendens* (pondcypress) tree in the entire assessment area we walked through - where are the others?

2.5 Wetland Ground Cover (GC)

Less than 25% nuisance or invasive species, including *Typha* sp., *Lygodium* sp. (though this is a vine), *Schinus terebinthifolius* (though this is a shrub, there was regeneration in the <1m tall, no dbh range of vegetation). Also has some desirable wetland species such as *Saururus cernuus* and *Polygonum punctatum*. Some human induced impact in wetland.

1.0 Habitat Support/Buffer

Buffer >30 ft wide because of roads and canals. Does have	Buffer Type	(Score) x	(% of Area)	= Sub Total
FPL easement, which is not managed for exotics, has moxed	All	1.0	1	1.0
roads, canals, and many many weeds.				
			Total =	1.0

2.0 Field Hydrology (HYD)

Adequate hydrology with some regeneration of *Annona glabra* and *Acer rubrum*. Presernce of *Myrica cerifera* (FAC) and many FAC vines (from NWI, since FDEP does not categorize vines, so these would be "invisible by FDEP). Such vines include *Ampelopsis arborea* (peppervine), *Parthenocissus quinquefolia* (Virginia creeper), *Momordica* spp. (balsampear), etc. Inundation prevented anticipated evidence of soil subsidence. Negetive impacts present, surrounded by berms and canals.

1.4 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

	-	LU Total =	1.0
			0.0
berm/canal	1.0	1.0	1.0
Category	(Score) x	(% of Area)	Total
Land Use			= Sub

^{*}used score for unimproved pasture/rangeland

PRETREATMENT CATEGORY (PT)

TRETTER	СПЕ	()	
Pretreatment Category	(Score) x	(% of Area)	= Sub Total
Category	(BCOIC) A	(70 01 7 11 0 0)	- Dub Ioun
wet detention	2.5	0.5	1.3
very small veg stri	1.0	0.5	0.5
		PT Total =	1.8

Water in canals is from agricultural areas, so give score of row crop/improved pasture (1.0)

Surrounded by 5m wide roads and 5 m wide canals, then other landuses, but these are technically not hydrologically connected though there is seepage.

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Lox_CYP Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	er		Assessment Area Name or Number	
Loxahatchee Mitigation Ba	ank		NA		Lox_	_CYP
FLUCCs code SFWMD 1995 6210-Cypress, 6300- Wetland Forested Mixed, & 617O-Mixed Wetland Hardwood		tion (optional) CCS 6210 Cypres gic Habitat Conse Priority Habitat		Impac	t or Mitigation Site? Mitigation Bank	Assessment Area Size 82 ha (203 ac)
Basin/Watershed Name/Number Affect HUC - Southeast Florida Coast	ed Waterbody (Clas	ss)	Special Classificati	on (i.e.C	DFW, AP, other local/state/federal	designation of importance)
03090202	Class I				no	
Geographic relationship to and hydrologi This parcel of the Loxahatchee Mitiga wetland habitats exist to the N and W. T	tion bank is surrou his parcel only cor	inded by berms w	ith canals on the c	utside er at t	imes of high water which	
Assessment area description						
Impounded contiguous wetland. The w the greater Everglades. The primary case separate	nopy species is po	ond-cypress (<i>Tax</i>		. The	connected area to the	
Significant nearby features Loxahatchee National Wildlife Refuge or shrub wetland and over the			landscape.) West of the bar further West the	nk is tl lands f the b	ing the relative rarity in the Loxahatchee Nationacape changes to sugar ank are commercial an dy or rapidly being deve	al Wildlife Refuge and cane agriculture. Land d residential and are
Functions			Mitigation for prev	vious p	permit/other historic use	•
Surface and subsurface water storage. habitat. Provides structure			N	litigatio	on bank in year 2 of res	toration.
Anticipated Wildlife Utilization Based on that are representative of the assessmen be found)		•		T, SS	y Listed Species (List s C), type of use, and inte	
Turtles, frogs, alligators, woodpeckers bobcat, deer, fish, salamanders, compl report	ete spp. list in the		bank. Snail Ki	te ENI	rved at bank; Wood sto O - has not been observ ite Ibis, Snowy Egrets, ibis are all SSC	
Observed Evidence of Wildlife Utilization	(List species direct	ctly observed, or o	other signs such a	s track	s, droppings, casings, ı	nests, etc.):
Visual evidence of deer matting. Raining throughout adjacent areas on drive and	nspection of other		This was one of the			
Additional relevant factors:						
Biologist guiding us on the site visit community target for wetland hydrology.	nented that there i	is more water on t	the site then usual	. This	is a good thing, the bar	nk has been below its
Assessment conducted by:			Assessment date	e(s):		
Erica Hernandez & Kelly Chinners Reiss			6/29/2005			

Lox_CYP Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Cita/Draiget Name		Application Number	- 1	Assessment Area	a Nama ar Numbar	
Site/Project Name	itication Dank	Application Number		Assessment Area Name or Number		
Loxahactchee Mi	itigation Bank	NA		Lox_CYP		
Impact or Mitigation	Deal	Assessment conducted by:		Assessment date		
Mitigation	вапк	Kelly Chinners Reiss & Erica	Hernandez		6/29/2005	
Scoring Guidance	Optimal (10)	Moderate(7)	Mir	nimal (4)	Not Present (0)	
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface water functions Minimal level of support of wetland/surface water functions Minimal level of support of wetland/surface water functions Minimal level of support of wetland/surface water functions				
.500(6)(a) Location and Landscape Support w/o pres or current with	Availability of habitat is fair. Habitat not available in sufficient quantity. Barriers and distance reduce the opport of wildlife for access to food and cover. No downstream discharge - the bank is not designed to discharge, tho historically it was part of the greater Everglades system. Some negative influences by adjacent land uses (ex. disturbing wildlife, people disturbing wildlife, littering, etc.). Water from surrounding urban areas and agricultu lands is diverted in by-pass canal, though some exchange possible through seepage. More than minimal hum disturbance. Adjacent areas have some invasive exotic species present, so areas will be actively treated for ce species (i.e. <i>Melaleuca quinquenrvia</i>).				signed to discharge, though adjacent land uses (ex. cats ban areas and agricultural More than minimal human	
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	Water levels may be slightly lower than expected. Edge of <i>Taxodium ascendens</i> (pond-cypress) area is very dry there is a distinct moisture gradient from the wetland towards the berm. The vegetative strata appear appropriat though there are many "invisible" vines throughout. The dominant understory species is the facultative wetland exotic fern <i>Pteris tripartita</i> (giant brake fern). No water discoloration or oil sheen were observed. Water quality dawere not available. Did not note distinct lichen lines or water stain lines, perhaps because water levels were higher this year than in any year since the bank was started. We were told that the water levels have been low as compared to the target water levels when the bank was permitted. The canopy appeared to be thin compared to the nearby reference areas. Vines grew thick in understory and midstory suggesting that the site was under hydrologic stress and was much drier than expected (water levels should be high enough to relegate species to growing on hummocks). Conditions considered less than normal, but still maintaining a wetland, as a facultative wetland species was the dominant understory.					
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	"minimal." Tree structure of comprised of a majority canopy/subcanopy was app holly), and Itea virginical permanent deviation for ascendens. Topographic for the wetland species status	ry species was the exotic fern was good, but no regeneration y of "appropriate or desirable" propriate and consisted of <i>Taxi</i> (Virginia willow), though trees or age and size class distribution eatures appear optimal. Land though it may cause a major essarily a cypress dominated for norm	or recruitments of the species in the species in the species of th	ent noted. Vegetine shrub and groundens (pond-cyprosive vines growing of the lack of regent practices have egetative commu	ative composition was not und cover layers. The ess), Ilex cassine (dahoon up them. Indication of eneration of Taxodium not caused a major shift in nity composition - can still	
Score = sum of above scores/30 (if uplands, divide by 20) current with 0.57 Delta = [with-current]	If preservation as mitigation, Preservation adjustment factor = Adjusted mitigation delta = If mitigation Time lag (t-factor) = Risk factor = For impact assessment areas FL = delta x acres = For mitigation assessment areas RFG = delta/(t-factor x risk) =				essment areas	

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Lox_CYP Wetland Rapid Assessment Procedure, page 1

Project Name: Lox_CYP, Loxahatchee Mitigation Bank

Date: 6/29/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Cypress forested wetland - east side of parcel - canopy of cypress

mostly fern understory and many vines

Wetland Assessment Area: 82 ha (203 ac)

FLUCCS Code/Description: SFWMD 1995 6210-Cypress, 6300-Wetland Forested Mixed, &

617O-Mixed Wetland Hardwood

0.49	WRAP		
6	Count		
8.9	SUM		
1.9	WQ Input & Treatment (WQ)		
1.5	Field Hydrology (HYD)		
1.5	Habitat Support/Buffer		
1.0	Wetland Grou	nd Cover (GC)	
1.5	Wetland Cano	py (O/S)	
1.5	Wildlife Utilization (WU)		

Lox_CYP Wetland Rapid Assessment Procedure, page 2

1.5 Wildlife Utilization (WU)

Visual deer evidence/matting. Rained during site visit which hindered visual sightings and audible calls of wildlife species. To the W is shrub wetland, predominant species was *Salix caroliniana*. To the E and S is urban sprawl but separated by a road/berm and 10 ft wide canal. More than minimal human disturbance. Not adequate adjacent cover/habitat or upland food sources for wildlife species. Cover is provided by wetland trees, though the presence of exotics can displace and discourage some wildlife use. Wading birds were sited on drive to and from site.

1.5 Wetland Canopy (O/S)

Little evidence of recruitment of native overstory and shrubs. Did see *Itea virginica* (Virginia willow). Covered by exotic *Pteris tripartita* (giant brake fern) - which excluded typical subcanopy species. This ferm grew very dense and shaded out the all prospects of regeneration. The shrub layer appears highly disturned. No evidence of fire. Generally the *Taxodium ascendens* (pond cypress) trees looked healthy with many older trees with large diameters. There was abundant desirbale overstory, and minimal desirable shrubs. There was no evidence of diesease or insect damage or snags due to hydrologic or other problems.

1.0 Wetland Ground Cover (GC)

Some desirable ground cover species in patches, but cover was sparse. Mostly cover was by the exotic *Pteris tripartita* (giant brake fern) and vines - these covered ?50% of the area, so little remaining areas for coloniztion by desirable species.

1.5 Habitat Support/Buffer

			Total –	1.5
predominantly desirable species - do provide food, cover, etc.	Wetland Shrub	2.5	0.5	1.3
shrub system connected - > 300 ft. wide of mostly but not	Berms/Canals	0.5	0.5	0.3
E & S are bers/canal/housing in < 30 ft. W & N are wetland	Buffer Type	(Score) x	(% of Area)	= Sub Total

1.5 Field Hydrology (HYD)

The exotic fern species *Pteris tripartita* (giant brake fern) is FACW and covers a great deal of the area. Lots of cover by "invisible" vine species. So, of those species that count, approximately 90-95% are wetland dependent species. No evidence of upland or transitional species encroachment. No evidence of soil subsidence. Mostly flooded throughout wetland, but patchy dry areas did not show evidence of subsidence. Hydrology adequate for maintainance of wetland, but perhaps not for the regeneration of the canopy species (ex. seed scarification of *Taxodium ascendens*).

1.9 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Entra con (Ec)						
Land Use Category	(Score) x	(% of Area)	= Sub Total			
N-impaired wetland	2.0	0.1	0.2			
W-impaired wetland	2.0	0.5	1.0			
E-berm/canal	1.0	0.35	0.4			
S-berm/canal	1.0	0.05	0.1			
		LU Total =	1.6			

PRETREATMENT CATEGORY (PT)

_			
Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
W-nat. undev.	3.0	0.1	0.3
N-nat. undev.	3.0	0.5	1.5
E-small strip	1.0	0.35	0.4
S-small strip	1.0	0.05	0.1
		PT Total =	2.2

Surrounded by 5 m wide road/berm and then 5 m wide canals. Then, urban land uses, though these drain into the canals and not directly into the wetlands - only through seepage through berm walls. The water input into the canals is predominantly upstream agricultural land uses, so it was assigned a row crop or improved pasture score.

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

$Lox_FOR\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	r		Assessment Area Name	or Number
Loxahatchee Mitigatio	n Bank		NA	Lox_FOR		_FOR
FLUCCs code	Further classifica	tion (optional)	I	Impact	t or Mitigation Site?	Assessment Area Size
1995 - N section 6300 Wetland Fore Mixed; S section 6170 Mixed Wetla Hardwood	EVVCC Strate	gic Habitat Conse Priority Habitat	servation Areas - Mitigation Bank 282 h			282 ha
Basin/Watershed Name/Number A	Affected Waterbody (Class	ss)	Special Classificatio	n (i.e.C	PFW, AP, other local/state/federa	I designation of importance)
HUC - SE Florida Coast;	Class I	III			no	
Geographic relationship to and hydro	ologic connection with	wetlands, other su	urface water, upland	ds		
This parcel of the Loxahatchee Mi wetland habitats exist to the N and I	E. This parcel only co	nnect as a source		r at tin	nes of high water which	
Assessment area description						
Impounded contiguous wetland. The areas of shrubby wetlands with willow (Annona glabra). The connections	ow (Salix caroliniana),	wax myrtle (Myric	ca cerifera), button	bush	(Cephalanthus occide	ntalis), and pond apple
Significant nearby features			landscape.)		ng the relative rarity in ne Loxahatchee Nation	relation to the regional al Wildlife Refuge and
Loxahatchee National Wildlife Refu berm a	ge on the Western bo and canal.					d residential and are
Functions			Mitigation for previ	ious p	permit/other historic use	9
Surface and subsurface water storage. Nutrient cycling. Provide wildlife habitat.			Mitigation bank in year 2 of restoration.			
Anticipated Wildlife Utilization Based that are representative of the assess be found)		•	·	r, ssc	y Listed Species (List s C), type of use, and inte	
Turtles, frogs, alligators, woodpec bobcat, deer, fish, salamanders, co re						Blue Heron; American
Observed Evidence of Wildlife Utiliza	ition (List species direct	ctly observed, or o	other signs such as	track	s, droppings, casings,	nests, etc.):
Did not observe mammal or reptile			d because of evide nited wildlife viewing		f game trails. Site visit	on rainy/stormy day in
Additional relevant factors:						
Biologist guiding us on the site visit of target for wetland hydrology. This are community on the North Parcel of the	ea will probably never				•	
Assessment conducted by:			Assessment date((s):		
Erica Hernandez & Kelly Chinners Re	eiss		6/29/2005			

Lox_FOR Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Number	
Loxahactchee Mitigation Bank		NA		Lox_FOR		
· ·				Assessment date:		
, , ,		Kelly Chinners Reiss & Erica Hernandez		A33C33ment date	6/29/2005	
wiiugation		Grimmors Roiss & Elloa	omanacz		5.20.2000	
Scoring Guidance	Optimal (10)	Moderate(7) Minim		nimal (4)	Not Present	(0)
The scoring of each indicator is based on what	Condition is entimal and fully	Condition is less than optimal, but sufficient to	Minimalla	val of augment of	Condition is insuf	ficient to
would be suitable for the	Condition is optimal and fully supports wetland/surface	maintain most		vel of support of surface water	provide wetland/s	
type of wetland or surface	water functions	wetland/surface	fu	ınctions	water function	ons
water assessed		waterfunctions				
.500(6)(a) Location and Landscape Support w/o pres or current with	al then WCA1. E borders 60n th houses and roads. Not provin sufficient quantity or diversit essment area (ex. the FACW Some adverse impacts from t g cats and dogs harming wildl	viding the fu by for all wild! Pteris tripar the urban int	Il range of most w life support needs tita fern). Also, L erface to the sout	vildlife needs, and s s. Some exotic specygodium spp. vine th and across the cy	support cies in in the ypress	
6						
High standing water level, not abnormal for antecedent weather, but may not be normal for vegetative comconsultant suggested water levels are lower than anticipated because of the bank seepage removing water wetland and into the adjacent canals. Water level indicators: did see adventitious rooting on <i>Ludwigia peru</i> appears to confirm stationary water level or at least a persistant water level. No comments on soil moisture erosion because of innundation. No evidence of atypical fire history. No evidence of abnormal vegetations. More hurricane damage visible in this parcel than throughout the bank, large exotic plum tree (S) sp.) fallen and created large gap. Water coloration appeared good, no turbidity or discoloration - high cold tanins. Could see submerged species like <i>Bacopa</i> sp. and parrot-feather. No excess algal growth. No sindicative of water quality degredation.				from the uviana - ure and ation Syzygium or from		
.500(6)(c)Community structure Wetland species include Salix caroliniana, Annona glabra, Sabal palmetto, Cephalanthus rubrum. Land management practices result in fire suppression and water impoundment, no no with surrounding wetlands (separated by berms and canals). More than "minimal" cover by species such as Ludwigia peruviana, Lygodium spp., Syzygium spp., Solanum viarum. Community and by undesirable species because of Ludwigia peruviana, perhaps 35% cover. Ground community and by undesirable species, though some areas with predominantly native species are mixed in to shrub layer than expected. Perhaps decreased refugia ponds. The aquatic plant community a condition. Exotic species presence (and abundance) is expected to hinder plant succession furricane damage in this area compared to other areas in the bank has led to an increase in the snags in this wetland.			t, no natural water ever by exotic and nu um. Cover greater ound cover has ? 50 ed in too. There is a nuinty appears to be accessional trends.	exchange uisance than 0% cover a thicker e in good More		
	1					
Score = sum of above scores/30 (if uplands, divide by 20)	If preservation as mitig	ation,	<u> </u>	For impact asses	sment areas	
current	Preservation adjustme	nt factor =	 	delta x acres =		
with	with Adjusted mitigation delta =			ucita x acites -		
0.67						
	If mitigation					
Dolta - fruith assessed			F	or mitigation asse	essment areas	
Delta = [with-current]	Time lag (t-factor) =		DEC	= dolto//t footo	riok) =	
	Risk factor =		RFG	= delta/(t-factor x	risk) =	
Form 62-345.900(2), F.A.C. [effect	ctive date 02-04-2004]					

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Lox_FOR Wetland Rapid Assessment Procedure, page 1

Project Name: Lox_FOR, Loxahatchee Mitigation Bank

Date: 6/29/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Shrub/scrub wetland currently, was intended to be restored

as sawgrass marsh. However, 1995 FLUCCS considered it 6300 Wetland Forested Mixed and

6170 Mixed Wetland Hardwoods.

Wetland Assessment Area: 282 ha

FLUCCS Code/Description: SFWMD 1995 6300 & 6170 - Mixed Forested

1.5	Wildlife Utilization (WU)		
2.0	Wetland Cano	py (O/S)	
2.0	Wetland Ground Cover (GC)		
0.5	Habitat Support/Buffer		
2.0	Field Hydrology (HYD)		
1.3	WQ Input & Treatment (WQ)		
9.3	SUM		
6	Count		
0.52	WRAP		

Lox_ FOR Wetland Rapid Assessment Procedure, page 2

1.5 Wildlife Utilization (WU)

Did not observe mammal or reptile usage, though visit during stormy/rainy day. In area of frequent human disturbance. Limited adjacent upland food sources - wetland food sources on adjacent wetland or across berm and canal through WCA1. Less than limited habitat for birds and mammals outside of the assessment area and bank boundaries on to E and S. Species composition high exotics in these adjacent areas limits some of its utility to wildlife. Berms and canals pose as barriers to wildlife accessibility.

2.0 Wetland Canopy (O/S)

Some undesirable tree and shrub species including *Syzygium* spp. And *Ludwigia peruviana*, approximately 25% cover by these species. No natural recruitment or regeneration noted for the native species *Annona glabra*. Structure does provide for some habitat support.

2.0 Wetland Ground Cover (GC)

Some *Solanum viarum* (tropical soda apple) in groundcover and many hummocks covered by *Lygodium* spp. And moon vine. The thick density of *Ludwigia peruviana* in patches makes the groundcover difficult to see. We were concerned with the limitations of the scoring for this category, because we did see *Bacopa* sp. and parrots feather, but not much else in the way of desirable groundcover - but did not score down too low because the nuisance (*Ludwigia peruviana*) and exotic (*Lygodium* sp. and moon vine) are not considered groundcover, but shrub and vines!

0.5 Habitat Support/Buffer

E - approximately 50 m wide cypress wetland. S - urban with a 30m buffer by a canal and berm and then housing. N - 30 m berm and canal and then wetland as part of mitigation bank, not composed of desirable plants for food, cover, etc. W - 30m berm and canal and then wetland as part of WCA1, with some desirable species, though a large canal, maybe another 30m on other side of berm and then thick wall of *Typha* spp. and other less than desirable vegetation.

	Buffer Type	(Score) x	(% of Area)	= Sub Total
	E	0.5	0.2	0.1
th	S	0.5	0.1	0.05
m	N	0.5	0.1	0.05
	W	0.5	0.6	0.3
h				
١.				
_			Total -	0.5

2.0 Field Hydrology (HYD)

No natural hydroperiod because of berms and canals, but hydrology is adequate to maintain a viable wetland, as evidenced by the presence of Obligate and Facultative Wetland species.

1.3 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

EANDOSE CATEGORY (EC)					
Land Use Category	(Score) x	(% of Area)	= Sub Total		
E - cypress					
impacted	2.0	0.2	0.4		
S - urban/berm	1.0	0.1	0.1		
N - berm	1.0	0.1	0.1		
W - berm	1.0	0.6	0.6		
		I II Total -	12		

^{*}used score for unimproved pasture/rangeland

PRETREATMENT CATEGORY (PT

PRETREATMENT CATEGORY (PT)					
Pretreatment Category	(Score) x	(% of Area)	= Sub Total		
E - natural					
undeveloped	3.0	0.2	0.6		
S - small strip	1.0	0.1	0.1		
N - small strip	1.0	0.1	0.1		
W - small strip	1.0	0.6	0.6		
		PT Total =	1.4		

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Appendix B-21. Panther Island Mitigation Bank

Figure B-21.1. Landscape location of Panther Island Mitigation Bank (green line). Boundary of the wetland assessment areas: Pant_CYP_1 is outlined in yellow, Pant_CYP_2 is outlined in blue, Pant_CYP_3 is outlined in green, and Pant_FOR is outlined in orange.

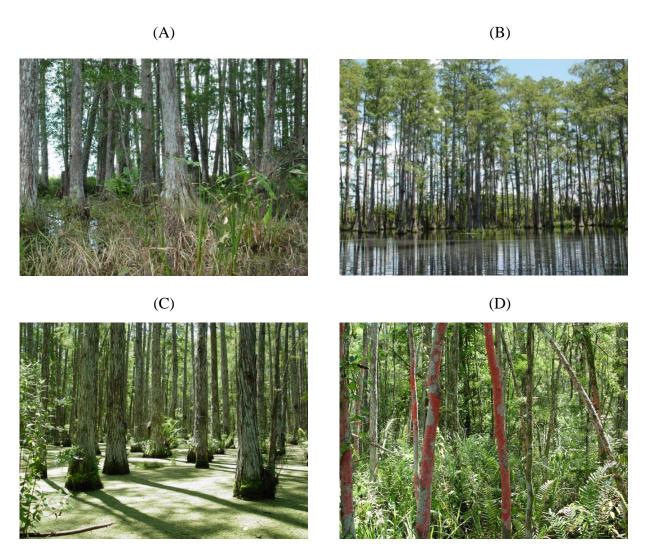


Figure B-21.2. Site photos of (A) Pant_CYP_1 (B) Pant_CYP_2 (C) Pant_CYP_3 and (D) Pant_FOR.

Pant_CYP_1 Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Numbe	r		Assessment Area Name or Number			
Panther Island Mitigatio	n Bank		NA		Pant_	Pant_CYP_1		
FLUCCs code	Further classifica	tion (optional)		et or Mitigation Site?	Assessment Area Size			
1995 - 621 Cypress	de	epressional foresto	ed		Mitigation Bank	2 ha		
Basin/Watershed Name/Number HUC 03090204 Everglades-West Coast	fected Waterbody (Clas Class I		Special Classificati	on (i.e.0	DFW, AP, other local/state/federa	designation of importance)		
Geographic relationship to and hydrol	ogic connection with	wetlands, other su	ırface water, uplar	nds				
No surface hydrologic connection to freshwater marsh. Forested sloug	h system to the south		es include agricult					
Assessment area description		<u> </u>	<u> </u>					
Depressional forested wetland, imm some mixed species; sli								
Significant nearby features			Uniqueness (collandscape.)	nsider	ing the relative rarity in	relation to the regional		
Corkscrew Swamp Sanctuary to C.R.E.W. to NE and Go			considered FWCC Priority Habitat under Strategic Habitat Conservation Areas					
Functions			Mitigation for prev	vious p	permit/other historic use)		
wildlife habitat and refuge, in particula animals, which may depend on cyp provide water storage by holding exc the water table; enhance water quality	ress swamps for bree cess water and slowly	eding purposes; releasing it into			Mitigation Bank			
Anticipated Wildlife Utilization Based of that are representative of the assessm be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)					
Odocoileus virginianus (white-tai	led deer), <i>Procyon lo</i>	tor (racoon),	Puma concolor coryi (Florda panther) ^E , Mycteria americana (wood stork) ^E , Ursus americanus floridanus (Florida black bear) ^T , Alligator mississippiensis (alligator) ^T , Aramus guarauna (limpkin)SSC,					
Observed Evidence of Wildlife Utilizat	ion (List species dire	ctly observed, or o	ther signs such a	s track	s, droppings, casings,	nests, etc.):		
rabbit droppings, viceroy butterfly, de crayfish parts, shrimp in								
Additional relevant factors:								
none								
Assessment conducted by:			Assessment date	e(s):				
Kelly Chinners Reiss & Erica Hernand	lez		8/16/2005					

Pant_CYP_1 Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation)

(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Number			
Panther Island M	litigation Bank	NA		Pant_CYP_1				
Impact or Mitigation		Assessment conducted by:		Assessment date) :			
Mitigation	n Bank	Kelly Chinners Reiss & Erica		8/16/2005				
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	Minimal (4) Not Present (0)				
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	wetland	evel of support of l/surface water unctions Condition is insufficient to provide wetland/surface water functions				
.500(6)(a) Location and Landscape Support w/o pres or current with	surrounded by created mars in the proximity of the assess no distance or barriers, a sn system to the south; system	esment area provides adequat th and patches of disturbed up sment area and there is a con all 12ft wide canal exists to the is not connected, so no scori on adjacent property - attracts	land planted tinuously avone north car ng on downs	d with <i>Pinus elliotti</i> railable seed sourc rying offsite agricu stream impacts; la	ii; invasive exotics be; wildlife access in tural wetland to a large cell tower with	do occur is ok with forested		
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	approximately 2ft higher than lines down to the moss co agricultural fields which previously from agricultural v not see signs of hydrolog	an it had been because the lic in the water stains and moss co ollars; catchment size has been have been converted into crea water inputs; fire history - has gic stress or insect damage; se some turbidity in the water col	ollars with sp n reduced, hated marsh, had fire but ee tadpols, f	potted lichens occupad been receiving water levels now not atypical and nish, shrimp which	uring from the disting agricultural waters known to be lower ot extreme; zonation have specific hydro	nct lichen s from than on ok, do		
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	appropriate species - incl Schinus terebiunthifoius, al layer has normal regenerati buttresses; land managemer debris much greater than e and sprayed and left to de necessarily excessive overal	propriate in canopy; however, luding Alternanthera philoxero nd Urena lobata; cover is mor on and appropriate age class it practices include prescribed xpected because of land man. compose; plant condition gene I species; land management g laps lessened by large piles of obser	ides, Hyme re than minir distribution, fires and ex agement pra erally good - generally app f woody deb	nachne amplexica mal but not a majo some very large r kotic species contractices, where Sol some foraging of propriate; refugia p	alis, Ludwigia peruvority by exotic specionature trees with verol; amount of coardinus terebinthifoliu. Thalia geniculata bonds and topograponds	viana, ies; tree ery large se woody us is cut but not phic relief		
Score = sum of above scores/30 (iii	f If preservation as mitig	ation		For impact asses	sment areas			
uplands, divide by 20)	Preservation adjustmen	•	-					
current with	Adjusted mitigation del		FL =	delta x acres =				
0.70	, tajuotou iiiligutioii uoi							
	If mitigation	1		·				
Delta = [with-current]	Time lag (t-factor) =		For mitigation assessment areas					
	Risk factor =	RFG = delta/(t-factor x risk) =						
	J							

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Pant_CYP_1 Wetland Rapid Assessment Procedure, page 1

Project Name: Pant_CYP_1- Panther Island Mitigation Bank

Date: 8/16/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: depressional forested wetland

surrounded by created marsh, encircled by dirt swamp buggy road, some patches of regenerating disturbed uplands, planted with *Pinus elliottii* and *Chrysobalanus icaco*

Wetland Size: 80m N/S by 65 m E/W

FLUCCS Code/Description:

3.0	Wildlife Utilization (WU)								
3.0	Wetland Canopy (O/S)								
1.5	Wetland Ground Cover (GC)								
2.5	Habitat Support/Buffer								
2.5	Field Hydrology (HYD)								
2.8	WQ Input & T	reatment (WQ)							
15.3	SUM								
6	Count								
0.85	WRAP								

Pant_CYP_1 Wetland Rapid Assessment Procedure, page 2

3.0 Wildlife Utilization (WU)

rabbit droppings, viceroy butterfly, crayfish parts, cricket frog calls, tadpoles, frogs (?leopard), downy woodpecker, large scat of something eating coco plums, red rat snake, alligator trail on north side of wetland, history of human disturbance but not currently - had been in row crops and pasture, now adjacent to created marsh and newly planted, disturbed pine flatwoods

3.0 Wetland Canopy (O/S)

predominantly *Taxodium ascendens*, edges have some *Pinus elliottii*, *Sabal palmetto*, and *Ficus aurea* also some of these species on hummocks throughout the wetland; planted *Chyrsobalanus icaco* (coco plum) around edge of wetland; not entirely a closed canopy, not thoroughly shaded allowing weedy species to grow throughout wetland; large piles of woody debris throughout south side; some regeneration of canopy species

1.5 Wetland Ground Cover (GC)

Schinus terebinthifolius, Ludwigia peruviana, Urena lobata, Alternanthera philoxeroides, Hymenachne amplexicalis in pockets throughout? 40% coverage estimated; very weedy throughout; deepest center pool open water and fringed with Hymenachne amplexicalis; estimated 30-40% cover by Blechnum serrulatu; under management for exotic species control; large piles of woody debris remants of cut and spray Schinus terebinthifolius treatment

2.5 Habitat Support/Buffer

dirt road surrounds wetland, mixed patched of disturbed pine flatwoods with newly planted *Pinus elliottii*, further out is created freshwater marsh; tire ruts in dirt road left pools of dead tadpoles; buffer is greater than 300 feet but has disturbance and some nuisance (ex. *Typha* spp.) and exotic (ex. *Schinus terebinthifolia*); very large lit cell phone tower with vast guidewires in adjacent land; many refugia ponds in east and north portions of wetland; nearby a canal that receives water from off site agricultural activities (row crops and pasture) within 300 m, farther than 100m

Buffer Type	(Score) x	(% of Area)	= Sub Total
All	2.5	1	2.5
		Total =	2.5

2.5 Field Hydrology (HYD)

receives less water than historically would have; most recent land use was agricultural fields, water had been diverted to this wetland to drain the fields, now surrounding area is created marsh which truncates historic catchment size; high and distinct lichen lines, low moss collars and stain lines; in the gap between the lichen line and moss collars, spotty lichens occurred, suggesting wetland is adjusting to change in hydrologic regime

2.8 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

	· · · · · ·		
Land Use	(S. a. a. a.) v	(0/ of Ama)	= Sub
Category	(Score) x	(% of Area)	Total
dirt road*	2.5	0.3	0.8
created marsh	3.0	0.3	1.0
disturbed upland*	2.5	0.3	0.8
		LU Total =	2.7

*used score for unimproved pasture/rangeland

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
dirt road`	3.0	0.3	1.0
created marsh`	3.0	0.3	1.0
disturbed upland`	3.0	0.3	1.0
,		PT Total =	3.0

[`]used score for natural undeveloped area

Pant_CYP_1 Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Depressions Cypress

Assessment Team: EH, KCR

Project Name: Panther Island Mitigation Bank Pant_CYP_1
Location: Panther Island Mitigation Bank Pant_CYP_1
26 degrees 25 m 9.56s / -81 degrees 38m 33.13s

Date: 8/16/05 Subclass: cypress dome

Function	FCI
Surface Water Storage	0.88
Subsurface Water Storage	0.78
Cycle Nutrients	0.78
Characteristic Plant Community	0.88
Wildlife Habitat	0.82

Variables	Measure	Units	Subindex
V CATCH	87	%	0.12
V upuse	79	%	1
V WETPROX	3912	meters	0.1
V WETVOL	0	%	1
V surout	0	%	1
V subout	0	%	1
V ZONES	0	number	1
V CANOPY	90	%	1
V SURTEX	3 L.S. 1 muck	%	1
V TBA	72	m²/ha	0.37
V SSD	90	%	0.9
V тсомр	90	%	0.9

Pant_CYP_1 Hydrogeomorphic Approach, page 2

Vcatch 87% change Size of original catchment 15 ha Size of current catchment 2 ha

Vupuse

open space improved road cover type curve # 84 percent 25% native range cover type curve # 77 percent 75%

Vwetprox

Sector 1	Sector 2	Sector 3	Sector 4
500m	500m	412m	500m
Sector 5	Sector 6	Sector 7	Sector 8
500m	500m	500m	500m

Vwetvol

diameter wetland north-south 72m	diameter wetland east-west 68m	wetland	length of fill material none	width of fill material none	average thickness of fill material
7 2111	00111		TIOTIC		none

Vsurout no effect

Vsubout ditch about 5 feet deep = 1.5m

lateral effect of ditch 199m distance ditch to wetland 228m

ecotone disturbed by ditch and agriculture but zonation intact in

Vzones wetland

Vcanopy 90%

Vsurtex loamy sand

Vtba plot 1 91m²/ha plot 3 72m²/ha

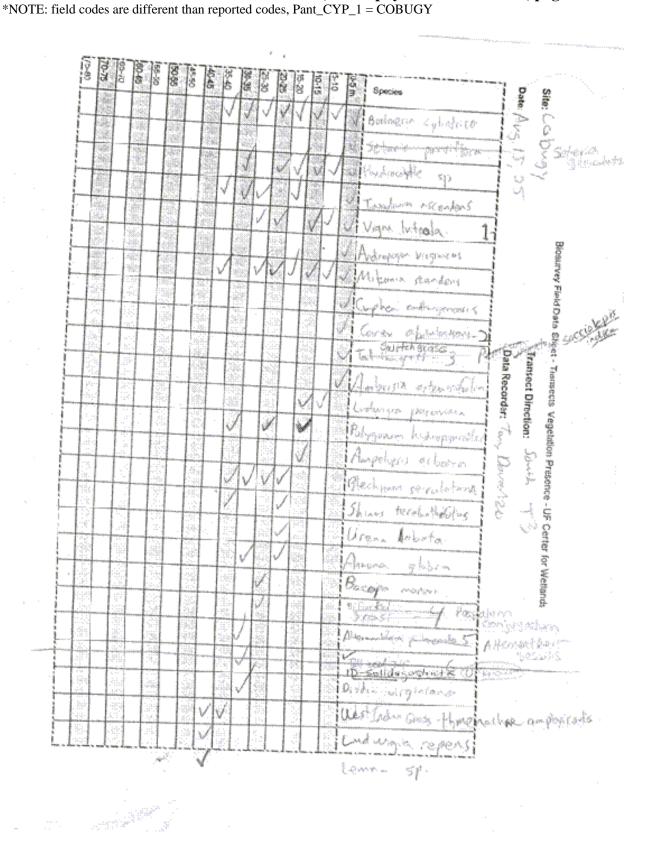
plot 2 65m²/ha plot 4 59m²/ha

Vssd 18/20 90%

Vtcomp 90%

Pant_CYP_1 Florida Wetland Condition Index, macrophyte field data sheets, page 1 *NOTE: field codes are different than reported codes, Pant_CYP_1 = COBUGY

5-85	0.75	576	88	8	8	8	ð.	15.40	30-35	25.00	20-25	15.20	10-16	0-10	NO.	Ā	Species	0
		_				L	100	1	X	V							West Color Date & S	Hymena a mpt y
		-	2500 2500 2500 2500					4	V		8	V	1	Γ	T		Lewis Sp. 53	2 orginal
-								V	1		1	V		T			Libriga repens 9	
								1	17			Ť	1	-	ħ	ans#	Milaria repens 9	
						-		V	1	V		1.7	Ŵ		1	No.	Blechman serralahan	
	Veri						1806 2000		V	7	1	Ž	7	ľ	1		Boehvena cylindrica	8
								-		./		1	7	E	1	f	Touch Cylindian	guvej
	7.7 (16)			t		1		***************************************	Lvisto Lvisto Lvisto	Ž	Ž	-	240	-		85.6	Toodrine asserters	Biosurvey Field Data
		1				7				7	7			-		27	Polyana hydrogenicky	Data
7		7	1.7		1	+		-		7	7	-				11	Puntedern cordina NHS	no Mer
1		+	7			+		-		-	X S	4	-,		88		Alternation of Burgaran	7 Sept
+		+		Tis		+				-		V	V			-)	Sanster dansa Record	nsiech
+		+			+	+		1		4	XI I	4	4	-	V	1	Trans Wooden 1 1 100	s, Veg
+		+			-	+		-	9	-		-	4		88		FICH OFFEN 1 2 3	etaio
+		+		H	_	1		4	4		4			4	-	-	Ormundo regulas SS	n Pre
		-			1	13		-		1	1	_		V	38	1	himms threebookstons	icnee .
+	4			H	1	2		1						/			oxitalentes rations &	ata Shaet - Transacts, Vegetalion Presence - UF Gente
	1											-		4	Į	P	anima herrologica	Gentle
					L			100			1				1	ŀ	lydnostle	lor V
L	L				L			B						-			enien herortonan & ydnenyte stor carohnenny Bidens alla Bidens	Vellar
L	1			#10 1800			8			6				1	- 4		Sixtens alla > Bidens	N± 04√2 .
		S				9	T			3							williams . A.	
		20 25		35			K.					ľ		T	19		who were a comment to the	
8						5000	1	100				100		1	j		and the second mode as the	
		Š										1		t				
88		1	П					t	1	1	1	+	+	+		-		


Pant_CYP_1 Florida Wetland Condition Index, macrophyte field data sheets, page 2 *NOTE: field codes are different than reported codes, Pant_CYP_1 = COBUGY

8	920	0.48	86	55-00	5056	48.60	60.45	37.40	36-36	23-30	25-25	16.28	10.15	1	5	9 2 3	Species O G
_				_			8				V					2	Species Sahol primation 3 & State Sahol primation 3 & State Sahol primation assertant 5 & State Saholana assertant 5 & State Sahola
		-		_			L		101	1		L				y S	Tookhow ascertans of &
		+		-						-	٧	7	V	V			Boelveria cylinteria.
		1		1		-		-		-		_	7	L	-	Ji T	Indust lanestola
						+		1		1		-	V	7	P	A	Shows to rebolishing
		100		T			Ť			7	1	H	\int	y J	ľ		Blechpan serrature Blechpan serrature Personalis schools Person
							1									Y.	Blechman serrulatum [porobolis indicus
-			1	3						T	1	7	d	-	V	Ì	Desartion sp. 9
8	1	4											1	/	V		Aren lobota B 5
		13	1				1		4					/	V	A	mbasin actempisher of
	-		-	12			-	Į,			1	-	1	_	1	8	related former take order:
	-	10	-				-			1	-	L	1		V	1	hyle notifier 3 "
	1	l					-		-		-	15	1	1	V	M	within P. S.
			-	N.			h		H		-	H		ľ	Zi	11.	da Compositora
; i i i				100			T			130	V			l	/i	AS	Description sp. Transect Direction: Cost of the second of
								3	V	V		V	V	t	1	<u>г.</u> И.	tom senders 1
38 320 320								380 5-10		V	V	V	V				discortery.
Ž.			-			266							V	8		E,	Themselves querquething
	-	30. 60.		15 33				-01 126 128	-		\checkmark	V	-	40			elyptonia - 8 The hydroxic 3 hispid
	-		-		-		-	300			-	1		Š	100	_	museling of
		7	-+		-		-			538 667			-		1		pelopes always
	1	H	1		+	7	-		-	/	+	**			· · · ·		was personal Eclips about

Pant_CYP_1 Florida Wetland Condition Index, macrophyte field data sheets, page 3 *NOTE: field codes are different than reported codes, Pant_CYP_1 = COBUGY

8	75-76	S-65	66	80	5.55	5	540	30.36	35	20-25	2	7 °	9	0-5m	Species Date Set Bides Bides Albr Setera provider Setera garanto	
******		189	_					V		V					Bygnon belaptantes DE	
-				99											Bibers albr 55 Biber	Ş
	8									v/					VAR COLINGER & P.	95
										V					Setura peruthua Setura gardato	
						eg l		1	V						IL EWNOR ID	
	180 380								V						Ladwijin coppers Wood Johns growt Hymonod or Human of Files	
								V	1					H	Mark Johnnagen Hymonodine Henre a fire	
										53		1				1
					33						I	1			50	
ŀ		259 643			13										Tra	
					4						T	1			Transa nsect a Rec	
	32	X ag		80 85	100				1			T	1		et Transacts, Vegetaton Presence - L Data Recorder:	
							0		1				1		ton:	
		X.,										Ť	1		305	
		e: 2	1		8							T	Ť		- Caretanno	
		2	1		8		18					Ť	1		\$ B &	
					8		180					T	T		100 E	
			200		100		Š					T	T		9	
			120		8							T	T		Shoet Transact Direction: CO Data Recorder:	
		52.) 28.			Š							-	1		<u>.</u>	
					100		2				(a)				Think and the state of the stat	
8	21 0		100		3						18.5 18.5 18.7		ľ			
4		9	100		100					31			4		hadrine ny regamentation die de le de grant y transferration and an elementary of transferration and an elementary of the second and an elementary of the seco	
2		5				-		Ī			*	-		Ì		
83			S					T	T				- Francis	Ť	-	

Pant_CYP_1 Florida Wetland Condition Index, macrophyte field data sheets, page 4

Pant_CYP_1 Florida Wetland Condition Index, macrophyte field data sheets, page 5 *NOTE: field codes are different than reported codes, Pant_CYP_1 = COBUGY

78	70-75	65.70	80-65	8-8	50-55	5 8	0.45	ŏ-40	30.35	30	20-25	15.20	10.15	3	18.00	4	Species	Site
-					34 <u>0.</u> 353					V	V	V	T	V	T	Į	Species Ver Soft of Contain on B. Lemma 19. Polygonom to phagographs Contains to the phagographs C	2
					la la					7	J	V	Ŋ	1		/	Lemna Ip. S.	£
									#	V	V	V	1	V	1	Z	Polygon Happyonth St.	5
									Ē	V	V		~	V	1		Characa repers Miking scardins Bodinina cybridga Toxodom accorders Hydrocartle pp Hydrocartle pp Hydrocartle pp Hydrocartle pp Jacquema clausa Jacquema clausa Jieda virginam Peteria population Peteria population Jieda virginam Jieda virgina	
_									â		V	V	V	V	1		Mikanin scardins	
_		·									V	1	٧	V	l,	1	Bodneria cytalica	Biogu
_				_			395 305				V		1	V		Î	Toxodom orcenters	Nev E
								_			V	/	V	V		/i	Hydracaste 10.	5
_	2				38						ŝ	V		7		Ï	the diocotte remodely	sta Sh
1					1801 1801								V	V)		Ţ	Blechum fernitum &	8-7
1		-						Š						$\sqrt{\ }$	38.8	i	Sacciona clavia	ranse
		1		_							Ž.		8	\checkmark	¥	1	Ingha lubrola der	eta, √.
1		1	1											\checkmark	V	į,) ista vigues in stail	getar
1		4		-	1	_		- 8							V	į,	Sehingen S	30 PD FE
		-			4		155 280 2								Ý		House Cour - 4 Papersum	
-		-							1				3		1	1/	Innione globa 8	Ş
		-		1	2				1	1					Į	Ļ	udunga faririna	Cerrier
			_	1			1	6	L	Į.					36			for W
									1			1				Ĺ		ettano
	1		4				4											257
	1			Š			3	40.0	L	1								
				l	-			1000 1000 1000 1000	L	18	÷-				ž			
	_	ļ.	-		4-		L		L	K								
		Š	-	1.5	4	18	4		L	3								
1000 1000 1000	1			13								15						

Pant_CYP_1 Florida Wetland Condition Index, macrophyte field data sheets, page 6 *NOTE: field codes are different than reported codes, Pant_CYP_1 = COBUGY

Usigna luteday - Not pressed

2 Comprehensia longii Saccolepis indica

3 Switch grass inha I mishal) & how faccordapis? Pancorm

4 Bi Conted grass - Paspalan corpigation

5 Alternanthera sessils

6. Soldago istacta

7. Sida chambiololia

8 The hypteris 2 hispotota Knothii

9 Comprehio diffesa

Pant_CYP_1 Florida Wetland Condition Index, macroinvertebrate list

List of macroinvertebrates identified to the genus taxonomic level $Pant_CYP_1 = COBUGY$

Ancylidae

Arrenurus

Bivalvia

Bratislavia

Celina

Chaoborus

Chironomus

Coenagrionidae

Dero

Forcipomyia

Goeldichironomus

Haemonais

Hydrocanthus

Kiefferulus

Micromenetus

Monopelopia

Odontomyia

Palaemonetes

Polypedilum

Tanytarsus

Tubificidae

Pant_CYP_2 Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	er	А	ssessment Area Name	e or Number	
Panther Island Mitigation	on Bank		NA		Pant	CYP_2	
FLUCCs code	Further classifica	tion (optional)		Impact of	or Mitigation Site?	Assessment Area Size	
6210 Cypress	Depressional fore	ested, palustrine f center	orested, has open Mitigation Bank 0.7			0.7 ha (1.7 ac)	
Basin/Watershed Name/Number HUC 03090204 Everglades-West Coast	ffected Waterbody (Class I	•	Special Classification (i.e.OFW, AP, other local/state/federal designation of importance) None				
Geographic relationship to and hydro	logic connection with	wetlands, other si	urface water, uplai	nds			
Historic catchment s	ize somewhat reduced	d due to previous	agricultural activiti	es and c	current created mars	h habitat.	
Assessment area description							
Depressional forested wetland with emergen	primarily pondcypress t and submerged herb					en water area with much	
Significant nearby features			Uniqueness (co landscape.)	nsiderin	g the relative rarity in	n relation to the regional	
Connected on SE to Corkscrew Re SFWMD lands (many exotic spec Panther Island (not the created ma priority Florida Ecolog	nern portion of orth) falls in high	There are many preservation and conservation tracks in this area, though it is important for its connectivity with other large wild lands.					
Functions			Mitigation for pre	vious pe	ermit/other historic us	se	
Wildlife habitat and refuge, in particu animals, which may depend on cyl provide water storage by holding ex the water table; enhance water qu	oress swamps for bree ccess water and slowly	eding purposes; y releasing it into					
Anticipated Wildlife Utilization Based	on Literature Review				Listed Species (List		
that are representative of the assess be found)	ment area and reason	ably expected to	classification (E, assessment area		, type of use, and in	tensity of use of the	
Wildlife habitat and refuge, in particu animals, which may depend on cyl provides water storage by holding e the water table; enhances water q w	oress swamps for bree xcess water and slowly	eding purposes; y releasing it into	(Florida black bear) ^T Aligator mississippiensis (alligator) ^T Aramus				
Observed Evidence of Wildlife Utiliza	ition (List species direct	ctly observed, or o	other signs such a	s tracks	, droppings, casings	, nests, etc.):	
Suspected use by large mammals a frog, fish, many dragor							
Additional relevant factors:							
This is described as a depressional f	orested wetland, thou	gh the center of th	nis wetland is oper	n water v	vith limited or no car	nopy development.	
Assessment conducted by:			Assessment date	e(s):			
Kelly Chinners Reiss, Erica Hernand	ez		8/15/2005				

Pant_CYP_2 Uniform Mitigation Assessment Method, page 2
PART II – Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name	Site/Project Name				Assessment Area Name or Number		
Panther Isla	and Mit	igation Bank	NA		F	ant_CYP_2	
Impact or Mitigation			Assessment conducted by:		Assessment date	:	
Mitig	gation I	Bank	Kelly Chinners Reiss, Erica	Hernandez		8/15/2005	
Scoring Guidance	[Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present	(0)
The scoring of each		Oznatitiza iz zatiazal zaal fullu	Condition is less than	Minimal		O	-:
indicator is based on what would be suitable for the		Condition is optimal and fully supports wetland/surface	optimal, but sufficient to maintain most		vel of support of /surface water	Condition is insuffi provide wetland/s	
type of wetland or surface		water functions	wetland/surface water		inctions	water function	
water assessed			functions				
	- 1	Areas outside assessment ar	o provide most of wildlife nee	de porhane	not optimal supp	ort for all because of	
.500(6)(a) Location and Landscape Support w/o pres or current v	u	adjacent lands with many exc by distance but barriers include terebinthifolius). Nearby land		species prese es patch, inc pacts, for ex ver). Also th	ent is support land cluding Brazilian p kample SFWMD p nere is a large/tall	dscape. Wildlife not epper (Schinus roperty (this area ha (radio/cell?) tower th	limited as nat acts
Water levels and flows appear appropriate with distinct water level indicators: lichen lines, stain lines, moss or No soil subsidence, deposition, or erosion. Wildfire did occur from very thick flatwoods, probably not due to excessive dryness. Vegetation zonation appropriate, smooth gradient from flatwoods ecotone to open water. evidence of stress, disease, etc. Evidence of species with specific hydrologic requirements including fish, fro yellow crowned night heron. No species characteristic of water quality degradation. Did see bladderwort (Utricularia sp.). Clear standing water with pollen coating but not atypical, no oil sheen. Healthy submerged species - because of light penetration in no canopied center. Catchment size smaller than historically would been because surrounding area had been in agricultural fields which diverted water away. No the support are created marsh, so less water is coming in as run-off, possibly resulting in loss of ecotone width and changing total volume of water running into the wetland.						. No ogs, aquatic have rea is	
Canopy and shrub layers composed of nearby all appropriate/desirable species. Ground stratum has exo including West Indian marsh grass (<i>Hymenachne amplexicaulis</i>), Caesar weed (<i>Urena lobata</i>), Peruvian primrosewillow (<i>Ludwigia peruviana</i>), maybe 15% cover. Land management practices will monitor and reexotic species every few years. Age and size class distribution normal, though few of the largest trees. Stemporary deviation. Amount of coarse woody debris seems appropriate, though one path to south with wremains has heavier debris. Plants healthy, no stress apparent. Topographic features normal. Submerg aquatics show no evidence of too much algae or siltation.						obata), Peruvian vill monitor and remose largest trees. Son the to south with wild	ove ne
Score = sum of above scores/	30 (if	If preservation as mitiga	ation		For impact asses	sment areas	
uplands, divide by 20)	(
current		Preservation adjustmer	nt factor =	FL =	delta x acres =		
	vith	Adjusted mitigation delt	ta =				
0.83							
		If mitigation				1	
Delta = [with-current]		Time lag (t-factor) =		F	or mitigation asse	ssment areas	
		Risk factor =		RFG	= delta/(t-factor x	risk) =	
Form 62-345 900(2) F A C	[effect	tive date 02-04-20041					

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Pant_CYP_2 Wetland Rapid Assessment Procedure, page 1

Project Name: Pant_CYP_2 - Panther Island Mitigation Bank

Date: 8/15/05

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Depressional forested wetland with an open center - few if trees and open water with submerged aquatics and some emergent species along the shallower tree zone.

Wetland Assessment Area: 0.7 ha (1.7 ac)

FLUCCS Code/Description: 6210 Cypress

2.5	Wildlife Utilization (WU)		
3.0	Wetland Canopy (O/S)		
2.5	Wetland Ground Cover (GC)		
2.5	Habitat Support/Buffer		
3.0	Field Hydrology (HYD)		
3.0	WQ Input & Treatment (WQ)		
16.5	SUM		
6	Count		
0.92	WRAP		

Pant_CYP_2 Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Few hummocks and cavities. Not optimal support habitat for species needing cover. Narrow edge/ecotone around half of the wetland assessment area from old swamp buggy ruts. Abundant upland food source and habitat. Suspected use by large mammals and reptiles, but open areas (little vegetation) made game trails not evident. Many spider webs, crickets, cricket frog, fish, many dragonflies, water boatman bugs, yellow crowned night heron (1st year), warblers calling and one seen.

3.0 Wetland Canopy (O/S)

Pondcypress (*Taxodium ascendens*) with large buttresses towards center of dome but only a few as the center was generally open water. Limited snag and den trees. Pondcypress provides habitat support. Evidence of natural recruitment. No exotic species in the canopy or shrub layers.

2.5 Wetland Ground Cover (GC)

Big floatingheart (*Nymphoides aquatica*) and bladderwort (*Utricularia* sp.) in open water. Vegetation around hummocks. Invasive, nuisance, or exotic species present, including Peruvian primrosewillow (*Ludwigia peruviana*), Caesar weed (*Urena lobata*), West Indian marsh grass (*Hymenachne amplexicaulis*). Undesirable ground cover <25% (maybe even 15%), other desirable healthy species present.

2.5 Habitat Support/Buffer

Buffer >300' of hydric pine flatwoods with some exotic species, through managed for prescribed fires and exotic species control. Exotic species nearby, on adjacent property with many exotics and many undesirable species. Connected to off site wetlands. Buffer provides cover and forage for wildlife species.

Buffer Type	(Score) x	(% of Area)	= Sub Total
Disturbed upland	2.5	1	2.5

Total =

2.5

3.0 Field Hydrology (HYD)

Consistent indicators (lichen lines, moss collars). Pollen coating on water surface. No oil sheen, very clear water. Many healthy submerged aquatics. Plants healthy - no stress apparent. No ditches or canals immediately adjacent. Hydrology adequate to maintain viable wetland. Swamp buggy ruts on edge may reduce water in the wetland (as more stands in the ruts though historically it would have flowed into the wetland), but no signs of hydrologic stress apparent.

3.0 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

EIT (E C E EIT E C EIT (E C)									
Land Use Category		(Score) x	(% of Area)	= Sub Total					
Nat. Undev.		3.0	1.00	3.0					
			LU Total =	3.0					

PRETREATMENT CATEGORY (PT)

		()	
Pretreatment Category	(Score) x	(% of Area)	= Sub Total
Nat. Undev.	3.0	1.00	3.0
•	•	PT Total =	3.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Pant_CYP_3 Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Numbe	er Assessment Area N			or Number	
Panther Island Migrat	tion Bank		NA		Pant_	CYP_3	
FLUCCs code	Further classificat	tion (optional)		Impac	ct or Mitigation Site?	Assessment Area Size	
6210 Cypress		mestone substratury poorly drained s	•	· I Mitigation Bank I 25 na			
Basin/Watershed Name/Number HUC 03090204 Everglades West Coast	Affected Waterbody (Clas Class I	,	Special Classification (i.e.OFW, AP, other local/state/federal designation of importance) none				
Geographic relationship to and hyd	rologic connection with	wetlands, other su	urface water, uplar	nds			
			h larger forested wetland complex. Historic catchment size somewhat ities and current created marsh habitat.				
Assessment area description							
Depressional forested wetland with apple (Annona glabra), cabbage p	palm (Sabal palmetto), a		Ficus aurea). Wa				
Significant nearby features			Uniqueness (cor landscape.)	nsider	ring the relative rarity in	relation to the regional	
Connected on SE to Corkscrew R SFWMD lands (many exotic spe Panther Island (not the created m priority Florida Ecolo	hern portion of orth) falls in high	There are many preservation and conservation tracks in this area, though it is important for its connectivity with other large wild lands.					
Functions			Mitigation for pre-	vious	permit/other historic use	;	
Wildlife habitat and refuge, in partic animals, which may depend on c provide water storage by holding of the water table; enhance water of	eding purposes; y releasing it into		ection I	had been in agricultural	land use activities.		
Anticipated Wildlife Utilization Base that are representative of the asses be found)		•	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)				
Odocoileus virginianus (white-tailer many species of frogs, snakes, sm ir			Mycteria americana (wood stork) ^E , Ursus americanus floridanus (Florida black bear) ^T , Alligator mississippiensis (alligator) ^T , Aramus guarauna (limpkin) ^{SSC} , Puma concolor (Florida panther) ^E , Haliaeetus leucocephalus (American bald eagle) ^T				
Observed Evidence of Wildlife Utiliz	zation (List species direc	ctly observed, or c	other signs such as	s track	ks, droppings, casings, r	nests, etc.):	
Jumping spiders (<i>Phidippus</i> sp. shouldered hawks in support area small fish, tadpoles. Use by aqua	a, evidence of eaten bird	d eaten, some uni	identified scat, red small fish apparent	d bellie	ed woodpecker, kind fish	ner (migrant), crayfish,	
Additional relevant factors:							
FNAI Bird Aggregation Areas - bird wetland habitat. FWCC Strategic H Marsh grass (<i>Hymenachne amplex</i>	Habitat Conservation Are						
Assessment conducted by:			Assessment date	e(s):			
Kelly Chinners Reiss, Erica Hernan	dez		8/15/2005				

Pant_CYP_3 Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name			Application Number		Assessment Area	a Name or Number	
Panthe	er Island M	igration Bank	NA		F	Pant_CYP_3	
Impact or Mitigation			Assessment conducted by:		Assessment date	9 :	
	Mitigation	Bank	Kelly Chinners Reiss, Erica I	Hernandez		8/15/2005	
Cassian Ovidana		Ontimed (40)	Madaget (7)	M		L N. (D	(0)
Scoring Guidance The scoring of each		Optimal (10)	Moderate(7) Condition is less than	MII	nimal (4)	Not Present	(0)
indicator is based on w		Condition is optimal and fully	optimal, but sufficient to	Minimal le	vel of support of	Condition is insuf	ficient to
would be suitable for t		supports wetland/surface	maintain most		/surface water	provide wetland	
type of wetland or surfa	ace	water functions	wetland/surface water	fu	unctions	water functi	ons
water assessed			functions				
.500(6)(a) Locatio Landscape Sup		migrants. Pine flatwoods and (?) within 500m. Invasive excis not limited by distance, but	n adjacent, offsite agricultural created marsh provide full rar otic species characterize some cell tower acts as a barrier. S ecies is overwhelming in adja- saics of available habitats.	nd of habitat e of plant co Surrounding	t, but guide wires mmunity in adjace land use have lim	to large and tall cel ent areas. Wildlife nited adverse impa	I tower access ct, but
w/o pres or							
current	with						
8							
.500(6)(b)Water Env (n/a for upland		moisture was assumed. No e was appropriate with a shallo though the water surface was	ate. Water level indicators are evidence of erosion or deposit w ecotone zone. No species is s covered by aquarium waterm . Light penetration not optima	ion evident. indicative of noss (<i>Salvin</i>	No fire scars obs water quality deg ia molesta). Wat	served, Vegetation radation were evider was clear with n	zonation lent,
w/o pres or							
current	with						
9							
.500(6)(c)Community 1. Vegetation ar 2. Benthic Comm	nd/or	stratum and water surface is pondcypress (<i>Taxodium asce</i> of snags and woody debris. I management appears approp	all of cover for canopy and sh covered completely by aquarity endens) with appropriate age a Plants appeared healthy, excepriate and includes prescribed th visible, but all water covered	um watermo and size cla pt air plants fire in adjac	oss (<i>Salvina moles</i> ss distribution. No state of the sta	sta). Canopy dom ormal and anticipal of weevil. Land	inated by ed level
w/o pres or							
current	with						
6		1					
Ü							
Score = sum of above so	ores/30 (if	If preservation as mitig	ation		For impact asses	sment areas	
Score = sum of above so uplands, divide by		If preservation as mitiga	ation,		For impact asses	sment areas	
uplands, divide by		If preservation as mitigate Preservation adjustment	· ·		·	sment areas	
uplands, divide by current		Preservation adjustmer	nt factor =		For impact asses	sment areas	
uplands, divide by	y 20)	l	nt factor =		·	sment areas	
uplands, divide by current or w/o pres	y 20)	Preservation adjustmer	nt factor =		·	sment areas	
uplands, divide by current or w/o pres	y 20)	Preservation adjustmer	nt factor =	FL = :	delta x acres =		
uplands, divide by current pr w/o pres 0.77	with	Preservation adjustmer Adjusted mitigation delt	nt factor =	FL = :	·		
uplands, divide by current or w/o pres	with	Preservation adjustmer Adjusted mitigation delt	nt factor =	FL =	delta x acres = or mitigation asse	essment areas	
uplands, divide by current pr w/o pres 0.77	with	Preservation adjustmer Adjusted mitigation delt	nt factor =	FL =	delta x acres =	essment areas	

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Pant_CYP_3 Wetland Rapid Assessment Procedure, page 1

Project Name: Pant_CYP_3- Panther Island Mitigation Bank Preservation Dome I

Date: 8/15/05

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Depressional forested wetland in preservation. Area is about to be released.

Inside wetland, surface water completely covered by aquarium watermoss (Salvinia molesta).

Wetland Assessment Area: 2.5 ha (6.2 ac)

FLUCCS Code/Description: 6210 cypress

_				
2.5	Wildlife Utilization (WU)			
3.0	Wetland Canopy (O/S)			
1.5	Wetland Ground Cover (GC)			
2.5	Habitat Support/Buffer			
2.5	Field Hydrology (HYD)			
2.8	WQ Input & Treatment (WQ)			
14.8	SUM			
6	Count			
0.82	WRAP			

Pant_CYP_3 Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Minimal human disturbance - though water surface covered by exotic aquarium watermoss (*Salvinia molesta*). Support area burned summer 2004. Aquarium watermoss covering entire water surface. This non-native species can alter dissolved oxygen levels in water column and effect submerged or emergent species (due to decreased light) and alter fish and amphibian needs. Abundant food sources and cover in wetlands and adjacent areas. Jumping spiders (*Phidippus* sp.), no large spider webs across trees, peacock butterfly, viceroy butterflies, green anole, crickets, squirrel, red shouldered hawks in support area, evidence of eaten bird eaten, some unidentified scat, red bellied woodpecker, kind fisher (migrant), crayfish, small fish, tadpoles. Use by aquatic macroinvertebrates, amphibians and small fish apparent and tadpoles. Some cavities/dens. Game trails in ecotone and uplands. Hog damage apparent.

3.0 Wetland Canopy (O/S)

Mature pondcypress (*Taxodium ascendens*) had been harvested in past. Some pond apple (*Annona glabra*), cabbage palm (*Sabal palmetto*), and strangler fig (*Ficus aurea*) mixed in. Many dead bromeliads (perhaps from the weevil). Good habitat support. No exotic species in canopy. Regeneration visible. Minimal evidence of disease, insect. Would anticipate slightly higher density/canopy cover.

1.5 Wetland Ground Cover (GC)

Species clustered around hummocks. Ecotone has high species richness. Estimated between 25-50% cover by exotics. Common species include bog hemp (*Boehmeria cylindrica*), ferns, wild orchid (*Eulophia alta*), water-spider orchid (*Habenaria repens*). Aquarium watermoss (*Salvinia molesta*) cover impeding other plant growth. Some human induced impacts. Some exotics including (but not limited to) trompetilla (*Hymenachne amplexicaulis*), water-lettuce (*Pistia stratiotes*), the nuisance species Peruvian primrosewillow (*Ludwigia peruviana*), and aquarium watermoss (*Salvinia molesta*).

2.5 Habitat Support/Buffer

Enhanced pine flatwoods, including exotic species removal and burning. >300' buffer, predominantly desirable species, connected to off site wetlands and wildlife corridors. Some exotic species in proximity.

Buffer Type	(Score) x	(% of Area)	= Sub Total
Enhanced lands	2.5	1	2.5
			0.0
			0.0
			0.0
			0.0
		Total =	2.5

2.5 Field Hydrology (HYD)

Aquarium watermoss (*Salvinia molesta*) covering water surface. Clear water. Some water-lettuce (*Pistia stratiotes*). No evidence of soil subsidence, but soils inundated (high water level) during site visit, so difficult to determine. Not adjacent to negative impacts. Evidence of natural hydroperiod. Plants healthy, no stress. Hydrology adequate.

2.8 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Entibere entredokt (Ee)								
Land Use			= Sub					
Category	(Score) x	(% of Area)	Total					
Enhanced lands	2.5	1.00	2.5					
			0.0					
			0.0					
	2.5							

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
Enhanced lands	3.0	1.00	3.0
			0.0
			0.0
		PT Total -	3.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Pant_FOR Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	er		Assessment Area Name	or Number
Panther Island Mitiga	tion Bank		NA		Pant	_FOR
FLUCCs code	Further classifica	tion (optional)		Impac	ct or Mitigation Site?	Assessment Area Size
6300 Wetland Forested Mixed	Large into	erconnected slou	gh system	in	Phase II of Mitigation Bank	0.9 ha (2.2 ac)
Basin/Watershed Name/Number	Affected Waterbody (Clas	ss)	Special Classificati	ion (i.e.	OFW, AP, other local/state/federa	designation of importance)
HUC 03090204 Everglades-West Coast	Class I) 			None	
	etland complex. This w	etland drains souter inflow from direc	th and connects w ct rainfall and run-	ith wet	m surrounding uplands,	•
Assessment area description						
Large interconnected forested wetle Canopy was predominantly pondcy leather fern (<i>Acrostichum danaeifol</i>	press (<i>Taxodium ascen</i>	ndens). Within the				
Significant nearby features			Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional
Connected on SE to Corkscrew Regional Sanctuary. To east is CREW - SFWMD lands (many exotic species). The entire southern portion of Panther Island (not the created marsh segement in the north) falls in high priority Florida Ecological Greenways Corridor. Support lands south and east in relatively good shape pressure of urban and agricultural encroachment from Naples.						
Functions			Mitigation for pre	vious	permit/other historic use	;
Surface and subsurface water sto Provides fish and wildlife habital				cultura	been in row crops, this al activities from a parce e mitigation bank prope	I of land to the north of
Anticipated Wildlife Utilization Base		•	1 '		y Listed Species (List s	
that are representative of the asses be found)	sment area and reason	nably expected to	classification (E, assessment area		C), type of use, and inte	nsity of use of the
Turtles, frogs, snakes, woodper bobcat, deer,	ckers, wading birds, osp fish, salamanders.	orey, raccoon,	black bear T; lir	npkin	glades snail kite E; Flori SSC; little blue heron S owy egrets SSC, tricolor ibis SSC.	SC; American alligator
Observed Evidence of Wildlife Utiliz	zation (List species direct	ctly observed, or o	other signs such a	s track	ks, droppings, casings,	nests, etc.):
Claw marks on pondcypress (<i>Ta</i>	axodium ascendens) tru	unk, possible evid cavities; armor		ople sr	nail eggs; amphibians; s	piders; large nesting
Additional relevant factors:		_				
This wetland had a direct ditch feat bank. There is also a large (cell or		, ,	, .			•
Assessment conducted by:			Assessment date	e(s):		
Kelly Chinners Reiss Frica Hernandez 8/15/2005						

Pant_FOR Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Numbe	r
Panther Is	sland	NA NA	• •		Pant_FOR	
Impact or Mitigation		Assessment conducted by:		Assessment date	e :	
Mitigation	Bank	Kelly Chinners Reiss, Erica	Hernandez		8/15/2005	
Scoring Guidance	Optimal (10)	Moderate/7\		nimal (4)	Not Process	· (0)
The scoring delicative The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Moderate(7) Condition is less than optimal, but sufficient to maintain most wetland/surface water functions	Minimal le	evel of support of surface water unctions	Not Present Condition is insurprovide wetland water functi	fficient to /surface
.500(6)(a) Location and Landscape Support w/o pres or current with	and in sufficient quantity. Ex- of the plant community. Wild not limited either. Land uses larger territories. The immed within 750m of the wetland as	e assessment area represent to otics are present in the proxim life access is not limited by di- outside of the wetland assess iately adjacent habitat is ok fo ssessment are. Also, there is I the South Florida Water Mar t for downstream areas.	nity of the we stance or ba sment area or most sma a continuou	etland assessmen arriers. Functions would impact large Il species. There is seed source of	t area and make u of the assessmen e mammals and bi is a tower with guid invasive exotic spe	p some t area are rds with de wires ecies
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	consistent water level compa deposition visible. Ecotone s hydrologic stress based on s a connected portion. The pla degradation. Water coloratio	ar appropriate: distinct and corred to other wetlands within the hows continuous transition into pecies present - we noted oblinit community composition is an appropriate, no turbidity or califin catfish (Pterygoplichthysta.)	ne mitigation to hydric flat igate wetlan not characte oil sheen ap	bank. Soils inund woods (good zon d plant species, fr erized by species i parent. Brown ho	dated - no erosion ation). No signs o ogs, fish, and an a indicative of water plo (or armor-plate	or f illigator in quality ed catfish;
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	ground stratum is composed regeneration and natural recr ascendens), and a few red m coarse woody debris, snag, of management optimal - include	propriate and desirable plant s of some invasive exotic speci- uitment, particularly of pond a naple (<i>Acer rubrum</i>). Good at lens, and cavities provides op ing prescribed fire, exotic spectivity and previous propriation or algal growth.	ies, though of apple (<i>Annol</i> ge and size timal structuries control	cover is minimal. na glabra), ponder class distribution. Iral habitat. Plants , patches of treate	Strong evidence of ypress (<i>Taxodium</i> Density and quality s in good condition d vegetation visible	f normal ty of . Land e such as
Score = sum of above scores/30 (if	If preservation as mitigate	ation,		For impact asses	sment areas	-
uplands, divide by 20)	Preservation adjustmen	nt factor =				
current pr w/o pres 0.90 with	Adjusted mitigation del		FL =	delta x acres =		
0.00						
	If mitigation		F	or mitigation asse	ssment areas	
Delta = [with-current]	Time lag (t-factor) =					
	Risk factor =		RFG	= delta/(t-factor x	risk) =	
Form 62-345.900(2), F.A.C. [effect	ctive date 02-04-20041					1

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

Pant_FOR Wetland Rapid Assessment Procedure, page 1

Project Name: Pant_FOR - Panther Island Mitigation Bank

Date: 8/15/05

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Large interconnected cypress area receiving some agricultural waters.

Water flowing to the SW slightly. Canopy was predominantly pondcypress (Taxodium ascendens).

Within the more open patches were alligator flag (Thalia geniculata) and giant leather fern (Acrostichum danaeifolium) growing at least 8-10 feet tall.

Wetland Assessment Area: 0.9 ha (2.2 ac)

FLUCCS Code/Description: 6300 Wetland Forested Mixed

3.0	Wildlife Utilization (WU)			
3.0	Wetland Cano	Wetland Canopy (O/S)		
2.0	Wetland Grou	Wetland Ground Cover (GC)		
2.5	Habitat Support/Buffer			
3.0	Field Hydrology (HYD)			
2.0	WQ Input & T	reatment (WQ)		
15.5	SUM			
6	Count			
0.86	WRAP			

Pant_FOR Wetland Rapid Assessment Procedure, page 2

3.0 Wildlife Utilization (WU)

Claw marks on pondcypress (*Taxodium ascendens*) trunk - evidence of bobcat. Apple snail eggs, amphibians, spiders. Abundant cover and food sources.

3.0 Wetland Canopy (O/S)

Good size and age class distribution. Predominantly pondcypress (*Taxodium ascendens*), some mixed midstory species including pond apple (*Annona glabra*). Some red maple (*Acer rubrum*) in canopy. Also dahoon holly (*Ilex cassine*), and slash pine (*Pinus elliottii* var. *densa*) mixed in along edge. Good habit support. Snags with cavities and dens available and in good quantity. Strong evidence of natural recruitment. Uneven age distribution. Some climbing fern (*Lygodium* sp.) at base of tree, maybe less than a 1 x 1 m patch on ground.

2.0 Wetland Ground Cover (GC)

Mixed patches of exotic species including West Indian marsh grass Hymenachne amplexicaulis), Peruvian primerosewillow (*Ludwigia peruviana*), climbing fern (*Lygodium* sp.). Some extensive patches of native vines too including muscadine (*Vitis* sp.), greenbrier (*Smilax* sp.), Virginia creeper (*Pathenocissus quinquefolia*). Mostly desirable species in groundcover incdluding swamp fern (*Blechnum serrulatum*), alligator flag (*Thalia geniculata*), royal fern (*Osmunda regalis*), submerged aquatics, and pickerelweed (*Pontederia cordata*).

2.5 Habitat Support/Buffer

Buffer >300' all around. Grades into pine flatwoods, with	Buffer Type	(Score) x	(% of Area)	= Sub Total
management including prescribed fine and exotic species	Disturbed lands	2.5	1	2.5
removal. Connected to wildlife corridors and off site wetland				
systems. Exotic species represent >10% but less than 50% in				
support area.				
			Total =	2.5

3.0 Field Hydrology (HYD)

Distinct water level indicators: lichen lines, moss collars, and obligate wetland plant species. Plants appeared healthy with no stress. Not adjacent to negative impacts. No soil subsidence visible - water levels high. Hydrology adequate to maintain viable wetland.

2.0 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total					
Restored upland	2.5	0.67	1.7					
Agricultural canal	1.0	0.33	0.3					
			0.0					
		LU Total =	2.0					

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
Nat. Undev.	3.0	0.67	2.0
No treatment	0.0	0.33	0.0
			0.0
		PT Total =	2.0

Additional Notes: restored areas

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Appendix B-22. Reedy Creek Mitigation Bank

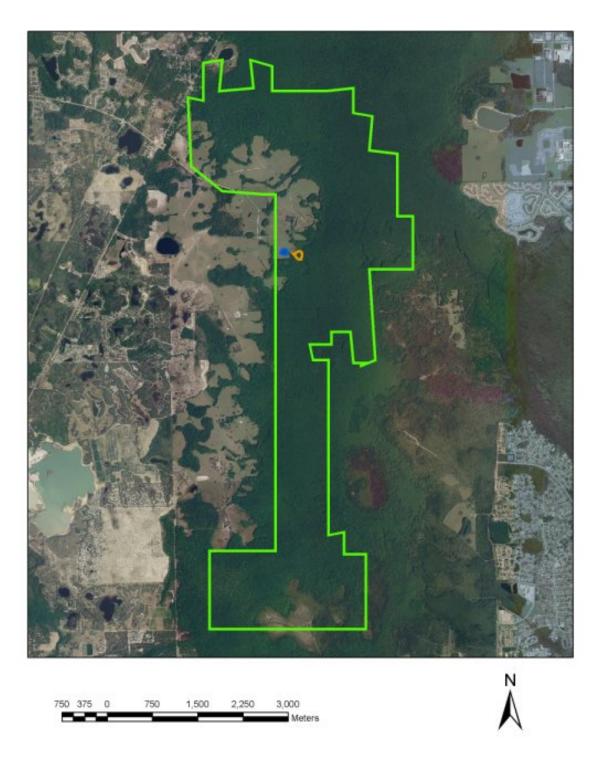


Figure B-22.1. Landscape location of Reedy Creek Mitigation Bank (green line). Boundary of the wetland assessment area Reed_BOT is outlined in orange, and Reed_FOR is outlined in blue.

Figure B-22.2. Site photos of assessment area photos of (A) the outer edge of Reed_BOT and (B) Reed_FOR at Reedy Creek Mitigation Bank. Reed_FOR is located in pasture in a phase that had not begun restoration at the time of site visit.

Reed_BOT Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Number	er		Assessment Area Name	or Number
Reedy Creek Mitigation	Bank		NA		Reed	d_BOT
FLUCCs code	Further classifica	tion (optional)		Impact	t or Mitigation Site?	Assessment Area Size
6150 Stream and Lake Swamps (Bottomland)	drained), but ha	s mainly Kaliga Mu ad been drained. dly-deciduous, sea	NWI Palustrine		Mitigation Bank	1.3 ha (3.1 ac)
Basin/Watershed Name/Number Affe	ected Waterbody (Clas	ss)	Special Classificati	on (i.e.C	PFW, AP, other local/state/federa	al designation of importance)
HUC 03090101 Kissimmee River	Class I	III			None	
Geographic relationship to and hydrolog	gic connection with	wetlands, other su	urface water, uplar	nds		
On one side is upland which has been remaining 3 sides are continuous fores on the 2004 DOQQs.						
Assessment area description						
A forested wetland with high species entire water surface. There were						,
Significant nearby features			Uniqueness (co landscape.)	nsideri	ng the relative rarity in	relation to the regional
Bordered to north by Upper Lake Basin appears that the headwaters to Reedy associated with the Walt Disney World	Creek are essential		Reedy Creek. Ti very built-up	he area and p	art of Kissimmee, Orla	ed wetland complex are
Functions			Mitigation for pre	vious p	ermit/other historic use	е
Provide permanent water pools for will water quantity. Structural and specie productive and diverse habitat. Prov breeding grounds for waterfowl, waterfowl, waterfowl, waterfowl, waterfowl, waterfowl, waterfowl, waterfowl	es diversity within car vides important habit	nopy supports a tat, refugia, and	Surrounding a		cattle pasture, evidend earth moving activities	
Anticipated Wildlife Utilization Based or that are representative of the assessment be found)		•		T, SSC	y Listed Species (List s C), type of use, and into	
Opossum, river otter, white-tailed deer fox, wood and rice rats, hawks, wood of turkey, swallow-tailed kite, cottonmo salamanders, sna	duck, woodpeckers (outh snake, variety o	(pileated, downy),	stork-E), Aran (Florida pant	nus gu her-E)	is (alligator-T(S/A)), My arauna (limpkin-SSC), , Haliaeetus leucoceph orais couperi (Eastern i	Puma concolor coryinalus (bald eagle-T),
Observed Evidence of Wildlife Utilization	on (List species direc	ctly observed, or o	other signs such a	s track	s, droppings, casings,	nests, etc.):
Blue gray gnat catcher, leopard frog, fi spiders, butterflies, yellow rump wart fleeing our presence - these may hav	blers, ?squirrel tree	frog, large tree sp	iders. At one poir the sounds of mov	nt it sou	unded as though a few	large mammals were
Additional relevant factors:						
Lat 28° 13m 11.83s , Lon -81° 32m 10	.05s. FWCC Priorit	:y Wetlands: 4-6 s	pecies, wetland ha	abitat.		
Assessment conducted by:			Assessment date	e(s):		
Kelly Chinners Reiss 11/8/2005						

Reed_BOT Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Braiget Name		Application Number		I A a a a a a a a a a a a a a a a a a a	Nome or Number	
Site/Project Name Reedy Creek M	itigation Bank	NA			a Name or Number Reed_BOT	
Impact or Mitigation	- 0	Assessment conducted by:		Assessment date	_	
Mitigation	n Bank	Kelly Chinners Reis	ss		11/8/2005	
Spering Cuidence	Ontimal (10)	Moderate/7)		nimal (4)	Not Propert (C)	
Scoring Guidance The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Optimal (10) Condition is optimal and fully supports wetland/surface water functions	Moderate(7) Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	Minimal le wetland	evel of support of l/surface water unctions	Not Present (0) Condition is insufficient to provide wetland/surface water functions	
.500(6)(a) Location and Landscape Support	most, but not all wildlife speciconsists of invasive exotic or the functions provided by the restored. This is also true of spangles (Salvinia minima). minimal, though there is not a from habitats outside the ass does not provide adequate or downstream fish and wildlife area to provide these benefits and wildlife - the headwaters preservation, conservation, o support areas is intact or to b downstream or other hydrolog restrictions. This area should round water levels and some time the seasons created su	assessment area are available in sufficient quantity and variety to provide optimal support for fe species. Some of the plant community composition in the proximity of the assessment are xotic or other invasive plant species, but cover is minimal and has minimal adverse effect on d by the assessment area. Mainly this is true of the pasture areas that should eventually be true of the forested wetland, as the entire water surface is covered by the exotic species water in an area where these species provide a majority of plant cover. Wildlife access to and the assessment area is partially limited, either by distance, as the adjacent pasture habitat quate cover. Functions of the assessment area that benefit wildlife are not limited by distance or barriers that reduce the opportunity for the assessment benefits. Land uses outside the assessment area have significant adverse impacts on fish dwaters appear to be surrounded by very urban and built up lands, plus the only areas of ration, or retoration are associated with the forested wetland complex, and little of the upland at or to be preserved. The opportunity for the assessment area to provide benefits to hydrologically connected areas appears to be limited by hydrologic impediments or flow a should be seasonally flooded, and the water level indicators present suggest stationary year d some type of water impoundment. Perhaps the accummulation of water from the past two eated such high water levels, but according to the type of wetland this is, the hydrology appea				
current with		vater impounded here than wo harges from the assessment a			am habitats derive	
.500(6)(b)Water Environment (n/a for uplands)						
w/o pres or current with 5	reduced available habitat. So with moderate water quality of observation of standing water turbidity. Once the sediment Water depth and light penetra significant changes in species community due to the water all or nearly all of the plant co	etland type, perhaps the surfa ome of the plant community or degradation: cattail (<i>Typha</i> sp. r indicates slight water quality layer has been disrupted, it re attion are not well suited for thi s, age classes, and densities. surface coverage by water spa over is by appropriate and des inappropriate and undesirable	omposition of a composition of a composi	consists of species primrosewillow (<i>L</i> in including highly co- occulant organic in mmunity and are on the particularly true species in the can	s tolerant of and associated udwigia peruviana). Direct solored water with high naterial in the water column. expected to cause for changes in the benthic topy and shrub layers.	
Much of the plant cover is by inappropriate and undesirable plant species in the ground stratum. There is minimal evidence of regeneration or natural recruitment - this was mainly visible along the shallow edge walking into the forested wetland where we noted some regeneration of cabbage palm (Sabal palmetto), Carolina pop ash (Fraxio caroliniana), and pondcypress (Taxodium ascenders). No regeneration was noted in the interior of the wetland. Age and size distribution approximates conditions typical of that type of system, with no indication of permanent deviation from normal successional or mortality pattern overall, although this may be true for certain species. The have been temporary deviations or impacts to age and size distribution, as evidenced by large trees removed from the plant cover in the ground stratum. There is minimal to the surface of the system of the stratum of the shallow edge walking into the forested wetland where we noted some regeneration of cabbage palm (Sabal palmetto), Carolina pop ash (Fraxio caroliniana), and pondcypress (Taxodium ascenders). No regeneration was noted in the interior of the wetland. Age and size distribution stypical of that type of system, with no indication of permanent deviation from normal successional or mortality pattern overall, although this may be true for certain species. The forested wetland where we noted some regeneration of cabbage palm (Sabal palmetto), Carolina pop ash (Fraxio caroliniana), and pondcypress (Taxodium ascenders). No regeneration was noted in the interior of the wetland.						
w/o pres or current with	common buttonbush (Cephal there is still effects from cattle	uch of the canopy has been re- lathus occidentalis). Land ma e and sod harvesting activities due to linear deeper water fea	nagement p that influen	oractices are gene nce this wetland.	rally appropriate, though Fopographic features are	
	7 C.		_			
Score = sum of above scores/30 (i uplands, divide by 20) current or w/o pres with	If preservation as mitigation and preservation adjustmer Adjusted mitigation delt	nt factor =		For impact assess delta x acres =	sment areas	
0.57						
Delta = [with-current]	If mitigation Time lag (t-factor) =			or mitigation asse		
	Risk factor =		RFG	= delta/(t-factor x	risk) =	
Form 62-345 900(2) F A C. [effe			-			

Form 62-345.900(2), F.A.C. [effective date 02-04-2004]

$Reed_BOT\ Wetland\ Rapid\ Assessment\ Procedure,\ page\ 1$

Project Name: Reed_BOT, Reedy Creek Mitigation Bank

Date: 11/8/2005

Evaluator(s): Kelly Chinners Reiss

Wetland Type/Description: Mixed forested wetland. HUC 03090101 Kissimmee River Basin

Wetland Assessment Area: 1.3 ha (3.1 ac)

FLUCCS Code/Description: 6150 Stream and Lake Swamps (Bottomland)

2.0	Wildlife Utilization (WU)			
1.5	Wetland Canopy (O/S)			
1.5	Wetland Ground Cover (GC)			
2.1	Habitat Support/Buffer			
2.0	Field Hydrology (HYD)			
2.2	WQ Input & T	reatment (WQ)		
11.3	SUM			
6	Count			
0.63	WRAP			

Reed_BOT Wetland Rapid Assessment Procedure, page 2

Wildlife Utilization (WU)

Blue gray gnat catcher, leopard frog, fish eating spiders, green tree frogs, green anoles, phoebes, red shouldered hawk, bull ants, other species of spiders, butterflies, yellow rump warblers, ?squirrel tree frog, large tree spiders. At one point it sounded as though a few large mammals were fleeing our presence - these may have been hog or deer - you could hear the sounds of movement in the water and vegetation being displaced, particularly the palm fronds. Moderate evidence of wildlife use, certainly used by small and medium mammals, amphibians. No fish were visible, but the water was dark and the surface was covered with water spangles (*Salvinia minima*) and a some duckweed (*Lemna* sp.). There was evidence of movement by large mammals, but whether that was by desirable species (ex. bobcat, panther, etc.) versus undesirables (ex. hog) is uncertain. There is ample adjacent wetland habitat, but it has been impacted with steep gradients (ex. large changes in water levels), and the adjacent upland is historic pasturelands that appear currently to be harvested for sod. There is

1.5 Wetland Canopy (O/S)

Dominant canopy species include: laurel oak (Quercus laurifolia), Carolina pop ash (Fraxinus caroliniana), cabbage palm (Sabal palmetto), sweetgum (Liquidambar styraciflua), swamp tupelo (Nyssa sylvatica var. biflora), red maple (Acer rubrum), American elm (Ulmus americana), slash pine (Pinus elliottii), and pondcypress (Taxodium ascendens). There was also a rich species composition in the shrub layer including: wax myrtle (Myrica cerifera), swamp dogwood (Cornus foemina), falsewillow (Baccharis sp.), Walter's viburnum (Viburnum obovatum), common buttonbush (Cephalanthus occidentalis), Virginia willow (Itea virginica), Carolina willow (Salix caroliniana), swamp bay (Persea palustris), Peruvian primrosewillow (Ludwigia peruviana), common persimmon (Diospyros virginiana), and highbush blueberry (Vaccinium corymbosum). There is logging evidence a great distance into the wetland - even past 100m from the edge. There was a patch of dead and dvino common buttonbush. The canopy has self-pruned and looks stressed. There is <10% invasive canopy and midstory species cover - the two nuisance species noted include cattail (Typha sp.) and Peruvian primrosewillow. The wetland overstory and shrub layers do provide habitat support, but mainly in a patchy mosaic, with excess downed logs and debris. Natural recruitment was noted for Carolina pop ash, cabbage palm, and pondcypress, though strong evidence of natural recruitment was lacking. Canopy trees did not appear healthy - had signs of reduced canopies and patch of dead and dving common buttonbush.

Wetland Ground Cover (GC)

The ground cover had a mix of species, including many desirable wetland species and some undesirable species. Considering the covering of the surface water with the exotic species water spangles (Salvinia minima), there was certainly >25% cover by undesirable species. Some additional less desirable species include Eastern poison ivy (Toxicodendron radicans), dogfennel (Eupatorium capillifolium), and Virginia buttonweed (Diodia virginiana). In addition there were many vines growing low throughout the wetland interior including saw greenbrier (Smilax bona-nox), laurel greenbrier (Smilax laurifolia), peppervine (Ampelopsis arborea), groundnut (Apios americana), cowitch vine (Decumaria barbara), and muscadine (Vitis rotundifolia). These are included in the wetland ground cover category because of their physical location in the wetland, which suggests perhaps an open canopy allowing vines to grow and vines suppressing growth of typical wetland ground cover. There was an unidentified fern with circular to kidney shaped sori and tufts of brown hair along the 2nd rachis that grew in patches and was over 6 feet tall! The ground cover appeared in linear zones, which were thought to be remnant logging roads or remains from some previous anthropogenic earth moving activity. These areas hosted herbaceous vegetation (no trees or shrubs) and had deeper water levels than where the woody

2.1 Habitat Support/Buffer

1/4 of buffer is improved pasture, the buffer here is >300' wide	Buffer Type	(Score) x	(% of Area)	= Sub Total
but has >75% exotic/nuisance/invasive plant species. 3/4 of	Pasture	1	0.25	0.3
buffer is continuous forested wetland, the buffer here is >300'	Forested Wetland	2.5	0.75	1.9
wide but there are some nuisance/invasive/exotic species (>10%				
cover) in this wetland. It is not however predominantly				
undesirable species (as a score of 2.0 suggests).				
			Total =	2.1

2.0 Field Hydrology (HYD)

The water regime varies because of the linear strips of vegetation, so some areas have much deeper water. The water color was dark and tannic, and walking through the wetland created a great deal of flocculent soft organic material that stayed in the water column. There were indicators of appropriate wetland hydrology such as loop roots with lenticels, knees, high water stain lines (perhaps 0.5 m greater than during site visit), and lichen lines above high water mark. Hydrology appears adequate to maintain a viable wetland (did see regeneration of canopy species), though there are effects visible from past anthropogenic earth moving activities. Plants do show signs of stress including having reduced canopy and excessive tree fall

2.2 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total
Pasture	1.0	0.25	0.3
Forested Wetland	2.5	0.75	1.9
		LU Total =	2.1

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
No Treatment	0.0	0.25	0.0
Nat. Undev.	3.0	0.75	2.3
		PT Total =	2.3

Reed_FOR Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Numbe	r		Assessment Area Name	or Number
Reedy Creek Mitigation	ı Bank		NA Reed_FOR		I_FOR	
FLUCCs code	Further classifica	ition (optional)		Impac	et or Mitigation Site?	Assessment Area Size
SFWMD 1999 6170 mixed wetland hardwood		e forested SSURG Myakka fine sand	GO Smyrna and Mitigation Bank 0.7 ha (1.8		0.7 ha (1.8 ac)	
Basin/Watershed Name/Number Af	fected Waterbody (Clas	ss)	Special Classification (i.e.OFW, AP, other local/state/federal designation of importance)			
HUC 03090101 Kissimmee River	Class I	III			None	
Geographic relationship to and hydrol	ogic connection with	wetlands, other su	ırface water, uplar	nds		
Isolated depression. Large continuou	s bottomland hardwo	ood depression in t	he adjacent lands	cape	separated by pasture.	
Assessment area description						
Forested depression. Baldcypress (<i>T</i> baldcypress then expected. Mature e community. Pasture right up to depre	lm (<i>Ulmus americana</i>	a) and red maple	(Acer rubrum). No	o trans	sitional edge or ecotone	
Significant nearby features			Uniqueness (collandscape.)	nsider	ing the relative rarity in	relation to the regional
Bordered to north by Upper Lake Bas appears that the headwaters to Reedy associated with the Walt Disney Work Lake are part of Lake Kissimmee and	y Creek are essentiall d complex. Lake Rus	ly all water bodies ssel and Cypress	_	odiver	important in CARL, imp sity hot spot. The actua area is not rare or uniqu	
Functions			Mitigation for prev	vious p	permit/other historic use)
Isolation and small size helps to supp species than that found in larger, mon and refuge, in particular waterfowl, wa may depend on cypress swamps for be storage by holding excess water and send that the supplemental isolated in the supplemental is	e permanent wetland ading birds, and aqua preeding purposes. Po slowly releasing it into	s. Wildlife habitat tic animals, which rovide water o the water table.	Surrounding area be not as intense			nis area was reported to
Anticipated Wildlife Utilization Based of that are representative of the assessmole found)				T, SS	y Listed Species (List s C), type of use, and inte	
Opossum, river otter, white-tailed deer, raccoon, gray squirrel, bobcat, gray fox, wood and rice rats, hawks, wood duck, woodpeckers (pileated, downy), turkey, swallow-tailed kite, cottonmouth snake, variety of frogs, toads, salamanders, snakes, and turtles. **Alligator mississippiensis* (alligator-T(S/A)), Mycteria (wood stork-E), Aramus guarauna (limpkin-SSC)						
Observed Evidence of Wildlife Utilizat	ion (List species dire	ctly observed, or c	ther signs such as	s track	s, droppings, casings,	nests, etc.):
Several garter snakes, rat snake, tree frogs, Northern parula (<i>Parula americana</i>), red-shouldered hawk (<i>Buteo lineatus</i> , red-tailed hawk (<i>Bu jamaicensis</i>), numerous butterflies (one monarch emerging from cocoon), wood storks (<i>Mycteria americana</i>) and swallow-tailed kite (<i>Elanoi forficatus</i>) flew over site.						
Additional relevant factors:						
Archaeological sites within a mile buffer of wetland assessment area. Housing development is going in on western edge of property. Pasture around wetland assessment area is permitted for Phase III restoration to flatwoods community.					property. Pasture	
Assessment conducted by:			Assessment date	e(s):		
Erica Hernandez, Kelly Chinners Reis	s, Tony Davanzo		5/12/2005			

Reed_FOR Uniform Mitigation Assessment Method, page 2
PART II – Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	a Name or Number	\Box
Reedy Creek Mitigation Bank		NA		Reed_FOR		
Impact or Mitigation		Assessment conducted by:		Assessment date	:	
Mitigation	Bank	Kelly Chinners Reiss		5/12/2005		
Cooring Cuidence	Outimal (40)	Madauto/7	M:		Not Decout	(0)
Scoring Guidance The scoring of each	Optimal (10)	Moderate(7) Condition is less than	MII	nimal (4)	Not Present ((0)
indicator is based on what	Condition is optimal and fully	optimal, but sufficient to		evel of support of	Condition is insuffic	cient to
would be suitable for the	supports wetland/surface	maintain most		/surface water	provide wetland/su	
type of wetland or surface water assessed	water functions	wetland/surface waterfunctions	fι	unctions	water functior	าร
Hatel accessed		Water an other is				
.500(6)(a) Location and	, ,	Creek is an important forested		•	•	
Landscape Support		upport many species or provid s fire that would keep a natura				
w/o pres or		recent cattle land use in the la		•	•	
current with	cattle than other areas on the	e property. New housing deve	lopment is g	going in on the we	stern edge of Phase	III.
7						
		sistent. Water levels and soil				
.500(6)(b)Water Environment (n/a for uplands)		amphibians have been seen a				
(Tha for apiands)		heavily used by cattle and car was not turbid or discolored.				
w/o pres or		itats on depression's edge by				
current with		, , , , , , , , , , , , , , , , , , , ,				
9						
500(C)(a)Camananita atmost ma	Majority of plant cover is appropriate. Canopy composition not what would be expected. Canopy not as closed and					
.500(6)(c)Community structure		ne of this could be due to recent erbaceous ground cover coul-				
		imbs probably due to hurrican			, ,	
Vegetation and/or Benthic Community	S	normal for something that may			, ,	
2. Behalic Community		etland edge does not get adec grown up in what should have				
w/o pres or	grades into pasture.	grown up in what onould have	boon a nate	nar coctone. 140 v	volidina banor bororo	
current with						
7						
Score = sum of above scores/30 (if	If preservation as mitigation	ation,		For impact assess	sment areas	
uplands, divide by 20)	Preservation adjustmen	nt factor =				
current or w/o pres with	Adjusted mitigation deli	ta =	FL =	delta x acres =		
0.77	1,1111111111111111111111111111111111111					
	If mitigation					
Delta = [with-current]	Time lag (t-factor) =		F	or mitigation asse	ssment areas	
	Risk factor =	RFG = delta/(t-factor x risk) =		risk) =		

Reed_FOR Wetland Rapid Assessment Procedure, page 1

Project Name: Reed_FOR Reedy Creek Mitigation Bank

Date: 5/12/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Mixed forested wetland.

Wetland Assessment Area: 0.7 ha (1.7 ac)

FLUCCS Code/Description: Not differentiated on SFWMD 1995 Land Use coverage.

Should be 6170 Mixed Wetland Hardwoods - or perhaps previously 6210 Cypress

0.61	WRAP			
6	Count			
11.0	SUM			
0.5	WQ Input & Treatment (WQ)			
3.0	Field Hydrology (HYD)			
1.5	Habitat Support/Buffer			
2.0	Wetland Grou	nd Cover (GC)		
2.0	Wetland Cano	Wetland Canopy (O/S)		
2.0	Wildlife Utilization (WU)			

Reed_FOR Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Yellow rat snake, green tree frog, little grass frog, green anole, leopard frog. Situated in improved pasture. Good habitat for some song birds, but leaves them open to predators, true for herps too. Questioned whether it should be lower at a 1.5, but decided upon 2.0 because of proximity to stream and bottomland swamp and visual evidence of wildlife use on site.

2.0 Wetland Canopy (O/S)

Less than 10% invasive canopy species. Some natural recruitment apparent.

2.0 Wetland Ground Cover (GC)

Some exotic species present (i.e. *Alternanthera philoxeroides -* alligator weed, an 2001 Exotic Pest Plant Council Category II listed species). Good diversity of graminoid species. Other species include *Iris* sp. (iris) and *Cephalanthus occidentalis* (buttonbush).

1.5 Habitat Support/Buffer

Greater than 300 ft vegetated buffer of improved pasture. To the	Buffer Type	(Score) x	(% of Area)	= Sub Total
W side of the wetland is additional off-property pasture, to the E	Pasture	1.5	1	1.5
is bottom hardwood forest - a large continuous wetland.				0.0
			Total =	1.5

3.0 Field Hydrology (HYD)

Appears adequate. No soil subsidence evident. Small ditch/swale about 20m away.

0.5 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
improved pasture	1.0	1.0	1.0
			0.0
			0.0
			0.0
		LU Total =	1.0

PRETREATMENT CATEGORY (PT)

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
no treatment	0.0	1.0	0.0
			0.0
			0.0
			0.0
		PT Total =	0.0

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Reed_FOR Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Depressions Cypress

Assessment Team: KCR, EH

Project Name: Reedy Creek Reed_FOR

Location: lat 28 degrees 13m 15.12s/ long -81 degrees 32m 1

Date: 5/12/05

Subclass: Cypress depression

Function	FCI
Surface Water Storage	0.92
Subsurface Water Storage	0.93
Cycle Nutrients	0.75
Characteristic Plant Community	0.31
Wildlife Habitat	0.61

Variables	Measure	Units	Subindex
V CATCH	0.01	%	1
V UPUSE	55	number	1
V WETPROX	3284	meters	0.82
V WETVOL	1	%	1
V surout	1	%	1
V subout	1	%	1
V ZONES	0.5	number	0.5
V CANOPY	15	%	0.4
V SURTEX	0.7		0.7
V TBA	418	m²/ha	1
V SSD	5	%	0.08
V TCOMP	20	%	0.2

Reed_FOR Hydrogeomorphic Approach, page 2

Vcatch very small change from road, not enough to change subindex from 1.0

Vupuse

open space cover type curve #61 percent 100%

Vwetprox

Sector 1 Sector 2 Sector 3 Sector 4 500m 133m 500m 500m Sector 5 Sector 6 Sector 7 Sector 8 500m 500m 267m 384m

Vwetvol no change

diameter diameter depth of length of width of fill average wetland wetland fill material thickness of north-south east-west material fill material

Vsurout none

Vsubout none

there is no wetland edge transitions from wetland to

Vzones pasture now 1 was 2

Vcanopy 15%

Vsurtex silt and loam

Vtba plot 1 475m²/ha plot 3 250m²/ha

plot 2 247m²/ha plot4 700m²/ha

Vssd 1 intersect, 5%

Vtcomp 20%

Bald cypress 14%

Reed_FOR Florida Wetland Condition Index, macrophyte field data sheets, page 1 *NOTE: field codes are different than reported codes, Reed_FOR =POREED

9	70-76	8 8 8	50 55 50 55	5.45	35-85	30.38	25-36	20-25	15/20	10-15	9-10	0-5 m	Species Date: Rightspoor Limitation Species Context of ignation Species Bookshall constaints Species	
		201 248		302 140	V,	V		V	ļ				Restarpein Lundeta & &	,_
-		28.1 23.2	20		V	J	V	V	V	V	7		Cover gigunten D &	
		100			V		1	1	V	V	1	7	Borbeller worthit & 3	-
****	ě				y.		7	1	Ý	V	1	V	Hydrocolyle Sp.	
					4	1	V	V	V,	1	1		Terr viesnice	- 71
		387			V				V	J			Ptilan copillacan	Ansurvey Field Data Sheet - Transects, Vegetation Presence -
			. 100		J	J	7	V	1	1	1		Polygmun syma hydropipuoide	ALE AND
	510 513	338 354		8		V		39.2 39.2		V	V		Myrien on Gen	PAC 199
				860		7	7	1		V	V	1	Alternatives philosopolas	a She
						V		V		V	V			11.17
	3	13				V			Г	1	7		Sullar #4 borarnox of D	Dasaus
				1300 1400		V	Į	727 188	7	100			Dodge very miner	fs, Ve
			431	8		V				V	V	1	Contella asiable Direction: North Direct	petatio
						V		39	V	1	V.	1	Culiar Februar 5	n Pre
	Š.			29	l	V	Г	Ş		1	7	V	Callier February Toxocortedian sudiens Rameteur Arch. #7 Compationer	SMice
	3.5 3.5					V	Г	8	Г	1.3	7		Ramoner Art. #7 Computer	
	I.V.					V		7.00 7.00 7.00					10 1	enter
•••	31					V						V	Juneut megatepides	UF Center for Wetlands
	3.			38				V				4	Salix constinue	etland
	ráti. Ever		- CA-					V				K	Cularys 88 repens	De
***	8		- 0.00 - 0.00	188				120		1	1	V	Acer rubinm	
-			38	10		138 230		, 5.3 , 5.5		7		ingtononanoi	Satur painedo	
_	iž.	40								7		J	Lycopus rabolle	
-	3								Г	V			Backers bolomble	
tototo		T				Ě		1		7	1.7	-	Ruella entolinens	

Reed_FOR Florida Wetland Condition Index, macrophyte field data sheets, page 2 *NOTE: field codes are different than reported codes, Reed_FOR =POREED

70-76	86 -00 56 -00	\$5 \$5 \$8	35-40 40-45	35-36	76-26 26-25	10-15	538	Species	Site: Feeding Creak Date: May 12,05
	26	102	321			V		Ampelops is solverer	3 6
			100			1		What went in brighter.	77 5
		100	150 50	-28		1	V,	Quellus might	1 % %
	19	120	100	12			1	Juneus elfasti	7
			188				1	Polygon with Rum	100 P
	1004				Ħ		1	Topolous detichum	2
		0.614		16.5 400			V,	Parthenecisms grangement	
		318	25	100	55	383	1	Bacopa corobiana	
18			1000		Ž		V	pichimen islanta	Some!
				1880		15	/	SELLE TENSOR	THE SE
					82	33	¥	Ergeton quetorlas	Recor
100	131						J	U.A. 10 Sisyripchi	der.
		- A -	\$40 80 c				V	Pichnamen whento Ergeson quescribus Unit 10 Sisyanchi Unit 11 Ludungan Contresi Pospolium Autolum Tompedge # 13 Eloch	Data Recorder: 107 Carlo
				188		-988 Tol:	1	Pospolium notation	j p
18	1					100	1	Tompedge # 13 Election	ndir-> pdnö-g
132							100		1 8
			380		. (4. 152		189 198		-
				.00					
18				- 88			- 100		_
	100		385	48	9.0	- 8	139		
100		58	145	2 2	1.685 1688		å		
		- 5		(A)	23				
	a dis			Mys.					_
			- 52				200		
							1.0		

Reed_FOR Florida Wetland Condition Index, macrophyte field data sheets, page 3 *NOTE: field codes are different than reported codes, Reed_FOR =POREED

į S	65-70 70-75	85 60 85 60	50-55	40.45	35-40	30-35	25-30	20-25	15-20	10-16	4	S 1	Species	Site: Date:
			CHA.	(40) (dil)	1								Buchmanitarica	48
					V	1					-		Cap (R-folium	S/12/05
ununu				1	1	1							Exterior and	2 6
****					V	1	1		Ţ				Dioso.	. %
-					V	y		J					Hydrocotyle Werdermann	
			265		1								Caret possifatbolikes	Data Recorder: 14.265
-				188	V	7		1	J	3	J		Cophelinities	22
-	35				V	V		3.4 36	7	83 356		1	Calminetown	i V
	18				U	V	V	V				1	Care Adjantification	1
_	800				V	1	17	V		388			Polygon paretahan	Transect Direction
_					17	1	17	V	7	7			Virginica	Reco
_			18		V	17	17	1	V	T			Enganager Cornic	de la constantina
•					Ť	V	T		1	(3.4) 1.64	IJ	7	Acer	18 8
					1	V	17		T	N.	-	V	ulmus amenerina	m g
_				38	T	1	ľ			4.8	J	7	Whentus laston	
						V			1	1118	V	12	Partience is a se	6.3
				100		V			Γ		1	7	#4 Smax	Nenchrod
_	280				T		17	V	J	17			Periodica conta	1
-				1 8		dis	1/					V	#19 Polygonim	Japan Co
-						18		V		133		Ę	Vistambigunian	
•••			-856 530		T	18	T	V	1			13	1 20 Parison of Some	access
	183	1000				T	Ī	33	V			17	Continue	100
***			22:			13			V		V		-2 - 3 - 5	-
***				18		8		18		7			Toxod in distribution	
							-1	t	-		7	10	Topicolender radicos	

Reed_FOR Florida Wetland Condition Index, macrophyte field data sheets, page 4 *NOTE: field codes are different than reported codes, Reed_FOR =POREED

100	70-70	65-70	80-65	50.55 50.55	\$ 5 5	35-30 35-35	20-25	10-15	0	0-5 m	Species	BioSurvey Field Data Sheet - Transects, Vegetation Presence - LF Center for Watlands Site: Data Recorder: VC (2009) Data Recorder: VC (2009)
Ī						20	092		J		Quercusara	26,
1			Ħ	. 100					V		Vitis rotandifolia	養多
-	19						Til.		1	Z	Myrica cerfera	26 E
i	7,000					1			7		Quercus ara Vitis rojundifolia Myrica cerfera 17 Hedyahis lara Ampelopsis arbotea	
Ì									1	1	Ampelopsis accorded	3,
1				188			13.0		Ì	17	Parthenociosus	- EDM
		80		2000 2000 2000	Ħ	-0.00 9-00			7	V	Partienocissis Berchaniandens	₩ A
i		00m		2826 - 325		- 1000 - 1000	100		M.	7	Cornus - Frencisa	id De
	1							33		7	Janeus	ST.
Ì	7	94					100	407.7		V	Altegraphera	Tran
į	+									17	Alternative on DA-loverstes	Sect E
į	7									17	Alternative on Distriction Change of the Stendard Change of the Sten	oden Sie
1	1							7.00 (%)	-	Ď	Rubus argotus	getatio
***	-					Tâ			Г		k	是可能
-		3				38				13		355
8						X			T		1	्र के
1					83			128	T			enter
1							33	98	T			1 S
į				1.3	38	38			ì			thand
		120				100	100	8.0	T			
1			1000	#58 #58		74.0 74.0 75.0	85	18		-8		
			1850 1850 1850	12.0	188	1000	233 444	3	T	R		
						10.00			t	8		
		2	10	103	1934							
	-		- 1	- 25	100				-			- i

Reed_FOR Florida Wetland Condition Index, macrophyte field data sheets, page 5 *NOTE: field codes are different than reported codes, Reed_FOR =POREED

-	0 70	65-70	60 68	8-60	50-55	45-50	60.45	35-40	30-35	25-30	20 25	025-51	10-15	5-10	0-5m	Species	Site: Ready Creak P
				Γ					365 641						V	Pinus elluitis 3	<u> </u>
1				Γ	9	Г									V	Parthenorishin guingerfolia	W - 27
1				Ī		Γ	100								Z	Commo Uncida	9 1
		Г		T						-	V			1	1	Centello auritien	
		Г		T		T		V.			V	V	V	V	V.	Hydrocothe se.	8
	34				300		13							-	v	Bargen crobinon	Biosurvey Field Data Sheet - Transects, Vegetation Presence - UF Transect Direction: South
		T		T		T		Г			(0) (0)		4		-	Cudanya report	CVFDe
	-50 28	T	33	T	199	T	100				200			Ī	12	Polygon whit Control	% g
	8	T		T		T		Г	8			Г		V		@ Paspatas notdom	She
-	95	T		Ī		ľ		Γ			25)				ÿ.	Rhyachergent cornentation Lycoper rubello Galan fortunamo Partilan month & 2 Companio Corner residente residente Corphilator residente	et - Tra
		T	33	₩.	T	T	388 388		Z	1	366		38	Γ	V	Lycopis mileto	t - Transects, Vegeta Transect Direction: Data Recorder: To
	8	1		T		T	90	Ī		7	V	V	V		Z	Calve fortenien	s, Veg
	35	T		Ť	8r 50	T		Ī	188		K				w	Regularion 82 Company	on: S
		T		1		1					V		V	1	V	(downstructs	ation Prese South
		1				1		V	1		V			Ī	I	Captulation revident	Ence.
	50			Ť		Ī				Ī	100			V	12	Colored prisons	
	8	Ì	100	Ī	N.	T	30			Г	90	Ī	100		Ž.	Parisan burkerna	Center
	ä	Ī			- 6	T	39		200	Г		Ī			Q	Passer 4.	for West
	3							V	V		V	V	V		V	Acre Priseum	Genter for Watlands
	3						8	Τ	V		V	17	13	V	¥	Diodra verginaria	
	100 100 100	1					8	٧	V	V		V	V	V	100	Ices vignica	7 دسان
	ks				,				12. 20.		30			υ	438	A state pas largedan	Ske"
^					8		S	V	V	1	8	V	1	V		Carex Pignith	unide 2
			Z	1			3	V	18	V	V	1		V		Polygoren sy. #9 hulep	weiks (
	3	T	-3	7				v	1			٠V	V		3	Tomenhadia indicas	# 1 h

Reed_FOR Florida Wetland Condition Index, macrophyte field data sheets, page 6 *NOTE: field codes are different than reported codes, Reed_FOR =POREED

	70-75	65-70	60.66	55-65 65	20.22		8	40-45	35-40	30-35	000	20-25	15-20		018	7	0-5 m	Species Specie
								100		8		9						Corner France
				T			-		T	Til.	Ī	71			ď			Smiles asserble of wante of book of
_		-							V	1		- 0		7	7		Acres (Arrival)	Ceneral La Praville Ha (1)
_			Ī	Ī					Γ	i		48			ij			Junear offerens
		T	Ī	T					Г		Ī		1		V		138	7
		T									Ì		1		V			Expanium aprilifico Export Conf
-		T			1		Г			9				/				Sales * S . S
_	90						T		T			8	A		66 86			Endlike hearfile
	18			Ť	7		T		Ī	T d	1		1				138	Vita sp. an Hallis
	ā	T		T		180	Г	Ī					7	J	NS Sal			Circum-like + 6 Circ Bar Trans
	t	T		T			T		Ť				7	_	ā		18	Troughing Astichem Record
	10	T		1		Š	T		١,	7	7		7				100	Partodom de chia
	133	T							Ī				7		ŝ			Krinishus giganters 3 8
		T	T								ä		V					Apler confusions & Fig.
	13	T	T								V	V	N		8		- (d)	Physicages werdeter.
****		T					T			,	1						No.	Disspan biginera
-	K	T				S	1	2			7		.22 jai				1	Whateston were nor a
		T.	1		-	8			4	7								Whose approximation was
			1			80.2				1			:58:				3	Souther Speed - Transect Direction: Southern Presence - UF Center for Westings Circum Ske 6 Circum
		1	1		-	Ī					1341 404		10) 16)		33			
		1	1					9			Ş		3		3		-3	
				: N: 8.21		ß			38								1	91 181
						Ī									1			900 600 600
			1				1					Ē			ŝ		1	
-			1			1											1.5	2

Reed_FOR Florida Wetland Condition Index, macrophyte field data sheets, page 7 *NOTE: field codes are different than reported codes, Reed_FOR =POREED

8	70-75	65-70	60.65	55-68 68	50.55	8	45 5	35-40	30-35	25-30	20-25	15-20	о 18	910	0-5 m	j	Species Date: Ectathis gigations Hyproclife yearlicitata Controlly against Golfon tahoro
			Ī								586 186			V	9		Establis gigadies 3
*****		-	ħ	T			2	V	V	:	1	V	V	4			Hydrosiyle vertestate I
	100					Ī							V	٧	100	water 6	Could rejoin 7
						T		V									Colina tatorio
		Г		Ī				Γ								1	
	, jili	Г		Ī				V	1			Г					Quean templement
			18			i i		Γ	30	Г							Junear ellerelli Grean tomother Controlling Rospidium notation Toxaculandan rations Escalium dishduers Diodin vergeinner Aster corrollinana Souloux acrosphinant Correx alide tessen Ulmus americana Panisan delicator Acer retorum Budungan of repensi R Connection diellers Espatrar republishum
	30	Ī			-1				V	1	J	1	830 1537				Toxacohondon raisians
	8	Ī	Ī			Ī	-53		8							å	taxadium distiduen
	Š	Ī	1			T			100		V	V					Diodia vergeinare Aster Concolniano Souloux merculations
	8	Ī				T					36.9 350	Γ				ľ.	Aster correlations
	30 58				.5				V			V	N	٧	/	¥	Diodin verginina Data Recorder Santon monathinator Carex aldutement
	8		1				33				18		K		-		Carex alithtemen 3
	8	T							V		V			٧	1	Ź	Carex aldulessen ?
						Š			V		V		100	١	/	Ž.	Panion dit #7
	8		1		- 3			I,	V	1	V		V	V	4	1	Aces rubrum Budungson Ac Trepens 50 R Connelium differsa 50 E anhuman and blackers
				S	1.0		9		2		88		8				budungin Ag repens &
	. 6			ð.	ě							L	V			and the same	A Correction dollars 3
	2				1		4		ý	1	å		ľ			relative	
-	33				3		18		Ñ				3	1			Rulains argutus
L	18						8		2				3	į	/		Berchamin georders
	80			(1) [3]		ä	33		V	1			- 0		4	633 633	Sabal palmetto
							1			1			Ŋ	/	/	\$	July #14 (Shelli) - Com
								١	1	V	1	1	1	/			Coraz giganie;
1	100							ŝį						្យ	/	Š	FRANCIS OF CUSTINION

Reed_FOR Florida Wetland Condition Index, macrophyte field data sheets, page 8

*NOTE: field codes are different the	han reported codes Read	1 EUB -DUBEED
NOTE. Held codes are different u	nan reported codes, ixee	I TOK -I OKLLD

75-80	70-75	3	\$ 8 8 8 8	50-55	45-50	40-48	35-40	30-35	28/30	20-26	10.70	10-15	6	050	Species	Site:
													V		Wordwiden Virginia	~
						Z	√.	1	V	1	V	1	-		Iris vieguite	Jn 8
	圍			100	T	1	V		7		1	V	1		Portabear andala	25
-					T		7	1			V	1	7		Polygonin Sp.	12/03/20
					H		Y				-	4			Diviginion pregionalis.	JR "Y
Ė				198						93	Ţ				Clares preserve #15	
-		-	300 300 300 300	1000 1000 1000	-	1	7		-	V,	V		-		Rhyndraspuin Cambridge 7	ndiaceae
ļ	300-		53: :3:	138	H	345	×	335		I	Ť			535	Pière all'offi	T.
-					t				-	1			-		Querres auca	
Ì	38.	•		33	-	7	7	1	√		-		-	S	Cephalanthan previdedalis	Tra
-		-	1.31 1.31 1.31	188			<u> </u>	1	-	488	H		-		# Circinative	nsect a Rec
-				285		2000 0000 0000	-	J	-	0300 0300 3800	-	100	-	385	MI-1 HEAVING	Direct
-		_				7	-			100	H				Polygonian Sp. Dissiples sugarano Clare passion 415 Rayabapasa cambrilla 1 Pisas allotti; Capasius agra Capabartus occidentis #16 Ci Oblastian Scottal #17 Hedri Shirista	ion
-						T.	-		-		H	7			\$20 clare Pages	38
-		-			H	38	H	30	-		-	No.	-	35	T NO VA	3 4
-				130	-	80	H	-0	-		-	100	1			100
-		-			-	120	-		-	N		200			<u> </u>	8 %
-					-	100		85	-		-	1835 1888 1888		1000 1000 1000		과 (50) 1855 - 1
-		******			1	130	-		-	T	-	83	-			21
}			30 84	- C.	-	186	-		-		-		H	1466		\$
1	899 CO.				1	153	ļ		-	100	-			188	1	
ļ	Xi:			18	-	188	-	30	H	188	-	100				
ļ	,371 135		\$5 5			122	-	184 187	-		-		+	H		
-	355 285 7855		RG LSM	- 6		4	-		-			189	4			
1					+		-		-	- N	-		1			
L				L	1		L	L	L.	Ŀ	1	1	L.	1		

Reed_FOR Florida Wetland Condition Index, macrophyte field data sheets, page 9 *NOTE: field codes are different than reported codes, Reed_FOR =POREED

Reedy Creck

1 Rigilated Polygonum? Rument function

2 Ruple-flow - Acoustinione Resident Carlo Marine

3. Cores abolitescens ex larges

4. Smiles affected. POREED 5. Smilex 6. Thirthe - Colone? Cirsian nuttallis 7. Paniara communitario? 8. Endurigion repers 9. Polygonum hydropymentes 10 Sisyrinchian argust 6/1 11 Cultures contissi 12 Hyptis alata '3 Eleothars? vividaro 14 Smilex 15 Clump panicum 16 Rhyncharpera cornical admit Hunksu) 18 Rhyncharpor medita corniculata 20 Clump Paricum Mass

Reed_FOR Florida Wetland Condition Index, macroinvertebrate list

List of macroinvertebrates identified to the genus taxonomic level $Reed_FOR = POREED$

Ancylidae

Anopheles

Atrichopogon

Berosus

Caecidotea

Callibaetis

Cambaridae

Carabidae

Chauliodes

Chironomus

Collembola

Corynoneura

Derallus

Dero

Dicrotendipes

Dryopidae

Enallagma

Goeldichironomus

Hydrobiidae

Ischnura

Kiefferulus

Mesovelia

Micromenetus

Monopelopia

Nemertea

Odontomyia

Polypedilum

Scirtes

Suphisellus

Tanytarsus

Uranotaenia

Appendix B-23. R.G. Reserve Mitigation Bank

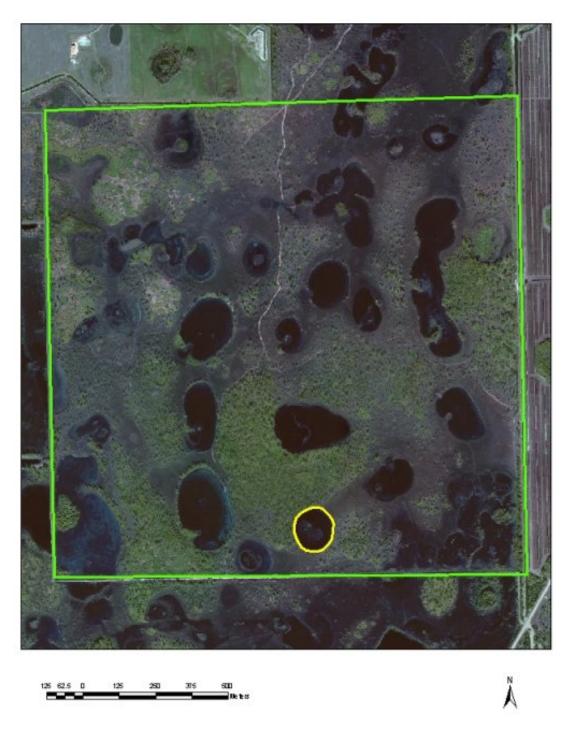


Figure B-23.1. Landscape location of RG Reserve Mitigation Bank (green line). Boundary of the wetland assessment area RG_MAR is outlined in yellow.

Figure B-23.2. Site photo of assessment area RG_MAR at RG Reserve Mitigation Bank.

RG_MAR Uniform Mitigation Assessment Method, page 1 PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name			Application Numbe	r	Assessment Area Name	or Number				
RG Reserve mitigation bank			NA			RG_MAR				
FLUCCs code		Further classifica	tion (optional)		Impac	et or Mitigation Site?	Assessment Area Size			
SFWMD 1995 - 6410 freshwater m SFWMD 1999 - 5250 freshwater lal		NWI - palustrine (soils (SFWMD) - hydric group D	emergent Riviera fine sand	SSURGO depressional,	Mitiga	ation bank	4 ac (1.62 ha)			
	Affect	ted Waterbody (Clas	ss)	Special Classificati	on (i.e.0	OFW, AP, other local/state/federal	designation of importance)			
HUC ID 44 South East Florida Coast / South fork St Lucie	Class	ill		FNAI rare habitat	type \	Wet Flatwoods on bank				
Geographic relationship to and hydi	rologi	c connection with	wetlands, other su	ırface water, uplar	nds					
	gh ou	t the pine flatwood	ls connecting wetla	etland is rain water driven. Water sheet flows at times of high water. tlands through sheet flow. Water seeps west to east through the berm. heast corner. (see notes)						
				impacted vegetation in the shallow marsh and wet meadow areas. anic matter in the marsh interior. Surrounded by hydric pine flatwoods						
Significant nearby features				Uniqueness (considering the relative rarity in relation to the regional landscape.)						
South Fork of the St. Lucie River St Jonathan Dickinson State Park, and Jones/Hungryland Wildlife and Envi Conservation Area. It is near Lake to Reserve, JW Corbett WMA, and NV Agricultural and rural lands to the no	d is im ironm Okeed W forl	nmediately adjacer lent Area and the F chobee, Allapattah k of the Loxahatch	nt to the SFWMD Pal Mar n Ranch, Dupuis	High quality pine flatwoods surrounding this marsh are uncommor South Florida. This area is contiguous with several natural areas managed by different agencies. There are various degrees of hun impact from misuse to altered hydrology, but considering its landscape location, preserved land like this is rare.						
Functions				Mitigation for prev	vious _l	permit/other historic use)			
Provide habitat for native flora and tattenuation. Nutrient cycling.	fauna	. Water storage ar	nd flood	Hunting, destructive recreational vehicle use in wetlands and on native range						
Anticipated Wildlife Utilization Base that are representative of the asses be found)			•	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)						
Odocoileus virginianus (white-taileo rufus floridanus (bobcat), Sciurus o species of salamanders, frogs, sma insects.	arolin	niensis (gray squiri	rel), many	Mycteria americana (wood stork)E, Aramus guarauna (limpkin)SSC Egretta thula (snowy egret)SSC, Egretta caerulea (little blue heron)SSC, Eudocimus alba (white ibis)SSC, Grus canadensis pratensis (Florida sandhill crane) T, Alligator mississippiensis (American alligator)T						
Observed Evidence of Wildlife Utiliz	zation	(List species direct	ctly observed, or o	ther signs such as	s track	s, droppings, casings, i	nests, etc.):			
small frogs, beetles, small fish, draç hole, least killifish (<i>Heterandria forn</i>	_	,	•	, ,	•	erhead, possibly old rai	I nest, possible alligator			
Additional relevant factors:										
Site visited before rainy season rea difference in wildlife presence pre-ranone. At the time of site visit land may decide to no longer keep the lasome exotic species removal, but a marshes are on hold for now.	ainy s nanag and as	season. In the past per and owner are as a mitigation bank	t he has seen mar still waiting for app or if credits are not	ny mosquitofish (G proval from U.S. A awarded or releas	<i>Sambu</i> rmy C sed. B	usia holbrooki) in this we corp of Engineer for peri urning is still continuing	etland, today we had mits. The bank owner and there has been			
Assessment conducted by:				Assessment date	e(s):					
Erica Hernandez				6/20/2006						

RG_MAR Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation)

(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area	Name or Numbe	r						
RG Reserve Mit	tigation Bank	NA			RG_MA	AR						
Impact or Mitigation		Assessment conducted by:		Assessment date								
Mitigation	n bank	Erica Hernandez	<u>z</u>		6/20/20	06						
	2 11 1112					. 5						
Scoring Guidance The scoring of each	Optimal (10)	Moderate(7) Condition is less than	Mil	nimal (4)	N	ot Present (0)						
indicator is based on what	Condition is optimal and fully	optimal, but sufficient to		vel of support of	Condition i	is insufficient to provide						
would be suitable for the type of wetland or surface	supports wetland/surface water functions	maintain most wetland/surface		/surface water unctions		urface water functions						
water assessed	water functions	waterfunctions	10	inctions								
.500(6)(a) Location and Landscape Support w/o pres or current with	have been some loss of habit west and south. These const species. There are invasive sexotic species. There are lan Although drainage from this channelizes the water off site development. There is some conservation. Row crops to t landscape, change of hydrok exotics into the bank. This re	itat to the north and east, but ervation lands are separated 1 species present on the bank or discape barriers to connectivi- site flow towards the Loxahatus e instead of sheet flow. North loss of habitat and connectivi he east are a loss of habitat in ogy and possible chemical infi- gion is probably important to	there are high from the site on the berms ty outside the chee river, th (west side) o ity from this on the luence. There	h quality wetlands by a berm and dite and in the region. e bank including be e presence of bern if the bank was in a development. Mos e are exotic specie	and pine flatwood ch which might im The bank manag erms, ditches, roa mand ditches all agriculture, but is t lands in the area es along road that	ers are trying to control the ds, and unsuitable habitat. ters this sites natural flow and now a low density rural are being managed for may act as a conduit for						
7	but it is not the sole headwat	ters for the river.										
.500(6)(b)Water Environment (n/a for uplands) w/o pres or	meadow zone was a couple soil erosion. Vegetation strat fish, and amphibians were prindicative of water quality degrainy season had not yet beg more as a small lake than a but the berms around the pro-	wet even during times of little of feet high. The wetland inter a was appropriate but zonatio resent. Wetland plant species gradation. Water was warm a jun at the time of site visit. It is marsh, perhaps this is why veoperty and ditches must be af	rior was deep in was patchy present were nd had a lot of is possible that getation is pa fecting the su	 Soil moisture way. Vegetation did ne e appropriate for tio of algae and smell at during the rainy atchy? Marsh appurficial acquifer. 	is appropriate. No not appear stresse he system. There led of sulfur. This season the site grears like it is record	inappropriate fire history or d. Macroinvertebrates, forage were no species present seemed normal because the ets so wet this wetland acts vering from vehicle impacts						
current with	the berm) from the west app	ear to be even more wet than	the bank.	•	•	, , , , ,						
7												
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community	regeneration was not specific waiting for further approval for management. The site is beir property. Topographic feature appear healthy. There are question vehicles or unrelated? Rhynchospora tracyi (Tracy).	estions about the patchiness Γhe marsh was not very divers	acted by vehing the control of the c	icles appear to be orp of Engineers, i is probably the be ar to be impeding p of plants in the shart whelmingly domina ted to have low div	recovering with so in the mean time to st thing land manaplant growth becausellow marsh. Is the ted by Panicum heresity but greater	ome vegetation.This bank is there is not much						
6	, ,	c changes during wet and dry recover.There is no inappropr	,		. ,	initial impact from vehicles						
Score = sum of above scores/30 (if uplands, divide by 20)	If preservation as mitig	ation,		For impact assess	sment areas							
current	Preservation adjustme	nt factor =	FI = 1	delta x acres =								
or w/o pres with	Adjusted mitigation del	ta =										
5.07						-						
	If mitigation		F	or mitigation asses	ssment areas							
Delta = [with-current]	Time lag (t-factor) =											
	Risk factor =		RFG	= delta/(t-factor x	risk) =							

RG_MAR Wetland Rapid Assessment Procedure, page 1

Project Name: RG_MAR at RG Reserve Mitigation Bank

Date: 6/20/2006

Evaluator(s): Erica Hernandez

Wetland Type/Description: depression marsh. Disturbance from ATV and other vehicles have impacted vegetation in the shallow marsh and wet meadow areas. These are being allowed to revegetate. Thick vegetation and algae and organic matter in the marsh interior. Surrounded by hydric pine flatwoods and marsh communities.

Wetland Size: 4 ac (1.62 ha)

FLUCCS Code/Description: SFWMD 1995 - 6410 freshwater marsh

SFWMD 1999 - 5250 freshwater lake

2.0	Wildlife Utiliz	cation (WU)							
n/a	Wetland Cano	Wetland Canopy (O/S)							
2.0	Wetland Ground Cover (GC)								
1.8	Habitat Support/Buffer								
2.0	Field Hydrology (HYD)								
2.8	WQ Input & T	reatment (WQ)							
10.6	SUM								
5	Count								
0.71	WRAP								

RG_MAR Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Possible evidence of an *Alligator mississippiensis* (American alligator) utilizing this wetland in the past, based on open deeper center of wetland. Appears there is also some sort of nest made by emergent vegetation, possibly a rail? No way to verify at this time. Some small fish present. *Pomacea paludosa* (apple snail) shell and eggs. Dragonflies and macroinvertebrates. Rainy season has not yet begun, water is stagnant, warm and full of vegetation and algae. The bank is probably more wet than it would be historically because of the berm around its east, west, and south borders, however there is also a large ditch on the inside and outside of the berm with standing water. The upland communities probably have standing water on them during the rainy season but the pine flatwoods are intact have nice diversity of vegetation. Human disturbance is in the form of exotic species present in the landscape, hydrologic impacts and barriers, and the old scaring from vehicles driving in the wetlands. There is abundant habitat and cover for those species that are unaffected by the berm barriers.

n/a Wetland Canopy (O/S)

A few shrubby Myrica cerifera (wax myrtles) and Salix caroliniana (coastalplain willow) growing in wetland interior on the western edge that seems to have a steeper slope than the other sides of the wetlands that have a more extensive wet meadow and shallow marsh zone before the deep marsh. Trees are in a small clump next to the deep open water. These shrubs do not cover 20% of the wetland acreage even though they do meet the criteria for 1-4 inch diameter, so this category is not scored.

2.0 Wetland Ground Cover (GC)

Vehicular traffic in the wetland marshes prior to this property becoming a mitigation bank has caused soil compaction and vegetation loss in the wet meadow and shallow marsh zones. Vegetation is slowly recovering in these areas now that this impact has been removed. Species present are desirable native marsh species but their presence is patchy. There were no undesirable or exotic species present. The landscape has experienced some winter burns and land managers will continue to burn when there is an opportunity to do so. Fish and Wildlife may help in burning the property. Wetland has a natural grade into swale and pine flatwoods vegetation.

1.8 Habitat Support/Buffer

Site is monitored to keep out trespassers who could again damage the marshes on the bank. The bank is surrounded by agricultural areas and conservation areas as well as low density rural housing. Access to the berms are limited by gates and large ditches. These berms and ditches are barriers to normal hydrology and could be barriers for some native species. There is a road on the east side of the bank outside the berm and ditch, then there is row crops, and then a road between the bank and a conservation area. South and west side is managed by Florida Fish and Wildlife Commission (as well as property on the other side of eastern Road). Berm supports exotic and native species.

Buffer Type	(Score) x	(% of Area)	= Sub Total
North	2	0.25	0.50
South	2	0.25	0.50
East	1	0.25	0.25
West	2	0.25	0.50
		Total =	1.8

2.0 Field Hydrology (HID)

Wetland is fairly deep and is characterized in 1999 SFWMD FLUCCS as a freshwater lake. The wetland is holding water even when there has been very little rain for several months, this is probably a result of its hardpan and the depth of the marsh. Hydroperiod appears normal even though it is within 500 feet of a large ditch and berm. This marsh is rainwater driven so the berm may not affect it too much, although the ditch probably has some affect on subsurface groundwater. The wrack line for this wetland was a few feet high into the wet meadow. Plants appear healthy and hydrology is probably not impacting their zonation.

2.8 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
N- low den resid.	2.0	0.25	0.5
W-nat undev	3.0	0.25	0.8
*S- nat undev	2.75	0.25	0.7
*E - row crop	2.75	0.25	0.7

PRETREATMENT CATEGORY (PT)

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
N - nat undevel.	3.0	0.25	0.8
W- nat undevel	3.0	0.25	0.8
S- nat undevel	3.0	0.25	0.8
E- nat undevel	3.0	0.25	0.8

$RG_MAR\ Hydrogeomorphic\ Approach,\ page\ 1$

Variable Subindex and FCI Calculation for Florida Depressions Marsh

Assessment Team: KCR, ECH **Project Name:** RG_MAR

RG Reserve, Martin county W -80 degrees 16 minutes 40.92

Location: seconds | N 27 degrees 0 minutes 8.79 seconds

Date: June 20, 2006 Subclass: depression marsh

Function	FCI
Surface Water Storage	1.00
Subsurface Water Storage	0.79
Cycle Nutrients	0.83
Characteristic Plant Community	0.58
Wildlife Habitat	0.69

Variables	Measure	Units	Subindex
V CATCH	0	%	1.00
V upuse	100	%	1.00
V WETPROX	2071	meters	1.00
V WETVOL	0	%	1.00
V surout	0	%	1.00
V subout	100	%	0.15
V ZONES	2	number	0.25
V MAC	50	%	0.50
V SURTEX	100		1.00
V нсомр	67	%	0.67

RG_MAR Hydrogeomorphic Approach, page 2

Vcatch no change Size of original catchment ha Size of current catchment ha

Vupuse

native cover type curve #77 percent 100%

Vwetprox

 Sector 1 210m
 Sector 2 175m
 Sector 3 200m
 Sector 4 500m

 Sector 5 237m
 Sector 6 217m
 Sector 7 200m
 Sector 8 217m

 138m
 217m
 193m

Vwetvol no fill or excavation

diameter depth of length of width of fill average wetland north- wetland wetland fill material thickness of south east-west material fill material

146m 131m 1.37

Vsurout Difference in elevation of bottom of ditch and bottom of wetland 1.23 m

0% lateral effect of ditch 78m; distance of ditch to wetland 79m

Vsubout Difference in elevation of bottom of ditch and bottom of wetland + 6inches 1.38 m

100% lateral effect of ditch 219m; distance of ditch to wetland 79m

Vzones wet meadow and shallow marsh are disturbed

Vmac WM 70%; SM 30%; DM 50%

50% cover

Vsurtex sand

Vhcomp

wet meadow
50% Hypericum fasiculatum
Rhynchospora inundata
shallow marsh zone
100% Rhynchospora tracei
deep marsh
50% Eleocharis cellulosa
Panicum hemitomon

RG_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 1 *NOTE: field codes are different than reported codes, RG_MAR = MARACE

0000	70-75	65-70		6 8	95-60	80.55	55.50	0.48	% 45	36-36	25.30	20-25	15-20	10-15	0	05 m	Species	Date:
Ĺ	10						X	X							X		Fuille Sulpsily	
Ĺ	X	2	1	Χ	X	X	X	Z	X	X	X	X	χ	X	γ	8	Rhynelicking the	90(02/F)
	Ž			Ř				186 102 103									Per Hilliam Carlo	\$ 1
_	X	2		Á												Ε.	Charles with	baja Š
		L		Χ	X	X		Х	X	Ã		i,					X/1/s etiutii	Š
		L					X	X	χ,	X	·	X	X				X/115 esternit ##2 Eriacanton comp Garacontes Church	1 1944-22
	100	L	1	3		645 845				83		94	X	X	X		Germaniles Chuid	c
	18	L	L			1883) 1903 1903								X	X		Hypercum forces	
	1	L	L	1		9		35	_			ă					DIOCESSE DIFFLE VI	
	100		L			102 200				ä		á		9			Grimmitan dromagalana	
		L						188				94 61					Acido TA	Sect I
	34	L	4		_			-200 100 100 100								×	Augheryten militagen	Transect Direction: . /V Data Recorder: [21, 1] [5]
			L		_			300		ä		3		80		X.	Mechanic maintain	<u> </u>
T SA			+			Š				20		140 240	_	ŝ				3 3
	igr Har	_	L	1	_		_	2004 2004						XII	_			-1
				١,				35			1			1				-
- Auri	38		L		_							8		8				
	30			-	1													
			Ą	in the same	1									9				
	1 N I					2												
	:48.0 :805)		3	d.	5.0	34 34												
	36. 138.		18.	ġ.					- [2			a Si		9	AP AP			
			8			4		G.		88		33	3		100	ij		
			Ź	L				7					1	1				
								4			13							

RG_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 2 *NOTE: field codes are different than reported codes, RG_MAR = MARACE

15.80	70-75	65 .70	60.65	55-60	50.55	8	40.45	35 45	30.35	25:30	20-25	15-20	10.15	5-10	2-5 m	Species	Site
1	0.00				3		3		48		8		100	Γ	×		
/L	3		3		Ti.	e C			38 91			31		Г	X	Rhaguetos pera garanta 14	Out of the
1							10			Г					×	Rhagaetal prox sometra 6	- 6
1								2			ä				Ÿ	xing D alliotin	
/					B				12	Γ				Γ	k	transferring Colors from	Ka
1	32		:33 :89				li di									Styllingers Williamien	34.05073
/			183						38					×	1	Mypely com	Š
1	120									X	X	Х	Х		×	E-scanting	
1	800 300	L			i i				353		2		4	X	×		
	13 24												21		×		Tran
<u></u>	33		i in				2	d			188		Ä		X	Contagnosticos Operations Operations Selected D Laboured	secti
1	845 845		8		95				32.5 388				X		Х	Selevia @ Enthumi &	Transect Direction:
-			Z.						38				100		X	Person palaceres es	91
į	8				8	L		L	25		38				Ж	Eupathous Thaisan	N. N. S.
			×		365	L					123		jis V		1	Carlanda Co	5
						L	25	L						×	X	Dresers artistolia	か
	5.			,	.32.		100	L			X		X	X	X.	Kapis Special Town To	
			X	X	X	X		X	9		33			Y.	X	Fritten Garagodia.	
	X	_			138, 27	_		X	X	X	X	X	Χ	Χ		Physicson	
1	X	Ž,	X	X	X	X	X.	1/2	X	X	X		M		-861 884	Franklin - prominging	
A	X	Д	X	X	X	X	Х	X	¥		-02					Flecknis	
			62	_	(100 (200) (200)				(C)		200 200 200	-			j		
_	id 3	-	100	_			- Light Street		200				8				
_		_					98			-			4				
	98. 98.	J	1				160 2.5		300								

RG_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 3 *NOTE: field codes are different than reported codes, RG_MAR = MARACE

	15.8	70-76	65-70	60-65	55-60	85.55	58	10 45	540	30-36	25.50	20-26	9.20	10.15	9.10		DSm.	Species	Date
V	Ĺ	100	il B	100	N N	7		193		.iii		30					X	Selevia Gap, buldevin	
٧	Ĺ	100						100		100					1	4	Ç.	Parising Sicconfishing	•
V	Ī	8								10			T		7	1	×		
✓				3	Ī				Г		Г		T		Ť		X		30102/3
✓					X		X		X	У	ĺχ		T	T	T	ľ	Z	Eriocantua Licenzal	200
. ^	1			iii						-11	ľ		T		ŀ	Ī	Q.	Legensalism opposition	
V		-02		40	Ī		8		_	100		100	T		ķ	+8	1000	Physichalipes incod	
				100	T			6			-	33	h	- 336	Í	+	331 -	thypentum foscora	in
/	ļ		T	T	T		T		-		r	100	r		×	N	-	Styllingrichanism	
V		135	T		T		r		X			Ý	×	Ī,	X			55000000000	Da i
/			T								_	200	ŕ		r	3		Persian 1	Pata Recorder: ぞ的, ゴン
V		50	T		-			200		10		200 200 201	_	1 5 3 1 5 6 4 5 5	×	10		Dreefin 21 in	corde
V		34 80	X	k	X	V	X.	×	40	V	V	Х	7	×	V	l	-	Phaginterson made	X.
X			_		-	×.			-			20	ŕ		Ý	1		Malastick	E C 27
Į.				-31					-	- 10°		20	-	36	×.	ľ	4	Eadmigia gpp.	9 7
V		N		X		×	X	Ž.	×.	Ž.	X	V	×	X	-	ľ	1	Xuns & Eliette	_
· /			-	Ÿ.					X		-	130	-6.				5.2	FREYORK SEVERAGE	w
V		\$G		713	-	×		V	1					100 h			7	(variete avada	
1			X	Х				¥0										Roth Nichter	
. 4			X	Z					1	50	7						st -	Papaisasen Bassistensa	
į											7						1	18 bernance - 2 Andrew 2011 194	
						200 300	7							SUI SUI SUI	-	A(0)	1-		
ļ.		io.			7						-+	3	-	38		200 200 200 200	-		
į.				Ħ	7									X			-		
1			7	M	1		+	***		# <u> </u>	1		-	*3	-		 		

RG_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 4 *NOTE: field codes are different than reported codes, RG_MAR = MARACE

1980	10.75	5,70	60-05	8	85	15-50	10-45	35-40	30.35	08.62	20.25	5.20	10-15	5.10	25 m	Species	Site:
1	283 (85)	Х	X	Х	X.	X	X	Y	Ÿ.	X	X	X				Personal president	
1		X	×	X	X		100	X	χ	У	Х			Г	100	Ekarbos tablas	410 02 P
1		y.	k	Ķ.					A)		y.	X	X	X	×	Requirement have	20 106
Vį.				X				V.	X	X	Ý	X	X		×	Thirtie & Man	1
4					Y	X.										Humpler Whim	26, 8
4	192				100	Х	Ž.	X								Tarkbook cordage	Burve
4	(20) (40)		**									Х				Ermealum of simple	Data Recorder: 531,TD
1	1000				8820 2008 2008						S	×	Х	Χ	Ŕ	Xign Str Pollatti	
1	8						Ships - Ships						12 2011		1150000	Endralm to prog	
1	36														X	Syronauthis	Tran Date
1	.555 256										30		36		-	Magazian o fraziola	Transect Direction:
1	36		83.						Š		2		415 348		Second N	Discord brookling	Direct xder:
	2						1800 1800 1800 1800 1800 1800 1800 1800		*		S.				×	Mayrica graifesta	ETHIND WEST
1	3				30		.160		ije Sar		36				×	Wood word a cregical	\$5.
1	257 267		¢.				áes 400			-	3				V	Chelemanting ?	4
1		-		į			:55 :58				18 18					Pertitions exectified	+
L							36				*** }{}		10				
	M		38				34										
1					3												
1	8				Z.		35				Şî îye						ā
-	900 900								986 986		A CE		ŝ				
-	8	no novelni					786 788		\$5 e				8		ij		
-	33								200 300 400	- 1:							
_							2										
	能						3										

Appendix B-24. Split Oak Mitigation Bank

Figure B-24.1. Landscape location of Split Oak Mitigation Bank (green line). Boundaries of the wetland assessment areas are outlined in orange (SplO_CYP) and blue (SplO_MAR).

 $Figure\ B-24.2.\ Site\ photos\ of\ wetland\ assessment\ areas\ (A)\ SplO_CYP\ and\ (B)\ SplO_MAR.$

SplO_CYP Uniform Mitigation Assessment Method, page 1 PART I - Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Application Numbe	г	or Number						
Split Oak Mitigation	n Bank		NA		SpIO	SpIO_CYP				
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size				
6210 Cypress		palustrine forested	t		Mitigation Bank	1.9 ha (4.7 ac)				
Basin/Watershed Name/Number	Affected Waterbody (Clas	ss)	Special Classification (i.e.OFW, AP, other local/state/federal designation of importance)							
HUC - Kissimmee River	Class	III	None							
Geographic relationship to and hydr Wetland assessment area within surrounding areas. It is border signature that in times of high wate	a large crescent shape ed on all sides by scrut	d isolated depress	sion. This wetland d forest and dirt ro ringe swamp to the	recei	It appears from the digit	tal orthophoto quad				
Assessment area description										
Our wetland assessment area was the wetland boundary there was shrub and tree density, w	a 1.5 m slope from the	ecotone to the ce	nter, with some sm	aller	deeper pools. The wet	and edge had higher				
Significant nearby features TM Econ mitigation bank to the We Park. Lake Mary Jane a			Uniqueness (considering the relative rarity in relation to the regional landscape.) Such wetlands are not rare but should be considered in a context of the natural landscape of flatwoods and scrub which are often desirable for development. Nearby areas are under significant development pressure. Probably not much of this kind of landscape under protection regionally, as the adjacent properties are already slated for housing developments.							
Functions			Mitigation for prev	ious p	permit/other historic use)				
Important breeding and foraging h	abitat. Flood storage, a rient cycling.	aquifer recharge,	Not known.							
Anticipated Wildlife Utilization Baser that are representative of the asses be found) Mole salamander, tiger salamander	sment area and reasor	nably expected to	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)							
frog, pinewoods tree frog, barking narrowmouth toad, eastern spadef little grass frog, snapping turtl cottonmouth, wood duck, swa woodpecker, great-crested flyca	frog, squirrel frog, sout oot toad, snakes, deer, e, mud turtles, eastern llow-tailed kite, barred	hern chorus frog, raccoon, bobcat, mud snake, owl, pileated								
Observed Evidence of Wildlife Utiliz		ctly observed, or o	ther signs such as	track	s, droppings, casings, i	nests, etc.):				
Many oak toads (hard not to ste recent), sandhill crane f										
Additional relevant factors:										
Deep standing water during site visi large trees with wildlife cavities. Evi nearby and provides nearly constan	idence of past fire in th	e landscape, thou	gh the acetone cou							
Assessment conducted by:			Assessment date	(s):						
Kelly Chinners Reiss, Erica Hernand	dez	8/9/2005								

SpIO_CYP Uniform Mitigation Assessment Method, page 2
PART II – Quantification of Assessment Area (impact or mitigation)
(See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area Name or Number				
Split Oak Mitiga	ation Bank	NA NA			SpIO_CYP			
Impact or Mitigation		Assessment conducted by:		Assessment date	:			
Mitigation	Bank	Kelly Chinners Reiss, Erica	Hernandez	8/9/2005				
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	// Not Present (0)				
The scoring of each	Optimal (10)	Condition is less than	1411	illilai (4)	Not i resem	ι (υ)		
indicator is based on what	Condition is optimal and fully			evel of support of	Condition is insu			
would be suitable for the type of wetland or surface	supports wetland/surface water functions	maintain most wetland/surface water		/surface water unctions	provide wetland water functi			
water assessed		functions						
.500(6)(a) Location and Landscape Support w/o pres or current with 9 .500(6)(b)Water Environment (n/a for uplands)	with controlled burns. Limited not know the extent of exotic is not limited by distance and Water levels and flows appear indicators are distinct and corpondcypress (Taxodium asce	Ill range necessary to support d exotic species present, but s species pressure, but this are barriers. Land uses immedia ar appropriate. No species prensistent: distinct lichen lines, a endens). Soil erosion/moistur idden. Bladderwort (<i>Utriculari</i>	some are ap ta is near manded and the second tely adjacer esent that sudventitious e appear ap	parent outside the any highly develop nt not presenting a uggest water quali roots, water stain propriate. High si	e assessment area bed lands. Wildlife idverse impacts. ty degradation. W lines, knees of tanding water leve	a. We do e access /ater level		
	probably thinned from recent	hurricane damage, some nor	mal canopy	gaps. Species wit	h special hydrolog	ical		
w/o pres or current with		nd fish eating spider, dragonfl nce of insect damage, chlorot						
10	water quality data. Water de	pth optimal.						
10	Diant anasias appropriate an	d desirable in all strata. Did no	ata ainala al	ant of alimbina for	en (I vera divena an)			
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community	ecotone. Strong evidence of (Acer rubrum) on edge. Size some very large trees down t (could be from hurricanes), d spindly leaves or insect dama	to desirable in all strata. Did in recruitment and regeneration a and age class distribution ap to seedlings. Density and qualens abundant, some tree caviage. Land use practices optim water appropriate. Algal grow	of pondcypi parent in mi lity of coarse ties. Plants nal for long t	ress (<i>Taxodium</i> as dstory and canopy e woody debris slig in good condition erm viability of pla	scendens) and rec y species - ranging ghtly higher than a - no evidence of c ant community. Hu	d maple g from inticipated chlorotic,		
w/o pres or								
current with 9								
Score = sum of above scores/30 (if	If preservation as mitiga	ation,		For impact assess	sment areas			
uplands, divide by 20) current	Preservation adjustmer	nt factor =	F.	dolto v ac				
or w/o pres with	Adjusted mitigation delt	ta =	FL =	delta x acres =				
0.93			<u></u>					
	If mitigation		F	For mitigation assessment areas				
Delta = [with-current]	Time lag (t-factor) =		. o. magaton assessment areas					
	Risk factor =		RFG	= delta/(t-factor x	risk) =			

SpIO_CYP Wetland Rapid Assessment Procedure, page 1

Project Name: Split Oak Mitigation Bank SplO_CYP

Date: 8/9/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Depression forested wetland in a restored flatwoods landscape.

Wetland Assessment Area: 1.9 ha (4.7 ac)

FLUCCS Code/Description: 621 Cypress

0.97	WRAP						
6	Count						
17.5	SUM						
3.0	WQ Input & T	reatment (WQ)					
3.0	Field Hydrology (HYD)						
3.0	Habitat Suppo	rt/Buffer					
2.5	Wetland Grou	Wetland Ground Cover (GC)					
3.0	Wetland Cano	Wetland Canopy (O/S)					
3.0	Wildlife Utiliz	cation (WU)					
3.0	Wildlife Utiliz	ration (WII)					

SplO_CYP Wetland Rapid Assessment Procedure, page 2

3.0 Wildlife Utilization (WU)

Frogs were visible and audible (pig, leopard, cricket). Abundance of very large spiders, fish, butterflies. Heard *Haliaeetus leucocephalus* (bald eagle) call. Upland food sources, cover in wetland and upland available. Cavities in trees. No evidence of large mammals or reptile in wetland, but high water levels hiding evidence. Evidence apparent in adjacent uplands.

3.0 Wetland Canopy (O/S)

No invasive species present in canopy or shrub layer. Good habitat support provided. Tall canopy structure. Regeneration of *Taxodium ascendens* (pond-cypress) found. Healthy live canopy trees. Some tree fall but not abnormal (considering last years active hurricane season) and no abnormal canopy openings.

2.5 Wetland Ground Cover (GC)

Did have *Lygodium* sp. (climbing fern), considered in the groundcover category even though this species is a vine. Tall, robust, healthy vegetation. Orchids on *Taxodium ascendens* (pond-cypress) trees. No disturbance noted.

3.0 Habitat Support/Buffer

Buffer width >300 ft predominantly desirable species.
Ditch/canal and excavated pond about 200m to the south but not adverse to this system. Buffer undergoing restoration, perhaps currently slightly more shrubby than ideal but not significantly hindering support of buffer.

Buffer Type	(Score) x	(% of Area)	= Sub Total
nat. undev.	3.0	1	3.0
			0.0
			0.0
			0.0
		Total =	3.0

3.0 Field Hydrology (HYD)

Hydrology adequate. Evidence of species regeneration that have specific hydrologic requirements, for example *Taxodium ascendens* (pond-cypress) regeneration needs appropriate seed soaking, also presence of frogs and tadpoles and fish. Water level indicators distinct, including water stain lines, lichen lines, moss collars.

3.0 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
nat. undev.	3.0	1.0	3.0
			0.0
•	•	LU Total =	3.0

PRETREATMENT CATEGORY (PT)

Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
nat. undev.	3.0	1.0	3.0
			0.0
•		PT Total =	3.0

 $[*] The \ value \ of \ WQ \ is \ obtained \ by \ adding \ the \ TOTAL \ scores \ of \ Land \ Use \ Category \ and \ Pretreatment \ Category \ then \ dividing \ by \ 2.$

SplO _MAR Uniform Mitigation Assessment Method, page 1 PART I - Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name		Applica	ation Numbe	er	Ass	essment Area Nam	e or Number
Split Oak Mitigation Bank		NA			Spl	O_MAR	
FLUCCs code		Further classification (o	ptional)		Impact or	Mitigation Site?	Assessment Area Size
SFWMD 95 - 6410 freshwater mars	sh	NWI - palustrine emerg	ent		mitigation	1	2.22 acres
Basin/Watershed Name/Number	Affect	ed Waterbody (Class)		Special Classificati	on (i.e.OFW,	AP, other local/state/fede	ral designation of importance)
HUC - Kissimmee River	Class	III		none			
Geographic relationship to and hyd	rologio	connection with wetlan	ds, other su	urface water, uplar	nds		
WAA is an isolated depression. Th to a man-made open water feature							South which is connected
Assessment area description							
Kidney shaped small isolated depre appears recently burned. Marsh is nice open patches of sand.							
Significant nearby features				Uniqueness (conside	ering the rela	ative rarity in relation to	the regional landscape.)
TM Econ mitigation bank to the West. NE bordered by county lands, Moss Park. Lake Mary Jane and Lake Hart border property.			nds, Moss	Herbaceous marshes are not rare but should be considered in a context of the natural landscape of flatwoods and scrub which are often desirable for development. Nearby areas are under significant development pressure. Probably not much of this kind of landscape under protection regionally.			
Functions				Mitigation for prev	vious perm	nit/other historic us	e
Important breeding and foraging ha support different assemblage of sp wetlands. Flood storage, aquifer re	ecies 1	han larger more permar					
Anticipated Wildlife Utilization Base that are representative of the asses be found)				Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Mole salamander, tiger salamander, dwarf salamander, oak toad, cricket frog, pinewoods tree frog, barking frog, squirrel frog, southern chorus frog, narrowmouth toad, eastern spadefoot toad				Sandhill crane (T), Woodstork (E), Gopher Frog (SSC), White Ibis (SSC)			
Observed Evidence of Wildlife Utiliz	zation	(List species directly obs	served, or o	ther signs such as	s tracks, d	Iroppings, casings	nests, etc.):
Many many oak toads (hard not to step on them), Recent looking armadillo hole in the middle of the wetland, Deer tracks, Dead eaten crawfish (not recent), Sandhill Crane flew over head, Many grasshoppers, Tohees					Dead eaten crawfish		
Additional relevant factors:							
Pieces of palmetto trunk in the wetland, not sure what to make of them. Dead Juncus effusus patches. Deep large ditch South of wetland. Marsh is bone dry Hypericum spp. edge is uniformly dead. Some very tiny plants coming up that look like could be Hypericum spp. Mermaiod-weed Proserpinaca spp. and Pontederia cordata growing in dry conditions. Algae crunchy on wetland bottom. Historically there were cattle. Evidence of Juncus effus (which cattle do no eat) but most of it is dead. Evidence that young Lyonia lucida is coming back from fire. Most all shrubs are dead including Myrica cerifera and Hypericum specified in the marsh and landscape. At time of assessment we do not know any details about the fire that occured here. Maitenance, restoration technique? Trying to kill all shrubs? Unspecified DOS archaeological sites on the bank. Some of the herbaceous plants have yellow color towards their base Fuirena scripoidea looks like it could be stressed. Water stains are 6-8 inches deep. Maybe water here is flashy?					oserpinaca spp. and ffus (which cattle do not ifera and Hypericum spp. enance, restoration		
Assessment conducted by:				Assessment date	(s):		
EH. KCR				8/9/2005			

SplO $_MAR$ Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number	Assessment Are	Assessment Area Name or Number	
Split Oak mitigation bank		NA		SpIO_MAR	
Impact or Mitigation		Assessment conducted by:	Assessment date	Assessment date:	
mitigation	bank	EH, KCR		8/9/2005	
Cooring Cuidance	Ontime 1 (40)	Madausto (7)	Minimal (A)	Not Decemb (C)	
Scoring Guidance The scoring of each	Optimal (10)	Moderate(7) Condition is less than	Minimal (4)	Not Present (0)	
indicator is based on what would be suitable for the type of wetland or surface water assessed Condition is optimal and fully supports wetland/surface water functions		optimal, but sufficient to maintain most wetland/surface waterfunctions	Minimal level of support of wetland/surface water functions	Condition is insufficient to provide wetland/surface water functions	
.500(6)(a) Location and Landscape Support w/o pres or current with	present in adjacent area al canal as access limiting. La	utside, has large ditch to the S though one <i>Lygodium</i> sp. plan and use practices somewhat lin act but only partially, water leve	nt seen in nearby cypress. So mit water level and therefore	ome wildlife obstruction by the wildlife habitat- perhaps	
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	seemed uncharacteristic for the wetlands on the bank. Wis Unsure of the use of fire in the shrubby edge mostly Hype purpose. Zonation is mixed Some gaps in zones (just bacould be due to hydrologic st	in in the marsh but being that the seasonality. There are appropriater stain lines appear appropriates appropriate stain lines appear appropriate marsh. Evidence of recenticum spp. and Lyonia lucida d and messy and at times inapre ground) instead of concenticuss. Armadillo hole in wetlar bund. Hundreds of oak toads	propriate water level indicator riate. Soil moisture is dry for t fire suggest it was a very ho . However this could have be popropriate, ie: saw palmetto tr ric rim. Vegetation does show nd does not appear appropria	is but not as distinct as other a marsh for early August. It fire, looks like 100% kill of een a technique applied on unks in open marsh areas. It is some yellowing stems and te for the center of a marsh.	
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with 7	variable. Some chlorotic because of fire intensity and	odd zonation. Exotic and or ni e and spindly vegetation. Lanc canal lowering the water table han anticipated, some elevate	d management has caused a a and standing water levels. T	shift in plant community opographic features greater	
Score = sum of above scores/30 (if	If preservation as mitigate	ation.	For impact asses	sment areas	
uplands, divide by 20)	Preservation adjustmen				
current pr w/o pres with			FL = delta x acres =		
0.70	Adjusted mitigation deli	ia =			
	J 				
	If mitigation		For mitigation asse	essment areas	
Delta = [with-current]	Time lag (t-factor) =		-		
	Risk factor =		RFG = delta/(t-factor x	risk) =	
			<u> </u>		

SplO _MAR Wetland Rapid Assessment Procedure, page 1

Project Name: Split Oak mitigation bank SplO_MAR

Date: 8/9/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Isolated depression marsh in a scrubby flatwoods, xeric oak landscape.

Other isolated wetland features in the landscape. Nearby ditch feature runs perpendicular to wetland and

connects a dug out surface water feature and another wetland offsite. Wetland is very dry at time of assessment.

Wetland Assessment Area: 2.22 acres

FLUCCS Code/Description: 6410 Freshwater marsh.

2.0	Wildlife Utilization (WU)		
N/A	Wetland Canopy (O/S)		
2.0	Wetland Ground Cover (GC)		
2.4	Habitat Support/Buffer		
1.5	Field Hydrology (HYD)		
3.0	WQ Input & Treatment (WQ)		
10.9	SUM		
5	Count		
0.73	WRAP		

SplO _MAR Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Evidence of mammals bedding down in marsh vegetation. Lots of oak toads. Pieces of crayfish, armadillo hole in marsh. Numerous insects. Wetland is dry now, couldn't support fish. Adjacent landuses have upland support for expected wildlife. Nice adjacent flatwoods being managed with fire. No frequent human disturbance besides the ditch to the South. Can't support all expected wildlife for a marsh in its current dry state. Especially this would effect wetland dependant species such as wading birds, amphibians and fish.

N/A Wetland Canopy (O/S)

There is no living shrub layer.

2.0 Wetland Ground Cover (GC)

Panicum hemitomon, Amphicaprum muhlenbergianum, Proserpinaca spp., Polygonum spp. Some ecotone species in the interior or the wetland zone. Hypericum spp. edge dead from fire. Open patches with dead Juncus effusus. Some very small Pontederia cordata in dry interior areas. No exotics seen. Species are desireable but there are some upland, ecotone species that could be considered undesireable in the wetland interior. Some plants look stressed. <10% big empty or dead patches. Unusual that the wetland is this dry.

2.4 Habitat Support/Buffer

Buffer is > 300 feet average; connected by natural landscape to other wetlands. Desireable plants in buffer. There is a canal feature about 35 meters South of WAA. Other wise the wetland is surrounded by high quality conservation lands.

Buffer Type	(Score) x	(% of Area)	= Sub Total
N, W, E	3	0.75	2.25
S	0.5	0.25	0.125
		Total -	2 275

1.5 Field Hydrology (HYD)

Possible external effect from large canal about 100 feet South of wetland. Marsh is very shallow. Distinct water marks on wetland vegetation. Algal mats. No water present at this time which seems unusual for this time of year. Vegetation appears stressed. Some ecotone and upland plants in the wetland. Does appear wetland will persist based on wetland indicators and plant and animal species. May not be optimal support though.

3.0 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total
natural undeveloped area	3.0	1.0	3.0
		LU Total =	3.0

PRETREATMENT CATEGORY (PT)

PRETREATMENT CATEGORY (PT)					
Pretreatment					
Category	(Score) x	(% of Area)	= Sub Total		
nat. undeveloped area	3.0	1.0	3.0		
		PT Total =	3.0		

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

SplO $_$ MAR Hydrogeomorphic Approach, page 1

Variable Subindex and FCI Calculation for Florida Depressions Marsh

Assessment Team: KCR, ECH **Project Name:** SpIO _MAR

Location: 28 degrees 21m 9.85s/ -81 degree

Date: 8/9/05

Subclass: herbaceous depression

Function	FCI
Surface Water Storage	0.92
Subsurface Water Storage	0.71
Cycle Nutrients	0.92
Characteristic Plant Community	0.53
Wildlife Habitat	0.56

Variables	Measure	Units	Subindex
V CATCH	14	%	0.85
V upuse	100	%	1.00
V WETPROX	3860	meters	0.10
V WETVOL	0	%	1.00
V surout	22	%	0.78
V subout	100	%	0.00
V ZONES	1	number	0.50
V MAC	82	%	0.87
V SURTEX	100 L.S. and S	%	1.00
V HCOMP	25	%	0.25

SplO _MAR Hydrogeomorphic Approach, page 2

Vcatch

Size of original catchment 3.44 ha Size of current catchment 2.95 ha

Vupuse

native range flatwoods cover type curve # 79 percent 100%

Vwetprox

Sector 1	Sector 2	Sector 3	Sector 4
500m	500m	500m	360m
Sector 5	Sector 6	Sector 7	Sector 8
500m	500m	500m	500m

Vwetvol no change

diameter	diameter	depth of	length of	width of fill	average
wetland	wetland	wetland	fill	material	thickness
north-	east-west	0.3048m	material		of fill
south	78m				material
131m					

Vsurout Difference is elevation of bottom of ditch and bottom of wetland 1.22m 22% Lateral effect of ditch 78m; distance of ditch to wetland 26 m

Vsubout Difference is elevation of bottom of ditch and bottom of wetland + 6in 1.37m 100% Lateral effect of ditch 219m; distance of ditch to wetland 26 m

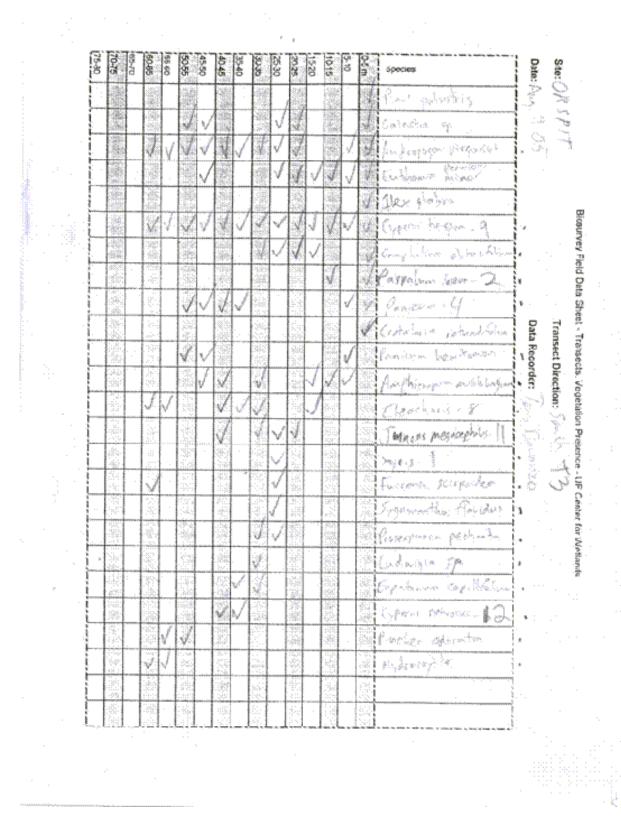
Vzones two to 1, disturbance in whallow marsh

Vmac 29/35 82%

Vsurtex sand and loamy sand

Vhcomp

shallow marsh zone 20 cyperus spp. 20 *Panicum hemitomon* 20 *Gnaphalium spp.* 20 *Xyri*s


SpIO_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 1 *NOTE: field codes are different than reported codes, SpIO_MAR = ORSPIT

	75-80	70.75	95-70	80-65	55-60	50-55	45-50	4045	35.40	30-35	8	20.25	5-20	10-15	6	050	Species	Date: As. 7.05
				ď.	1		4	3	V	ď	V	ý,	V	V			Desperous had prim	> 9
7	2			×	V	ý.	V.	2		7			V		-		Andropena wigalita	
Ĵ.				Q2		ų2	v'	V		V.			V	V			(Fleatures of (3P)	
				SP.	1							V	V	V	V	900	Production Statements	1
				1		J	Ź					Z	V	V	V		Thicker comment	
1 4				W.	V	¥.	1			4				7	V	1	rynd throughthan	(E)
				Ż	V		V	V		1930 983		300 1888					Hughandauth sp.	
		1800 1803 1803		V		35					V	80) (2)				200	Blagwikisam awiliki	darin
					V		V										Dlevelonisty 13	
		86		(a.c.		ŷ.	V	Ż	1	v.	V	V.	V	V.			Care second Second Street	Tran
						V.	V	V.				1					Proservingia Verstrate	Transect Direction: Data Recorder:
		#\/P				×	V	084 386	V	927 900	V.	1				:1/4:	Lyperki sehwan (Z.	olirect
- 1						-85 -85	1	**		Ý		700 700		700 200 200			the design of the	Ö,
								V				700 7000 8mi-	:::	Š		X	Paraghagagaga makkir	444-S
								V	Z	V.	V	V			V		Parisium 4	3
1	-							Z	Ÿ					:08			Paspalana lates 2	
										v		-356 -350	V		V	V	for a population debug	y Carry
						Š			-	×			V.			100	Euthama minor	
į	٠,			36		9						¥.		8			Washing ou significa	,
						No						40		ď		Cod.	Eriaconton Spir	
										24				X		2	Suggerantus Ale	a.
				4				×				33		Ñ	Ž,	7	Saeria 5	
į								ä				38			V		Palagrapose 14	
1		Í														7	Yours Spr. 1 suppl	
1		1	J											18		V.	Alsopenan gra.	
																V	hydrica ducida.	

SplO_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 2 *NOTE: field codes are different than reported codes, SplO_MAR = ORSPIT

	iè	7075	93-70	89.08	55,480	50-55	4550	40.45	35-40	30.36	26	2025	1520	1015	상	20	Species	Date: As 1 Of
*	l			4				1		V	V	V	7	Z			Opporis height 1	3-8
				- jida - jida						J	V	J		4		1	Antoppon cognition	T
			Г							1	V					1,1500	Hydrotte q.	2
. 3	-			lä				E		4	V						Cleadhers - V	t L
			Ī							ā	7				Г		Ampropri Forceton 10	
	Ī	180		300								V	V				Printery more postumber	
	ĺ	. 100 150	Γ					i i				7				-	Egireno gurpideo.	
	-	38				10						7	1	V	V		Park printer living (from	
ii: :			I										1		Г	1	Plivelies oderation	t ·
	F		Г	33					-					7	v	-	Eromanilan sy	Data
	ĺ											332	1	1	-		Synam-Show America	Reco
		- 80 - 60 - 60)ik 324								916 1930		-540) (938)	V	10000	Selection - 3.	Direct
				12		2		92				::0 ::00		303		+	Anglicospiem milestery	Transect Direction: Codd
	-												7	:::: :::::::::::::::::::::::::::::::::		V	Constalin daughte	15.5
										: 31.							byonia lucida.	
		617 134				(2.5 (2.5)		. \$3 . \$4		1/4		45 45				F 57.6	Drusero Sp.	£ 35
								300		39		N.		:04 200			Pancian - 4.	
		188		8				- 345 - 366 - 366		1014 100 100 100 100 100 100 100 100 100						¥	Xyust-	
	į					193								Ø.		38		
4	1					.812 (389		(48) 288		ě.		186 186		93		280 286		
	Ĺ	1985		30								70 ; 333		36 36				
								7.0		S.		300 a 300 a		28.		333		
										\$				6.9 ,889 -33		copia Joseph		
	1	: 380 ::384 ::115		18				96				. 50 Y S		S.				
	man or income							-834 				N an				90		

SplO_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 3 *NOTE: field codes are different than reported codes, SplO_MAR = ORSPIT

SpIO_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 4 *NOTE: field codes are different than reported codes, SpIO_MAR = ORSPIT

											*					K. Carlon		
٠	75-80	70-75	9	60-65	55.75	8 6 8 8	60-6	35-40	30-36	25.00	20.25	16-30	10-15	5.5	900	Species	Date:	Site:
	1						7,85 1,85		58E 620		018 010		388	J	¥	Guyanna satusation	Do E	47
												Г			10000	Provingentustris	Date: Aya Co.	BEC. WG
		100 100 100 100 100 100 100 100 100 100												,	J.	Lyana Intida	Ş	
٠.:				200		(1) (2) (3)	Ť					Г		J	J	Remarket Parket		
	. 4::		9	ķ. ķ	<							7		V		Complication and principles		
	75				8									Ĵ		Hypiergus Euristideur		
	1.5										8100	J			V	Persistante pertuata		
							T	-		İ	200 200 200 200 200	-	5000 336 336	,	7	Xyrs 1 regular		
	10					Vana			ä		V	7		J		Replin 1982 2		
35	0						333					1 7			1		Dat	Tro
ė							9385	-		-	J				1	Pen-cum	Data Recorder:	Transect Direction: W.C.
							1984 1986 1986		887 300 887		1		1		9	Clear and systems	order	Direc
									483 483 833	-	0.31	7			-		-)	tion
	-						100	-	- C (2)			y.	7	7	787	E C CEC		1
	H	30 I	-			387 387				-			1	J	-	Pluchen obserted.		3
				100						-	7	-	. Y.	1		Kus N. C. C. C.	Desc. 2	
									62 66		V		7	. ¥.		KATTO TO THE STATE OF THE STATE	2	أنبر
		Z	. 1						***		13 S		7		0.777	Polygala cymosa		
			-						7	-	7	7	1	-	77.75			
	-			(3) 1866					33	-	Wa.	V			285 388	Handaratagun ranganicus Tanicum hamilanain e S	sa G	11B)
		iin See		1953 1919		1924 - 1924 -	13 ga 1935		2			.7	V					
						38		:	20			· /			00.00	Eugalepun Cayillalist		
			-			1874 - 1 1880 1880			7	/		W				Hydrocoy the fi		
	H	33 45		-300 -300 -300		37			1	V	7				-	***************************************		
	H			607 NG	-	- 1861 - 1864	332	-	¥/	$\tilde{7}$	7	۷		-		(Pare 12/6/085-7)		
	L		J		l	1			×.	<u>Y</u>					Name and	Eleocharis 18		
								1	V	¥				- Same	· · · · · · · · · · · · · · · · · · ·	Juneus effects		
									/			-majorj.co		·********	-	Cyperia Leurpar - 9		

SpIO_MAR Florida Wetland Condition Index, macrophyte field data sheets, page 5 *NOTE: field codes are different than reported codes, SpIO_MAR = ORSPIT

ORSPIT
Λ
TO XULLES CLEANED ROLL DOCTION OF ROMANDON
The state of the s
3 Rhynchospace Pasciculars
Y Panson enstatur
5 Scheria reticularis
6 Syperial Cetrosus
7 - Land Carlo duction
-8 Eleochanic obvacea & organization
9 Cyperus harpen leconies
(D) Axoragas forcative
11 Juneus mesocopholas scripolas
17 Curerus matrains
-13 Elegitoris olvaces
1 1 1 NBQ / CROSSORS 45 F 5 B 5 B BB
15 York (wide black) - noit
Upland - School Trayen polosista Gertain polosis
Gordon politic

Appendix B-25. Sundew Mitigation Bank

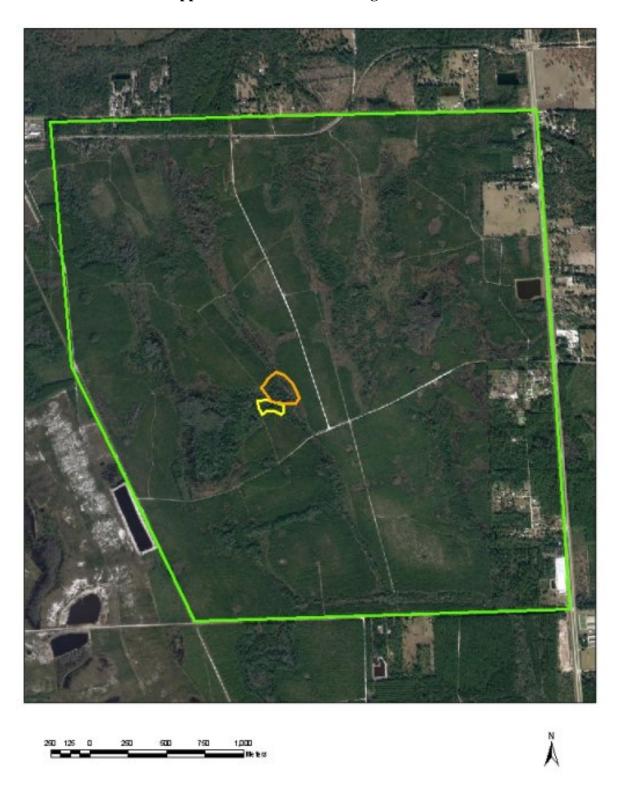


Figure B-25.1. Landscape location of Sundew Mitigation Bank (green line). Boundary of the wetland assessment areas Sun_FOR_1 outlined in orange and Sun_FOR_2 outlined in yellow.

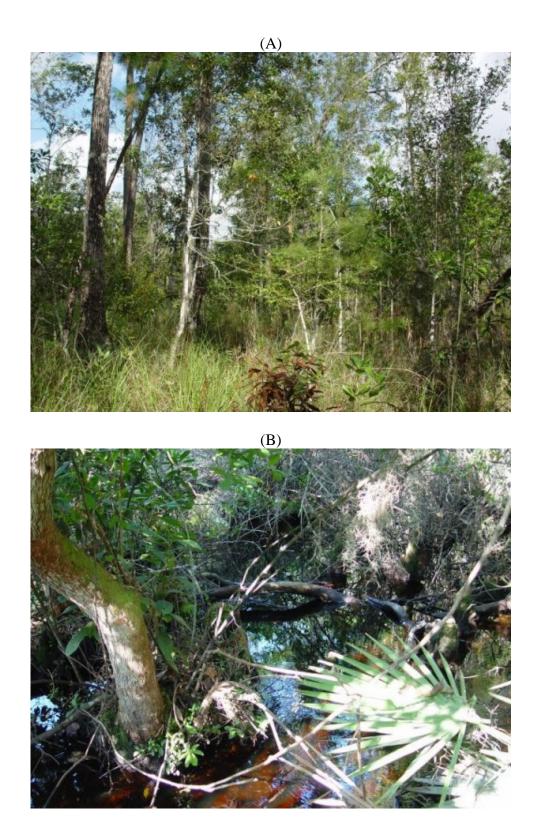


Figure B-25.2. Site photos of assessment areas (A) Sun_FOR_1 and (B) Sun_FOR_2 at Sundew mitigation bank. At the time of site visit little mitigation activity had been initiated.

$Sun_FOR_1\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

Site/Project Name		Application Number	er	Assessment Area Nam	Assessment Area Name or Number			
Sundew Mitigation Bank		NA		Sun_FOR_1				
FLUCCs code	Further class	ssification (optional)		Impact or Mitigation Site?	Assessment Area Size			
6300 Wetland Forested Mixed	codominant	forested wetland patch t species, some cut stu in high intensity silvicul	mps, hog rooting.	Mitigation Bank	3.3 ha (8.2 ac)			
Basin/Watershed Name/Number HUC 03080103 Lower St. John's River	Affected Waterbody Class III	y (Class)	Special Classification (i.e.OFW, AP, other local/state/federal designation of importance) None					
Geographic relationship to and hyd	rologic connection	with wetlands, other s	urface water, uplar	nds				
Continuous forested wetland syster John's River, an Outstanding Florid								
Assessment area description								
One area with more closed canopy so scored as one system - clearly the			ed by cut stumps)	and hog rooting - all is one	contiguous wetland and			
Significant nearby features			Uniqueness (co landscape.)	nsidering the relative rarity in	n relation to the regional			
Bayard Conservation Area to NE at Florida Ecological Greenways data miles from Critical linkage, high pric Because of this it is possible to hav if the linkage was established.	layer as low priori prity ecological gre	ty. Site is about 3 eenway to the West.	Much of this area has uplands in silviculture, this area is not					
Functions			Mitigation for pre	vious permit/other historic us	se			
Surface and subsurface water stora habitat. Provides structure for birds		ing. Provides wildlife	Has been in activ	e silviculture.				
Anticipated Wildlife Utilization Base that are representative of the asses be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)					
Turtles, frogs, alligators, woodpeck bobcat, deer, fish, salamanders.	ers, wading birds,	osprey, raccoon,	Florida black bear T; Little Blue Heron; American Alligator; White Ibis, Snowy Egrets, Tricolored heron, glossy ibis are all SSC					
Observed Evidence of Wildlife Utiliz	ation (List specie	s directly observed, or	ther signs such a	s tracks, droppings, casings	, nests, etc.):			
Observed Evidence of Wildlife Utilization (List species directly observed, or other signs such as tracks, droppings, casings, nests, etc.): Some extensive areas of hog rooting which has removed ground cover and food sources for the other wildlife, some of rutting could be remnants or logging practices. No evidence of alligators necessarily but evidence of deer, did have standing water, some amphibians noted, should support wading birds, adjacent food source somewhat limited by thick vegetative growth in midstory/shrub layer and lack of spp. with desirable food sources - west side has more food and cover available because it is slightly more open and has more desirable spp. Area with apparent and regular human disturbance (timber activities). Common yellow throat, game trails, leopard frog, deer tracks on edge, fish eating spider, many red spiders, nursery spider webs, swallowtail butterfly, fish swirls in water.								
Additional relevant factors:								
Soils include Allanton and Rutlege, overlap. FWCC Priority Wetlands v			h is poorly drained	. FWCC Biodiversity Hotsp	ots with 5-6 focal species			
Assessment conducted by:			Assessment date	e(s):				
Kelly Chinners Reiss, Erica Hernan	dez		9/30/2005					

Sun_FOR_1 Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number		Assessment Area Name or Number		
	on Pank	NA				
Sundew Mitigation	OH BAHK				Sun_FOR_1	
Impact or Mitigation		Assessment conducted by:		Assessment date		
Mitigation Ba	ank	Kelly Chinners Reiss, Erica	Hernandez		9/30/2005	
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	Minimal (4) Not Present (0		
The scoring of each	\	Condition is less than	Minimal		O a maliki a mai a i a a a a a	G: -: 4 4 -
	Condition is optimal and fully supports wetland/surface	optimal, but sufficient to maintain most		evel of support of l/surface water	Condition is insuf provide wetland/	
type of wetland or surface	water functions	wetland/surface water		unctions	water function	
water assessed		functions				
.500(6)(a) Location and Landscape Support strength with 6 S S S S S S S S S S S S S S S S S S	connected to wetland and str lightly limited due to bedding ediment deposition from sup includes significant adverse impediments). Downstream g nis wetland and certainly not connected wetlands (of same uppressed, is difficult to trav silvicultural slash pine (<i>Pinus</i> vidence for water flow, level- toop roots. No evidence of so enthic community zonation a indicative of appropriate hydrivater quality degradation nor	essment area provide supportand features. No invasive exity and rutting, and thick bedded portarea (some ditch type feimpacts). Ability to provide be jets some benefits, probably vivillating to a constitution of the feature of the	cotics or other dispersions or other planta catures). Out the planta catures). Out the planta catures of the planta catures and planta catures and catures and catures catures and catures cat	er undesirable plaration. Downstrear tside land uses impastream not limited uffer adverse impastream and scape has low I does not provide ters wetland hydrostinct moss collars o evidence of atypicanopy or signs o using wetland. No on. Standing water	nt species. Wildlife n effects include in pact fish and wildlif (example: no flow cts because of chae. Landscape incluspecies richness, i optimal habitat structural plogy. Not a great of and lichen lines, scal fire. Vegetation finsect damage. Svegetation indicati	e access creased fe anges to ides is fire ucture.
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or	raminoid species. Invasive ormal. Age and size class of onsidered a permanent deviog damage, though more not enerally good. Land managee) and water control (beds leviation for the wetland (loss	irable species, but lack of rict and exotic species not preser leviated because of logging wation in age and size class. Cormal and appropriate in more ement includes fires suppres & troughs). Uplands will be his of support, edge effect, etc.; high coarse woody debris and gal growth.	nt. Recruitm vith cut stum Coarse wood e closed can sion and sor harvested ag.). Topograp	nent and regeneral ps, through regen dy debris greater the opy area versus ru me removal of nati gain soon resulting whic features appea	tion of canopy speceration near-normathan expected in areutted area. Plant cural structure (harvu) in another temporar appropriate in cle	cies near- al. Not ea with condition rest of rary osed
Score = sum of above scores/30 (if	If preservation as mitiga	ation,		For impact assess	sment areas	
uplands, divide by 20)	Preservation adjustmer	nt factor =				
current or w/o pres with	Adjusted mitigation delt	a =	FL =	delta x acres =		
0.67	, lajastea miligation dell					
	If mitigation	-				
Delta = [with-current]	If mitigation Time lag (t-factor) =		F	or mitigation asse	ssment areas	

Sun_FOR_1 Wetland Rapid Assessment Procedure, page 1

Project Name: Sun_FOR_1 - Sundew Mitigation Bank

Date: 9/30/05

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez & Tony Davanzo

Wetland Type/Description: One area with more closed canopy, one area with more harvesting

(evidenced by cut stumps) and hog rooting - all is one contiguous wetland and so scored as one system

clearly the same wetland type.

Wetland Assessment Area: 3.3 ha (8.2 ac)

FLUCCS Code/Description: 6300 Wetland Forested Mixed

2.0	Wildlife Utilization (WU)				
2.0	Wetland Canopy (O/S)				
1.5	Wetland Ground Cover (GC)				
2.0	Habitat Support/Buffer				
2.5	Field Hydrology (HYD)				
1.6	WQ Input & Treatment (WQ)				
11.6	SUM				
6	Count				
0.65	WRAP				

Sun_FOR_1 Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Common yellow throat, game trails, leopard frog, deer tracks on edge, fish eating spiders, red spiders, nursery spider webs, swallowtail butterfly, small fish in water. Some extensive areas of hog rooting which has removed ground cover and food sources for the other wildlife, some of the rutting could be remnants of logging practices. No direct evidence of alligators, but evidence of deer. Did have standing water, some amphibians noted, should support wading birds. Adjacent food source somewhat limited by thick vegetative growth in midstory/shrub layer and lack of species with desirable food sources - west side has more food and cover available because it is slightly more open and has more desirable species. Area with apparent and regular human disturbance (timber activities). Wetland itself provides decent habitat for wildlife and connections to other wetland systems.

2.0 Wetland Canopy (O/S)

No invasive exotic species. Open sparse overstory (due to logging) allowing much light in. Regeneration and recruitment noted for many species including pondcypress (*Taxodium ascendens*). Many trees are mature, some immature. No excessive mortality - some habitat support (not optimal because of open canopy).

1.5 Wetland Ground Cover (GC)

No exotic or invasive species. Ground cover mainly desirable species - impacted from hog rooting in certain areas (some with no growth at all) of wetland (particularly more open eastern edge). Some parts with excessive woody debris and lack of species and lack of ground cover structure (from logging).

2.0 Habitat Support/Buffer

Buffer >300' no nuisance or exotic species (>75% undesirable non-invasive plant species as those associated with slash pine (*Pinus elliottii*) silviculture). Plant species do not provide optimal support. Undesirable species throughout planted pine some food cover and roosting available, especially in adjacent or nearby wetland systems (though these are not optimal as they have been logged also).

le	Buffer Type	(Score) x	(% of Area)	= Sub Total
e	Plantation Pine	1.5	0.5	0.8
	Wetland	2.5	0.5	1.3
e -				
nt				

Total =

2.5 Field Hydrology (HYD)

Hydrology adequate, many wetland species were regenerating. Lichen lines and moss collars not as distinct as expected (in areas with heavy woody debris) - also water not as clear here and sheet flow somewhat impeded with rutting and hog damage. Some changes to hydroperiod anticipated. Uplands have been bedded - have been logged and rutted and woody debris influencing. No upland transitional species in wetland. No soil subsidence evident.

1.6 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
Plantation Pine	1.0	0.50	0.5
Wetland	2.5	0.50	1.3
			0.0
		LU Total =	1.8

PRETREATMENT CATEGORY (PT

FRETREATMEN	CHILOOK	1 (11)	
Pretreatment			
Category	(Score) x	(% of Area)	= Sub Total
Plantation Pine	0.0	0.50	0.0
Wetland	3.0	0.50	1.5
			0.0
		PT Total =	1.5

Additional Notes:

Plantation Pine given the land use score of citrus due to the bedding, changes to hydrology, and potential application of fertilizers and pesticides.

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

$Sun_FOR_2\ Uniform\ Mitigation\ Assessment\ Method,\ page\ 1$

Site/Project Name			Application Numbe	r		Assessment Area Name	or Number		
Sundew Mitigation	ı Bank			NA		Sun_I	FOR_2		
		. I '£'	# (# 1)			_			
FLUCCs code 6300 Wetland Forested Mixed	Impa ny Swamp, but this area had more bay (<i>Gordonia lasianthus</i>), though list not have been distinct enough to as 6300 Wetland Forested Mixed			et or Mitigation Site? Mitigation Bank	Assessment Area Size 1.1 ha (2.7 ac)				
Basin/Watershed Name/Number HUC 03080103, Lower St. John's River	C 03080103, Lower St. John's				Special Classification (i.e.OFW, AP, other local/state/federal designation of importance) none				
Geographic relationship to and hydrologic connection with wetlands, other surface water, uplands Flows south into adjacent wetland system and eventually flows east into the St. John's River. Similar nearby wetlands exist throughout area, though most are in similar condition, which means that these wetlands have been harvested in the recent past. Receives run-off from adjacer pine plantation (heavily bedded from past earth moving activities). Assessment area description This wetland assessment area should be characterized as floodplain forest, though the strip of remaining floodplain vegetation had been greatly reduced from past logging activities and bedding for pine plantation continuing into the wetland. There are occasional pondcypress (Taxodium ascendens) in the canopy with some large loblolly bay (Gordonia lasianthus) throughout. Water flows in a distinct natural channel, connecting to							run-off from adjacent ion had been greatly cypress (Taxodium		
other wetlands throughout the bank Significant nearby features	No evidence	of pond	cypress regenerat	Uniqueness (co	nsider	ing the relative rarity in	relation to the regional		
Bayard Conservation Area to NE across US 17. Lower portion of bank is Florida Ecological Greenways data layer as low priority. Site is about 3 miles from Critical linkage, high priority ecological greenway to the West Because of this it is possible to have black bears on this property, especia if the linkage was established.				Much of this area has uplands in silviculture, this area is not					
Functions		Mitigation for prev	/ious	permit/other historic use	?				
Surface and subsurface water sto habitat. Provides str	•	, ,		Has been in active silviculture.					
Anticipated Wildlife Utilization Base that are representative of the assesbe found)			•	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)					
Turtles, frogs, alligators, woodpe bobcat, deer,	eckers, wading fish, salamand		sprey, raccoon,	Florida black bear T; Little Blue Heron; American Alligator; White Ibis, Snowy Egrets, Tricolored heron, glossy ibis are all SSC					
Observed Evidence of Wildlife Utiliz	zation (List spec	cies dire	ctly observed, or o	ther signs such as	s track	ks, droppings, casings, i	nests, etc.):		
Pileated woodpecker, white eyes vi identified, deer tracks in support lar				all fish expected t	ecau	se of movement in wate	r but none visually		
Additional relevant factors:									
FWCC Biodiversity Hotspots with 5	o. FWCC Priority	Wetlands with 1-3	speci	es, upland habitat.					
Assessment conducted by:				Assessment date	(s):				
Kelly Chinners Reiss, Erica Hernan	dez			9/30/2005					

Sun_FOR_2 Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name			Application Number		Assessment Area Name or Number		
1	dew Mitiga	ation Bank	NA NA		9	Sun_FOR_2	
Impact or Mitigation			Assessment conducted by:		Assessment date):	
'	Mitigation	Bank	Kelly Chinners Reiss, Erica	Hernandez		9/30/2005	
					l		
Scoring Guidance The scoring of each		Optimal (10)	Moderate(7) Condition is less than	Mi	nimal (4)	Not Present	(0)
indicator is based on wh would be suitable for the type of wetland or surface water assessed	е	Condition is optimal and fully supports wetland/surface water functions		wetland	evel of support of /surface water unctions	Condition is insuffi provide wetland/s water function	urface
	!		L	1		<u>I</u>	
.500(6)(a) Location Landscape Supp w/o pres or current 7		planted pine to edge. Does r Wildlife access somewhat lin mammals. Downstream not negative impacts. Impedime	essment area available for maleed fire. Has shrubby buffer hited by barriers - though not limited, flows not impeded. Lints and flow restrictions not ling for a water source. Water displays	ing habitat. necessarily f and uses ou mited. Dowl	No invasive, exoti for smaller aquatic tside wetland asso nstream areas get	c, or nuisances spec species but perhap essment areas have some benefits but r	cies. s larger e not
Water levels and flows appeared appropriate. Indicators consistent, including moss collars at trees in channel hummocks, cypress knees. Soils indicated, no erosion or deposition. Channelized flow not incised. Shallow channel with clear cool tannic water. No evidence of atypical fire history. Vegetation zonation appeared appropriate (n/a for uplands) No evidence of hydrologic stress. Species indicative of specific water requirements included fish. Frogs note nearby but not in flowing stream. No species characteristic of water quality degradation or changes in freque inundation. Standing water clear and appropriate - no turbidity, discoloration, oil sheen. Ditches and rutting throughout watershed caused assumed changes to hydrologic functions, though perhaps slight. Score may be higher than appropriate but lack of significant, clear evidence led to this high score - could have been lower, perhaps an 8. This area is scheduled for upland (support area) clear cutting which will have dramatic effects water quality and quantity within this wetland. Much of the support area has planted pines within the surround						v, broad ropriate. ed ency or be	
Some large pondcypress (<i>Taxodium ascendens</i>) remaining after harvest, but mature canopy lacking. Majority of cover by appropriate species, but species richness was lacking and there was a very thick shrub layer. A generalized for pondcypress occurrence was noted. No invasive or exotic species. Have been deviations to age and size class distribution, but not permanent with regeneration and restoration. Level of coarse woody debris appropriate though slightly higher standing stock of shrubs than anticipated. Stream not full of downed logs. Some snags, a pileated woodpecker was making cavities during our site visit. Area was probably too wet to log out the largest trees, so this area has slightly greater habitat support than some other areas of bank. Plant condition generally good. Land management practices include fire suppression and some water control features, plus harvesting we be done in support upland soon. Topographic features optimal - some decent size hummocks in and around the creek channel. No siltation or algal growth.							eneral d size oriate gs, a est ally
		ı					
Score = sum of above sco uplands, divide by		If preservation as mitigate	ation,		For impact assess	sment areas	
current or w/o pres	with	Preservation adjustmen Adjusted mitigation deli		FL=	L = delta x acres =		
0.77							
P		If mitigation		F	or mitigation asse	ssment areas	
Delta = [with-curre	ent]	Time lag (t-factor) =	<u> </u>				
		Risk factor =		RFG	= delta/(t-factor x	risk) =	
				-			

Sun_FOR_2 Wetland Rapid Assessment Procedure, page 1

Project Name: Sun_FOR_2 - Sundew Mitigation Bank

Date: 9/30/05

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: scored as blackwater stream and floodplain forest. Should have cypress and black gum as co-dominants. Cypress remnant canopy (past logging) with some large loblolly bays throughout.

Wetland Assessment Area: 1.1 ha (2.7 ac)

FLUCCS Code/Description: 6300 Wetland Forested Mixed

2.0	Wildlife Utilization (WU)				
2.0	Wetland Canopy (O/S)				
3.0	Wetland Ground Cover (GC)				
2.0	Habitat Support/Buffer				
2.5	Field Hydrology (HYD)				
1.6	WQ Input & Treatment (WQ)				
13.1	SUM				
6	Count				
0.73	WRAP				

Sun_FOR_2 Wetland Rapid Assessment Procedure, page 2

2.0 Wildlife Utilization (WU)

Deer tracts in support landscape, damsel flies, white eyed vireo, pileated woodpecker, crickets, whirly gigs, small fish expected because of movement in water, none visually identified. Some use by large and small mammals and aquatic macroinvertebrates. Adequate adjacent habitat (upland food source and cover). Much cover in wetland - very shrubby with vines creating difficulty for large mammals to traverse.

2.0 Wetland Canopy (O/S)

Overstory of remnant pondcypress (Taxodium ascendens) with some black gum (Nyssa sylvatica var. biflora). Midstory of loblolly bay (Gordonia lasianthus) - some very large trunks. Also some sweet bay magnolia (Magnolia virginiana), swamp bay (Persea palustris), wax myrtle (Myrica cerifera), evergreen bayberry (Myrica heterophylla), and highbush blueberry (Vaccinium corymbosum). Saw palmetto (Serenoa repens) on edges fairly high and somewhat thick. Very few big trees and much shrub cover. No exotic or invasive species. Does provide habitat support. No pondcypress regeneration noted. Some sweet bay magnolia regeneration. Some snags and den trees. Healthy canopy trees but lack of large canopy trees. Large gaps in canopy with thick shrub layer (logging and fire suppression effects). No undesirable species. Provides some habitat - not optimal though - too sparse canopy and too thick shrub layer.

3.0 Wetland Ground Cover (GC)

No exotic, invasive, or nuisance species. Thick shrub layer so very shaded and little ground cover but what was there was desirable. Ground not rutted up like support area. Mostly just noted Virginia chain fern (Woodwardia virginica).

2.0 Habitat Support/Buffer

>300' buffer. No exotic or invasive species. Dominated by pine plantation with undesirable native species, though not immediately adjacent. In buffer area, mainly ok species, some cover, food, roosting available - difficult to get through. Connection to wildlife corridors. Species richness in buffer not high, but does give some cover, food, etc. Some areas with loblolly bay (*Gordonia lasianthus*) as monotypic canopy. Unimproved grass road could act as a wildlife corridor for some species access, though it could also cause edge effects or act as a barrier for other species (especially because it provides no cover).

	Buffer Type	(Score) x	(% of Area)	= Sub Total
	Disturbed habitat	2.5	0.5	1.3
е	Pine plantation	1.5	0.5	0.8
				0.0
				0.0
				0.0
				0.0
				0.0
			Total =	2.0

2.5 Field Hydrology (HYD)

Hydrology adequate to maintain wetland. No stress apparent. Should be close to natural hydroperiod. Some alterations due to bedding of pine plantation (narrow strip of wetland associated with black water stream). Support area has much ditching and culverts at roads. No transitional species encroachment. No evidence of soil subsidence.

1.6 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
Disturbed habitat	2.5	0.50	1.3
Pine plantation	1.0	0.50	0.5
			0.0
	1.8		

PRETREATMENT CATEGORY (PT)

Pretreatment	(6)	(0) (6 A)	0.1.77.1
Category	(Score) x	(% of Area)	= Sub Total
Disturbed habitat	3.0	0.50	1.5
Pine plantation	0.0	0.50	0.0
			0.0
		PT Total =	1.5

Additional Notes:

Plantation Pine given the land use score of citrus due to the bedding, changes to hydrology, and potential application of fertilizers and pesticides.

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

Appendix B-26. TM-Econ Mitigation Bank

Figure B-26.1. Landscape location of TM Econ Mitigation Bank (green line). Boundary of the wetland assessment area TMEc_CYP_1 is outlined in orange and TMEc_CYP_2 is outlined in yellow.

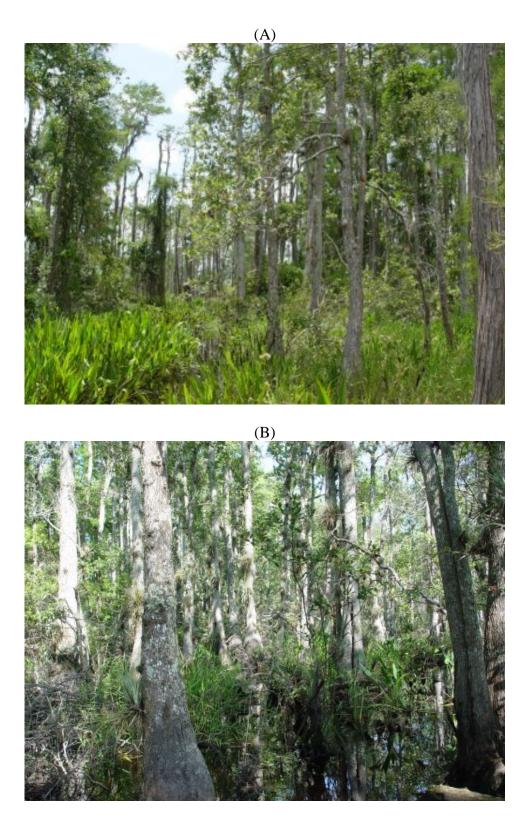


Figure B-26.2. Site photos of wetland assessment areas (A) TMEc_CYP_1 and (B) TMEc_CYP_2 at TM Econ mitigation bank.

TMEc_CYP_1 Uniform Mitigation Assessment Method, page 1

Site/Project Name	Application Numbe	Assessment Area Name or Number			or Number	
TM-ECON Mitigation Bank	NA		TMEc_CYP_1			
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size
SJRWMD 2000 - 6210 Cypress	Cypress Strand			Mitiga	ition Bank	1 ha (2.5 ac)
Basin/Watershed Name/Number Affected Waterbody (Class)			Special Classification	on (i.e.C	DFW, AP, other local/state/federal	designation of importance)
HUC- ST John River Upper Class III			OFW Special Eco	noloc	khatchee River System	
Geographic relationship to and hydro	logic connection with	wetlands, other su	ırface water, uplan	ıds		
WAA is S and W of dirt road property line. This area will have hydrologic enhancement upstream as part of restoration efforts on bank. The WAA is part of larger forested strand system which is associated with 4-mile Creek and part of the Econ. River System, an OFW.						
Assessment area description						
Bottomland cypress strand, flowing black water. Flatwoods grade into flowing cypress strand. There has been some channelization of the main flow channel in this portion of the strand.						
Significant nearby features			Uniqueness (cor landscape.)	nsideri	ing the relative rarity in I	relation to the regional
Split Oak mitigation bank; Lake Mary Jane; Bee Line expressway North ~ 4miles; Tossohatchee State Reserve ~11miles East and Hal Scott Preserve ~4 miles North			Military testing land (Lockheed Martin) East. There is a lot of pasture in the landscape and urban encroachment. Difficult to find non-degraded strands in a natural flatwoods mosaic in this area of Florida (not that this is non-degraded though). Discharges to both SJRWMD and SFWMD through natural flow and by-pass canal, respectively.			
Functions			Mitigation for prev	ious p	permit/other historic use	
Water storage; wildlife habitat; wildlif	e corridor; nutrient cyc	cling	Lockheed Martin laser testing in flatwoods to the S of WAA. Some areas logged now privately owned. Area had large wildfire come through the site. Historically winter burns. Now privately owned.			
Anticipated Wildlife Utilization Based that are representative of the assess be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Ribbon Snake, cottonmouth, opossum, gray squirrel, black bear, raccoon, mink, otter, Florida Panther, white-tailed deer			Bald Eagle (E) nest previous years on bank on connected wetland to S, Wading birds: wood storks (E), little blue heron (SSC), white lbis (SSC), snowy egret (SSC), great egret (SSC), tricolored heron (SSC); Florida panther (E) Bank has RCWs (E) and gopher tortoises (SSC) in flatwoods			
Observed Evidence of Wildlife Utiliza	tion (List species dire	ctly observed, or o	ther signs such as	track	s, droppings, casings, r	nests, etc.):
Tracks: deer, hog, turkey, alligator, bobcat, raccoon. Visual: spiders, little blue heron, dragonfly laying eggs, frogs splashing (no positive specie id). Audio: cricket frogs.				g (no positive species		
Additional relevant factors:						
Hydrology not restored to this wetland system yet. Some work will be done upstream.						
Assessment conducted by:			Assessment date(s):			
EH, KCR			8/11/2005			

TMEc_CYP_1 Uniform Mitigation Assessment Method, page 2

PART II - Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

		Application Number				
Site/Project Name				Assessment Area Name or Number		er
TM-ECON Mitig	gation Bank	NA				
Impact or Mitigation	Donk	1	Assessment conducted by: Assessment date:			
Mitigation	Erica Hernandez, Kelly Chinners Reiss 8/11/2005					
Scoring Guidance	Moderate(7)	Mi	nimal (4)	Not Presen	nt (0)	
The scoring of each indicator is based on what	Condition is optimal and fully	Condition is less than optimal, but sufficient to	Minimal le	evel of support of	Condition is insu	ufficient to
would be suitable for the	supports wetland/surface	maintain most		/surface water	provide wetland	
type of wetland or surface water assessed	water functions	wetland/surface water functions	fı	unctions	water funct	tions
water aboccood		Tariotiono				
.500(6)(a) Location and Landscape Support w/o pres or current with	and a barbed wire fence substantially decrease the st not desirable species, there i Solanaceae exotic species wetland. Wildlife access is r just a small part of the impror road cutting through system	full range necessary for anticipe plus a cleared 2-3 ac patch cupport for wildlife species. Invisional so some Imperata cylindries and the exotic Lygodium spont limited by distance or barrieved pasture abuts the WAA. 1). This system makes up the is critically dependent on the	of improved rasive exotic ca (cogongr (climbing feers. Land u Downstream headwaters	pasture adjacent to a sare present, son ass), some has be arn) along the con ses do not have en benefits may be to the Econlockh	to NW. This shou me pasture grasse een treated. Ther nected forested up extremely negative limited by barriers atchee River (an 0	ld not es that are re is also a pstream impacts - s (such as
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	indicators are not as distinct as approximately 1.5 ft below the poting. Excessive fire evident, atic factors such as drought of Plant community composition an primrosewillow) that are changled growth somewhat excest equirements include alligators, in open water sections. The windig the provided in th	e scattered but may or 1998 follow n includes the aracteristic cossive, certain fish, frogs,	lichen lines, moss may not be from hed by wildfire. Ve the nuisance species of disturbance (inc nly greater than an and dragonflies.	covers the loop naydrologic stress - egetation shows no es Typha sp. (cattoreased nutrients, nticipated. Anima There is also subr	oots, the attributed o distinct tail) and increased I species merged	
.500(6)(c)Community structure						
Vegetation and/or Benthic Community w/o pres or	tribution lacks the older cohort deviation from expected age lering the groundcover. Cover n expected. There are many d althy (perhaps a thin canopy). mainter	and size cla by invasive dead trees a Land mana	ss distribution. Species is and much fallen de	pecies compositio minimal. The am ebris though the live	n is not ount of ving trees	
current with	-					
6						
	1					1
Score = sum of above scores/30 (if uplands, divide by 20)	If preservation as mitig	ation,		For impact asses	sment areas	
current	Preservation adjustmen	nt factor =	E1 -	delta x acres =		
or w/o pres with	Adjusted mitigation del	ta =		ucita x aci 55 -		
0.73					1	
	If mitigation			or mitigation acco	ecement areas	1
Delta = [with-current]	Time lag (t-factor) =			or mitigation asse	sooment areas	
	Risk factor =		RFG	= delta/(t-factor x	risk) =	

TMEc_CYP_1 Wetland Rapid Assessment Procedure, page 1

Project Name: TMEc_CYP_!, TM Econ Mitigation Bank

Date: 8/11/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Cypress strand just S of dirt road which is property boundary. WAA is part of Econolockhatchee River System. Wildfire in this area around 1997 appears to have reached into the wetland.

Wetland Assessment Area: 1 ha (2.5 ac)

FLUCCS Code/Description: SJRWMD 2000 6210 Cypress

\

_			
2.5	Wildlife Utilization (WU)		
1.5	Wetland Canopy (O/S)		
1.5	Wetland Ground Cover (GC)		
2.8	Habitat Support/Buffer		
2.0	Field Hydrology (HYD)		
2.7	WQ Input & Treatment (WQ)		
12.9	SUM		
6	Count		
0.72	WRAP		

TMEc_CYP_1 Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Tracks - raccoon, bobcat, alligator, turkey, deer, hog. Cricket frog calls, spiders, little blue heron, dragonfly laying eggs, frogs splashing (no positive id), small fish in water. Most surrounding uplands are optimal, but outside to the N is a cleared deforested pasture land, did not see cattle on the property but did see evidence of cattle. Very open tree canopy, probably has been logged historically perhaps wildlife food source and cover is somewhat limited. Adjacent wetland to the E of the road is optimal (large old trees, shaded ground, dense tree canopy).

1.5 Wetland Canopy (O/S)

Small trees but appear old. Large gaps between the trees, though not comprised of undesirable species. Many dead trees (from excessive fire, wind fall, storm damage . . . unknown). No large buttresses like in adjacent wetland to the E on other side of dirt road. Not as much *Nyssa sylvatica* (tupelo) or canopy or midstory species diversity as anticipated. Trees have little canopy development - very thin canopy, allowing lots of light to the understory. Recruitment visible at wetland edges. Large canopy gaps with no trees or dead trees. Overstory and shrub layers appear immature, but great potential for habitat support.

1.5 Wetland Ground Cover (GC)

Approximately 33% undesirable species. Species composition includes *Typha* sp. (cattail), *Ludwigia peruviana* (Peruvian primrosewillow), abundant *Triadenum virginicum* (Virginia marsh St. John's-wort), grasses, ferns, small red alternate leaved *Ludwigia* sp. (primrosewillow), unknown submerged aquatic species, *Dulichium arundinaceum* (threeway sedge), *Sagittaria* sp. (arrowhead), *Pontederia cordata* (pickerelweed), *Polygonum* sp. (smartweed), *Rhynchospora ?corniculata* (shortbristle horned beaksedge), *Saururus cernuus* (lizard's tail), *Woodwardia virginica* (Virginia chain fern), etc. Mixed signals in the herbaceous vegetation layer finding *Eriocaulon decangulare* (tenangle pipewort) and *Eupatorium capillifolium* (dogfennel) growing out from cypress trunks throughout the fringe.

2.8 Habitat Support/Buffer

Small pond to south, probably dug for fill for the road, very small, less than 1/4 ac. Upland in preservation to S with large dbh *Pinus elliottii* (slash pine) trees. Cleared pasture to N, small piece adjacent to wetland. Wildlife corridors for continuous off-site wetlands. Buffer mostly desirable species.

Buffer Type	(Score) x	(% of Area)	= Sub Total
Wetland	3	0.25	0.75
Upland	3	0.625	1.875
Improved Pasture	1	0.125	0.125
		Total =	2.75

2.0 Field Hydrology (HYD)

Adventitious roots on grasses, No distinct stain lines, lichen lines not distinct and higher than 1.5 ft above the water level, moss collars near the water level, loop roots covered in moss. Hydrology adequate to maintain a viable wetland. Recruitment of tree species visible. No evidence of soil subsidence, but area is inundated. Not a natural hydroperiod because of not yet restored impoundments upstream in this wetland system.

2.7 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

Land Use		(1)	= Sub
Category	(Score) x	(% of Area)	Total
Wetland	3.0	0.25	0.8
Upland	3.0	0.625	1.9
Improved Pasture	1.0	0.125	0.1
		LU Total =	2.8

PRETREATMENT CATEGORY (PT)

•		PT Total =	2.6
No Treatment	0.0	0.125	0.0
Nat. Undev.	3.0	0.625	1.9
Nat. Undev.	3.0	0.25	0.8
Pretreatment Category	(Score) x	(% of Area)	= Sub Total

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

TMEc_CYP_2 Uniform Mitigation Assessment Method, page 1

Site/Project Name		Application Number	ber Assessment Area Name or Number		or Number	
TM ECON Mitigation Bank					TMEc_CYP_2	
FLUCCs code	Further classifica	ation (optional)		Impac	t or Mitigation Site?	Assessment Area Size
SJRWMD 2000 - 6210 Bottomland Cypress	Cypress Strand					~3.61 acres
Basin/Watershed Name/Number	Affected Waterbody (Clas	ss)	Special Classificati	on (i.e.	DFW, AP, other local/state/federal	designation of importance)
HUC- ST John River Upper			OFW Special Ec	onoloc	khatchee River System	
Geographic relationship to and hydr	ologic connection with	wetlands, other su	ırface water, uplar	nds		
WAA is North of road removal. This larger forested strand system which		-				The WAA is part of
Assessment area description						
Bottomland cypress strand, flowing sections of large ferns, maidencane				omland	d hardwood. WAA is op	en standing water with
Significant nearby features			Uniqueness (co landscape.)	nsider	ing the relative rarity in	relation to the regional
Split Oak mitigation bank; Lake Mary Jane; Bee Line expressway North ~ 4miles; Tossohatchee State Reserve ~11miles East and Hal Scott Prese ~4 miles North			Military testing land (Lockett Martin) East. There is a lot of pasture in the landscape and urban encroachment. Difficult to find non-degraded strands in a natural flatwoods mosaic in this area of Florida.			
Functions			Mitigation for previous permit/other historic use			
Water storage; wildlife habitat; wildli	fe corridor; nutrient cyc	ling	Lockett Martin laser testing in flatwoods to the East of WAA. Some areas logged now privately owned. Area had large wildfire come through the site. Historically winter burns. Now privately owned.			
Anticipated Wildlife Utilization Bases that are representative of the assess be found)			Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Ribbon Snake, cottonmouth, opossum, gray squirrel, black bear, raccoon, mink, otter, Florida Panther, white tailed deer			Bald Eagle (E) nest previous years on bank on connected wetland, Wading birds - Wood storks (E), Little blue heron (SSC), White Ibis (SSC), Snowy egret (SSC), Great Egret (SSC), tricolored heron (SSC); Florida Panther (E) Bank has RCWs (E) and gopher tortoises (SSC) in flatwoods			
Observed Evidence of Wildlife Utiliz	ation (List species dire	ctly observed, or o	ther signs such a	s track	s, droppings, casings, r	nests, etc.):
Whirly gig insects, green tree frogs, red bellied woodpecker, titmouse, red eyed vireo, downy woodpecker, dragon fly, s				n fly, spiders		
Additional relevant factors:						
Assessment conducted by:			Assessment date	e(s):		
EH, KCR			8/11/2005			

TMEc_CYP_2 Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name		Application Number	1	Assessment Area	a Name or Number	
TMECON mitig	ation bank			TMEc CYP 2		
Impact or Mitigation		Assessment conducted by:		Assessment date		
impact of imagason		EH, KCR	ľ		8/11/2005	
		LII, KOK			0/11/2003	
Scoring Guidance	Optimal (10)	Moderate(7)	Min	imal (4)	Not Present ((0)
The scoring of each		Condition is less than				,
indicator is based on what	Condition is optimal and fully	optimal, but sufficient to		el of support of	Condition is insuffic	
would be suitable for the type of wetland or surface	supports wetland/surface water functions	maintain most wetland/surface		surface water nctions	provide wetland/su water function	
water assessed	water functions	waterfunctions	lui	ictions	water function	13
.500(6)(a) Location and Landscape Support w/o pres or current with	provide full range of habitat s and one lygodium growing on gr unimproved roads in landscap for wildlife access. Current la is managed with fire. At the t eas and downstream. There a for. (Saw some patches of o	round in forest pe but they do anduses in la time of asses are some exo	sted edge of WA on't appear to be indscape do not l sment there is a tics on the bank l	A. Possibly some we moving into the flate nave adverse impact water impediments t	eedy woods. ts. to	
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	desiccation or subsidence edge, many large trees bea abnormal conditions. Vege from fire and down trees fro	stinct and consistent. Lichen I . No evidence of soil erosion. ar high scars on edge of WAA station zonation is appropriate. m 2004 hurricanes. Presence ea of WAA that is open and ne South of the WAA. The	Wildfire of 1 . Very nice o . No signs of e of fish, tree ear the unimp	998 was very ho pen edge. Fire v hydrologic stress frogs, cricket fro proved road that	t fire killed some tree vas not evidence of o s. Some mortality on gs, aquatic invert., d	es on dry or edge Iragon
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	Typha growing in open area and hand pulling. Exotic pro and size distribution is typica are in good condition. Lan- refugia ponds are optimal.	Icover is appropriate and desir near road in this wetland syste esent (only one seen) so cover I. Optimal structural habitat, v d management practices are of Some algae in open areas but bating hearts growing where al	em. The ban r is minimal. very nice cavi optimal. Lots t it does not a	k is managing to Normal regenera- ties and dens, hu of topographic for appear to be impe	control typha with spation and recruitment ation and recruitment ammocks. Plants an eatures, distinct char eding aquatic plant g	praying t. Age d trees nnels,
	1					
Score = sum of above scores/30 (if	If preservation as mitig	ation,	F	or impact assess	sment areas	
uplands, divide by 20)	Preservation adjustmen	nt factor =				
current or w/o pres with	Address de la Constantina	1-	FL = d	elta x acres =		
0.87	Adjusted mitigation del	ta =				
]				-	
	If mitigation	Ī	_	W P		
Delta = [with-current]	Time lag (t-factor) =		Fo	or mitigation asse	ssment areas	
Botta [With-ourion]	Timo lag (t-lactor) =		DEC	dolto//t factor	riok) =	
	Risk factor =		RFG =	delta/(t-factor x	risk) =	
Form 62-345.900(2), F.A.C. [effect	ctive date 02-04-2004]					

TMEc_CYP_2 Wetland Rapid Assessment Procedure, page 1

Project Name: TMEc_CYP_2, TM Econ Mitigation Bank

Date: 8/11/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Bottomland cypress strand just North of unimproved road slated for removal.

WAA is part of Econolockhatchee River System. Hydrology has not yet been restored to this area.

WAA is surrounded by quality fire managed flatwoods.

Wetland Assessment Area: ~3.61 Acres

FLUCCS Code/Description: SJRWMD 2000 6210 Bottomland Cypress

	ı		
3.0	Wildlife Utilization (WU)		
3.0	Wetland Canopy (O/S)		
2.5	Wetland Ground Cover (GC)		
3.0	Habitat Support/Buffer		
2.5	Field Hydrology (HYD)		
2.9	WQ Input & Treatment (WQ)		
16.9	SUM		
6	Count		
0.93	WRAP		

TMEc_CYP_2 Wetland Rapid Assessment Procedure, page 2

3.0 Wildlife Utilization (WU)

Numerous small fish. Hear and see song birds and frogs. Upland food source is optimal. Small unimproved road through the strand has some deeper holes that pool water, seen as a minimal effect. Lots of cover in the wetland. No obvious use by large reptiles or mammals but the bank has records of use by Florida Panther. Deer seen in adjacent uplands. Species seen include whirly gig insects, red bellied wood pecker, titmouse, red eyed vireo, downy woodpecker, dragonflies, spiders and green tree frogs.

3.0 Wetland Canopy (O/S)

Abundant desirable over story and shrub. No exotics. Good habitat support. Canopy is healthy. Lots of snags and den trees, may be slightly higher than normal but expected because of intense wildfire in 1998 that crossed entire property and recent hurricanes of 2004. Evidence of natural recruitment of *Nyssa* and *Taxodium*. Canopy has unequal age stand with many mature trees. *Ilex cassine, Taxodium ascendens, Nyssa sylvatica, Lyonia lucida, Myrica cerifera, Tillandsia spn.*

2.5 Wetland Ground Cover (GC)

? 10 % Typha where the road crosses the WAA and the canopy is open. Typha is being treated and pulled by bank managers. Other species include Blechnum serrulatum, Sagittaria spp., Hymenocallis crassifolia, Nymphoides aquatica. One small Lygodium found growing out of the ground on WAA edge.

3.0 Habitat Support/Buffer

	All	3	1	3
Buffer > 300' average. < 10% nuisance and exotics. Wetland				
is part of greater system for the Econolockhatchee River				
System. Numerous types of wetlands in the landscape.				
Flatwoods around strand are in good condition, have desirable				
species and desirable species composition and is managed				
with prescribed fire.				
			Total =	3

Buffer Type

(Score) x

(% of Area)

= Sub Total

2.5 Field Hydrology (HYD)

Trees, plants look healthy, no stress. Strong hydrologic indicators, look distinct. No evidence of un-natural hydroperiod or hydrologic conditions. Not adjacent to negative impacts although upstream there is potential for water input from pasture. No evidence of subsidence. Currently this strand system has artificial impoundments, in the future these hydrologic connections will be restored however this human induced impact keeps hydrology in the WAA from being optimal.

2.9 WQ Input & Treatment (WQ)*

LANDUSE CATEGORY (LU)

LITTO COL CITTE	CORT (EC)		
Land Use Category	(Score) x	(% of Area)	= Sub Total
natural undeveloped			
area	3.0	0.9	2.7
unimproved road*	2.5	0.1	0.3
		LU Total =	3.0

*used score for unimproved pasture/rangeland

PRETREATMENT CATEGORY (PT)

TRETREZITIVE:		` ′	
Pretreatment	(7)	(0) (5.4)	G 1 77 . 1
Category	(Score) x	(% of Area)	= Sub Total
natural undeveloped			
area	3.0	0.9	2.7
no treatment	0.0	0.1	0.0
		PT Total =	2.7

^{*}The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

TMEc_CYP_2 Florida Wetland Condition Index, macrophyte field data sheets, page 1 *NOTE: field codes are different than reported codes, STMEc_CYP_2 = ORTMST

Site name: ORTMST Description:		Tn	insect	į.	per A	ι « δ) ,		Str	eam: unty:	
Species	88	\$100	10,75°	Es de	2	\$	250	N. S. S. S. S. S. S. S. S. S. S. S. S. S.	PO PER	
Ludwigia sp.	1	1 0	_	~	7	V	13	15	1 1/2	7
Printedoria contain		 	-	-			-			+
1 Strating hearts 13Am	-			-	-	-	-	-	-	4
Woodwardid Virginica	12	12	-			-	-		1	4
Taxodiam obserdens	17	1	1	1	V	1	100			4
@ Sacretalepois			-	-	-	1/-	V	ļ.,		4
Sauraus cernous		1		-	-	1	13/	14	1	4
aphalaethus occidentalis.		1/	1	-	-	-	-	1	V	ł
Nussa sylvatics yes, billiona		-		-	-	-		 	-	1
Clacium amaigense	1		1	1	1	1		W.		ł
Pluchea adorata		1	1	1	12	1/	-	-		ļ
Khunchespora injudata		Ž	-	1			-	-		ł
(3) Paricon 2 gemparian before		- V		-	1					ļ
Bleinnewigenvlation		1.7		-	1	-	-			ļ
Dista mainiona	17	1						-		ļ
9 Polysonin (SE)	<u> </u>		-	-	-					ļ
5) Hupons townson					1,					ł
Tarbinanthus comb			V _	V						ľ
Ludvigia Carolinians	·		1	1/		-				ļ
Prosecpinaca Sectionation			-	1,		-		-		Ļ
Huperium fosciulator	_	-	1				<u> </u>			ļ
@ Paspalum ? gragour	N/	W	.V		-					Ļ
Viola lanceolata	×						-		-	Ļ
Scheria para Riper / generalia		1								Ļ
D Rhynihospora Short @	. /	Ť		-						Ļ
CHICAL										ŀ
Mr. Yakin & Chry & and	-	~					-			ŀ
D SOFANGER PROBLET BOX	1		-					-	-	ŀ
- 3										ŀ
		-						-		+
					-					ŀ
					,					ŀ
1/2										ŀ
				· ·				,		L
The second secon								· · · · · ·		L

TMEc_CYP_2 Florida Wetland Condition Index, macrophyte field data sheets, page 2 *NOTE: field codes are different than reported codes, STMEc_CYP_2 = ORTMST

Site name: ORTMST** Description:		Tra	insect;						eam: E unty: C)))
Species	S. S. S.	8,79	"a I's"	25,000	ST. ST.	*	The same	, gr	ST.	
Nyssa sylvatica var. biflora	1.	- 65	K .	<u> </u>	V	T V	3	3		T
Hex cossine			-	-			-	-		ł
Lycnia lucida	1 1	-				-		-		+
(1) Floating hearts	V					-	-			+
(a) Saccidepsis	1		1		1	-	-	-		+
Blechnin scarlation			1		- 1/	-	-		V	ł
Poolelenacocdata	·		1	<u> </u>			1	10		ł
Shirting cernous	-		-1/-				7	. 4	-	1
2) Polymonum Go.	1			<u>`</u>			-	1 1	-	ł
DSmilax Smalling	1		:			.7	1			ł
Pluchea dorata				5	.7	X	-			ł
7) Rhanchaspara choth			:	-			17	- V		t
Woodwardia mainica						1/	17		. /	ł
Dodawante						1	17	1		ł
Taxodium assendins			-			1/2	100			t
side vision 7 KOPPOS							1			t
Clasian jamoionse						:	1	2		t
Eleocharis sp.							lan-			t
Lachyanthescammiana							1			i
Cladiumianna corne							2		V	t
Branian Geographia	1						1/		1	t
Carex verucusom			-					V	100	1
14 1502 Sa.								V		t
Khancingore in defor						-		1/	1/	t
Priserprince pertination									1	t
(6) Paspaluni Produce									/	1
Centella asianca										1
Centella asianca										1
Andropogon washice										1
10) Sacciolepis shileta										Ì
										Ī
					^					1
								· . :		Ī
										Ī
Downed Logs										I

TMEc_CYP_2 Florida Wetland Condition Index, macrophyte field data sheets, page 3 *NOTE: field codes are different than reported codes, STMEc_CYP_2 = ORTMST

Appendix B-27. Tosohatchee Mitigation Bank

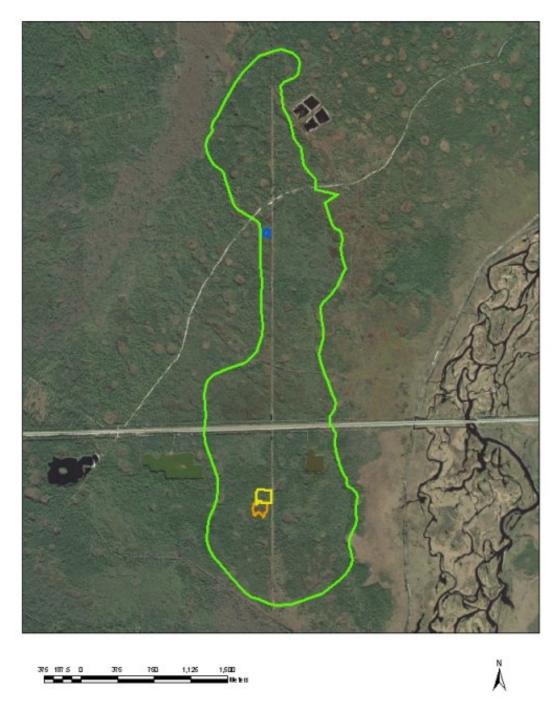


Figure B-27.1. Landscape location of Tosohatchee Mitigation Bank (green line). A boundary of the wetland assessment areas Toso_FOR is outlined in yellow, Toso_SHR is outlined in orange and Toso_MAR is outlined in blue. Tosohatchee mitigation bank is located in the interior of Tosohatchee State Reserve.

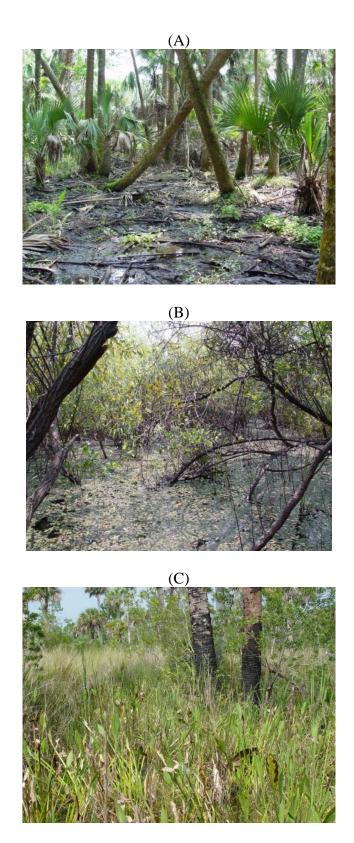


Figure B-27.2. Site photos of wetland assessment areas (A) Toso_FOR, (B) Toso_SHR and (C) Toso_MAR.

Toso_FOR Uniform Mitigation Assessment Method, page 1

Site/Project Name		Application Numbe	nber Assessment Area Name or Numb			or Number	
Tosohatchee State Reserve	Mitigation Bank		NA		Toso	_FOR	
FLUCCs code	Further classifica	ition (optional)		Impact	t or Mitigation Site?	Assessment Area Size	
6170 Mixed Wetland Hardwood	7	dana soil. FWCC species, upland h	•	·	0.9 ha (2.2 ac)		
Basin/Watershed Name/Number	Affected Waterbody (Clas	ss)	Special Classificati	on (i.e.C	PFW, AP, other local/state/federal	designation of importance)	
Upper St Johns River HUC 03080101	Class	III	William Bea	rdall T	osohatchee State Rese	erve listed as OFW	
Geographic relationship to and hyd Wetlands support the St Johns Beardall Tosohatchee State Re	River, an OFW, which i serve. Separated into	s connected to the	e mitigation bank be ections by the Be	y land: eline E	xpressway, a high spee		
Assessment area description	<u> </u>	<u> </u>					
A hardwood hammock forest with ca	saturated or inundated nopy and higger specie					n more light through the	
Significant nearby features			Uniqueness (co landscape.)	nsideri	ng the relative rarity in	relation to the regional	
Within the boundaries of the Willia and bordered to the East by the				Embe	dded within a State Re	serve.	
Functions			Mitigation for prev	vious p	ermit/other historic use	•	
Important habitat for wildlife. V Provides food such as palm ar Provides cover to many species. food sources to quail and other s birds. Undisturbed areas provide forms	mast, acorns. furnish valuable gia for migrating	A portion of mitigation bank consists of old FDOT canal that has been filled for hydrologic restoration.					
Anticipated Wildlife Utilization Base		•	Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the				
that are representative of the asses be found)	isment area and reasor	lably expected to	assessment area), type of use, and inte	ensity of use of the	
cottontail rabbit, cotton mouse, shouldered hawk, pileated woodpe racer, oak toad, Eastern diamondb	issum, white-tailed deer, bobcat, striped skunk, raccoon, armadillo, sontail rabbit, cotton mouse, cotton rat, flycatchers, warblers, redered hawk, pileated woodpecker, northern bobwhite, southern black lak toad, Eastern diamondback rattlesnake, yellow rat snake, pygmy rattlesnake.						
Observed Evidence of Wildlife Utiliz	zation (List species dire	ctly observed, or c	other signs such as	s track	s, droppings, casings, ı	nests, etc.):	
brown anole, black swallowtail butterfly, red shouldered hawk calling, small tree frog, spicebush butterflies, spinders, leopard frog, deer tracks on edge of system							
Additional relevant factors:							
This wetland system was situated adjacent to the restored FDOT canal that has been filled to grade (or just over). The vegetative community of this filled canal consists of many undesirable species with patchy clumps of vegetation. To the immediate east is an access road with an array of grasses and sedges and weed herbaceous vegetation.							
Assessment conducted by:			Assessment date	e(s):			
felly Chinners Reiss, Erica Hernandez 9/14/2005							

Toso_FOR Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Cita/Drainet Name		Application Number		I A a a a a a m a m t A m a	a Nama ar Numbar		
Site/Project Name Tosohatchee State Rese	erve Mitigation Bank	Application Number NA			a Name or Number Toso FOR		
Impact or Mitigation	erve minganori barik	Assessment conducted by:		Assessment date			
Mitigation	Bank	Kelly Chinners Reiss, Erica Hernandez 9/14/2005					
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present (0	1)	
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	Condition is optimal and fully supports wetland/surface water functions	Condition is less than	tion is less than I, but sufficient to Alinimal level of support of wetland/surface water Ind/surface water Minimal level of support of wetland/surface water functions				
.500(6)(a) Location and Landscape Support w/o pres or current with	(Brazilian pepper), <i>Urena lobata</i> (Caesar weed), and <i>Lantana camara</i> (lantana) in adjacent areas. Wildlife acc was partially limited/obstructed by the restored canal and road (no trees as in adjacent area) with limited herbaceous cover for wildlife and limited food sources. Highway is a barrier. Functions of benefits to downstream is somewhat limited by the Beeline division (flow is not habitats. Land uses mainly do not have very bad effects, though there is hunting pressure on these lands, put he highway. Hydrologic impediments and flow restrictions are a concern probably only in times of high water let This will cause a disconnect with downstream habitats and pooling of water at the Beeline Highway though water pool in the adjacent habitat north, not in the wetland assessment area. Areas eventually flow into the St. John						
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current with	pools with standing water to 5cm deep. Some evidence of soil subsidence in roots, perhaps because of preventive hydrologic effects of now restored canal. Soil erosion or deposition not noted. Evidence of fire history, may been burnt through and removed the boots of the Sabal palmetto (cabbage palm) trees, but no excessive movisible. vegetation somewhat appropriate though the upland species Juniperus virginiana (red cedar) was preprobably not a significant indicator of a problem. No signs of stress like insect damage or disease but some le						
.500(6)(c)Community structure Most of plant cover by desirable species - "nearly all" though some Schinus terebinthifolius (Brazilian pepper seedlings throughout wetland and a small patch of Urena lobata (Caesar weed) was also noted. Obviously sure invasive exotics are present, but cover is minimal. Strong evidence of normal regeneration and recruitment of main canopy species including Quercus laurifolia (swamp laurel oak), Sabal palmetto (cabbage palm), Juniper virginiana (red cedar), Diospyros virginiana (common persimmons), and Ulmus americana (American elm). and size class distribution appropriate, much regeneration. Coarse woody debris appropriate - dens and cause throughout wetland. Plants in good condition - no evidence of chlorotic or spindly growth or insect damage. I management is optimal, includes State Reserve planning for prescribed fires and exotic species management of type of wetland system.						of all perus Age vities Land ent.	
Score = sum of above scores/30 (if uplands, divide by 20) current or w/o pres with	If preservation as mitigation adjustment Adjusted mitigation delt	nt factor =		For impact asses delta x acres =	sment areas		
Delta = [with-current]	If mitigation Time lag (t-factor) = Risk factor =			or mitigation asse			

Toso_FOR Wetland Rapid Assessment Procedure, page 1

Project Name: Toso_FOR - Tosohatchee State Reserve Mitigation Bank

Date: 9/14/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: 6170 Mixed Wetland Hardwood

Wetland Assessment Area: 2 ha (5 ac)

FLUCCS Code/Description: 6181 Cabbage Palm Hammock

2.5	Wildlife Utilization (WU)				
3.0	Wetland Canopy (O/S)				
2.0	Wetland Ground Cover (GC)				
2.5	Habitat Support/Buffer				
2.5	Field Hydrology (HYD)				
2.8	WQ Input & T	reatment (WQ)			
15.3	SUM				
6	Count				
0.85	WRAP				

Toso_FOR Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Brown anole, black swallowtail butterfly, cavities and dens in trees, red shouldered hawk, small treefrog, spicebush butterfly, spiders, leopard frog, deer tracks on edge of system, open areas with no visible game trails, not appropriate system for fish. Abundant upland food source. Perhaps more than minimal human disturbance (hunting pressure, restored canal), but good ground cover species provide good food and cover. Restored canal to E with some exotic species. Human disturbance includes foot path and painting of trees by hunter to mark trail to tree stand - small disturbance in localized area. Some cattle evidence - from neighboring properties, apparently they come across the river and get stuck on site. Human disturbance as 1-restored canal with undesirable species, 2-cows, 3-hunting pressure.

3.0 Wetland Canopy (O/S)

Canopy comprised mainly of: Sabal palmetto (cabbage palm)-FAC, Ulmus americana (American elm)-FACW, Quercus laurifolia (swamp laurel oak)-FACW, Diospyros virginiana (common persimmon)-FAC, and Juniperus virginiana (red cedar)- UPL. Lots of regeneration and small seedlings. Minimal disease or insect damage. Less than 10% invasive trees, really few to none were noted. Some snags and den trees. Live healthy trees, though some dead red cedars, perhaps because of increased water levels from canal restoration activities. Good habitat support by overstory and shrub species. Strong evidence of natural recruitment of trees. There was Schinus terebinthifolius (Brazilian pepper) regeneration abundant though not any with a DBH, so we include these in groundcover below.

2.0 Wetland Ground Cover (GC)

Patchy with more species in the more open canopy areas and few species in the darker, thick canopy areas. *Schinus terebinthifolius* (Brazilian pepper) seedlings throughout understory. Less than 5% undesirable species, but did have invasive exotics (Brazilian pepper and *Urena lobata* -Ceasar weed). Some human induced impacts. Mainly the groundcover was scored down because of the presence of the invasive exotics.

2.5 Habitat Support/Buffer

Fire scars visible, *Sabal palmetto* (cabbage palm) trees missing boots, fire history does not appear atypical. Greater than 300 ft vegetated buffer, part is restored canal adjacent to a grass road. Less than 10% exotic species. Connected to shrub wetland on one side. Wildlife have access to other appropriate habitat areas. The Beeline Highway to the N does impede wildlife access for certain species.

Buffer Type	(Score) x	(% of Area)	= Sub Total
disturbed	2.5	1	2.5
			0.0
			0.0
			0.0
		Total =	2.5

2.5 Field Hydrology (HID)

Stain lines visible, fluted bases on *Ulmus americana* (American elm) and *Quercus laurifolia* (swamp laurel oak). Loop roots visible. *Sabal palmetto* (cabbage palm) growing on hummocks. Some soil subsidence as evidenced by some exposed roots but limited in scope, more apparent closer to filled/restored canal. Some leaning *Sabal palmetto* trees. Otherwise plants appear healthy. Hydroperiod appears appropriate. Limited adjacent impacts, though some water retention basins with runoff from the Beeline Highway to the N.

2.8 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Bill (B C B B C I I I B C	()		
Land Use Category	(Score) x	(% of Area)	= Sub Total
nat. undev.	3.0	0.75	2.3
disturbed	2.0	0.25	0.5
			0.0
•	-	LU Total =	2.8

PRETREATMENT CATEGORY (PT)

Pretreatment Category	(Score) x	(% of Area)	= Sub Total
nat. undev.	3.0	0.75	2.3
wet detention w/swales	2.5	0.25	0.6
			0.0
		PT Total =	2.9

Toso_SHR Uniform Mitigation Assessment Method, page 1

Site/Project Name		Application Numbe	ber Assessment Area Name or Number			or Number		
Tosohatchee Mitigation	on Bank		NA	NA Toso_SHR				
FLUCCs code	Further classifica	tion (optional)		Impac	t or Mitigation Site?	Assessment Area Size		
6460 Mixed Scrub Shrub Wetlan	α ι	appropriately clas	I MITIGATION BANK I 16 r			1.6 ha (4 ac)		
Basin/Watershed Name/Number // Upper St Johns River HUC 03080101	Affected Waterbody (Class I	,	·		DFW, AP, other local/state/federa	-		
Geographic relationship to and hydro	ologic connection with	wetlands, other su	ırface water, uplar	nds				
Wetlands support the St Johns Rive William Beardall Tosohatchee State	Reserve. Separated in	nto North and Soເ	•	Beeli	ne Expressway, a high			
Assessment area description		<u> </u>						
FWCC Biodiversity Hotspots - 7		ap. FWCC Priority nservation Areas -		pecies	s, wetland habitat. FW0	CC Strategic Habitat		
Significant nearby features			Uniqueness (collandscape.)	nsider	ing the relative rarity in	relation to the regional		
Within the boundaries of the Williar and bordered to the East by the S				Embe	edded within a State Re	serve.		
Functions			Mitigation for prev	vious	permit/other historic use	•		
Provides cover and forage for a waterfowl, reptiles, amphibians, and by assimilation of inorganic and	mammals. Water qua	ality enhancement			me portion of mitigation has been filled for hydr			
Anticipated Wildlife Utilization Based that are representative of the assess be found)		•	· ·	T, SS	y Listed Species (List s C), type of use, and inte			
Some mammals (opossum, bobcat, cover, though none specifically rely other snakes and frogs. Wading bit and rool	on these wetlands. Co	ttonmouth snake,			blue heron (SSC), tricol ttle green heron (SSC),			
Observed Evidence of Wildlife Utiliza	ation (List species direc	ctly observed, or o	ther signs such a	s track	s, droppings, casings,	nests, etc.):		
Some areas with heavy cover of Salvinia minima (water spangles) perhaps made fish difficult to see, should provide good habitat for frogs, fish, snakes, and alligators, plus provide structural support habitat for roosting birds. Observed wildlife limited to a leopard frog, site visit at 2 pm on a sunny hot day.								
Additional relevant factors:								
Assessment conducted at 2pm on a	hot sunny day, so limit	ted wildlife viewing	g anticipated.					
Assessment conducted by:			Assessment date	e(s):				
Kelly Chinners Reiss, Erica Hernand	lez		9/14/2005					

Toso_SHR Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

[O'' /D :		I			
Site/Project Name		Application Number		Assessment Area Name or Number	
Tosohatchee State Reserve Mitigation Bank		NA NA		Toso_SHR	
Impact or Mitigation Mitigation Bank		Assessment conducted by: Kelly Chinners Reiss, Erica I	Assessment date		9/14/2005
Wildgaton Dank		Tony Oliminol Moiss, Ellou Hornandez			
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present (0)
The scoring of each indicator is based on what	Condition is optimal and fully	Condition is less than optimal, but sufficient to	Minimal lo	evel of support of	Condition is insufficient to
would be suitable for the	supports wetland/surface	maintain most		/surface water	provide wetland/surface
type of wetland or surface	water functions	wetland/surface water	functions		water functions
water assessed		functions			
.500(6)(a) Location and Landscape Support	Habitats outside the WAA prowhat habitat is available. Soil Highway and the restored cail minimal - mainly Schinus tere not taking over the area and Wildlife access to and from the road with patchy vegetation a (for larger terrestrial species,	dlife access is the main issue and also presence of exotic and/or nuisance species. A provide most habitats needed for fish and wildlife - most of the species should be OK with Some habitat fragmentation is apparent in the support habitat because of the Beeline d canal. Some invasive exotic species are present in the proximity of the WAA, but cover is a terebinthifolius (Brazilian pepper) and Urena lobata (Caesar weed) - these species are and will be managed for removal, currently they do not provide optimal food or cover. In the WAA is somewhat limited by barriers including nearby restored canal and grass on and also species with greater dispersal distances are limited by the Beeline Highway bies, hopefully birds can fly clear of the road). No downstream affects - fairly isolated approach bigh water this system would perhaps flow N and E to the St. Johns			
Wo pres or current with	wetland - at times of extremely high water this system would perhaps flow N and E to the St. Johns River, but it is really more of a basin marsh (not connected to other areas with sheet flow like the Spartina marsh). Land uses outside the assessment area are generally ok, except the Beeline Highway, these include managed lands within the Tosohatchee State Reserve around the mitigation bank. Some human evidence in hunting pressure (deer stands, paint cans, garbage on ground).				
.500(6)(b)Water Environment (n/a for uplands) w/o pres or current wi	Levels and flows appear appropriate. Water level indicators (stain lines, moss collars, hummocks) distinct and consistent. Soils were inundated, soil moisture appropriate. No fire scars visible and <i>Sabal palmetto</i> (cabbage palm) with boots, no evidence of atypical fire history. Obligate and facultative wetland species in the water with many facultative species on the hummocks. No signs of hydrologic stress (no excess mortality, leaning trees, etc.). Leopard frog visible, but anticipate other species with specific hydrologic requirements to use the wetland (considering site visit was at 2pm). Probably historically the system was stressed because of the now restored Muc Lake Canal. There is also evidence of previous logging. But the condition of <i>Salix caroliniana</i> (Carolina willow) and <i>Acer rubrum</i> (red maple) today do not indicate stress. Water was clear and tannic, no water quality degradation observed. No water quality data available. Light penetration not optimal because of presence of <i>Salvinia minima</i> (water spangles) covering much of the water surface.				
.500(6)(c)Community structure 1. Vegetation and/or 2. Benthic Community w/o pres or current with	Majority of plant cover by appropriate species particularly in canopy and midstory. Groundcover is appropriate in shallow areas and on hummocks - open water is covered by <i>Salvinia minima</i> (water spangles), an exotic species. Invasive exotic species is present. Evidence of regeneration on hummocks (canopy and shrub species). Age and size class distribution typical - some larger dbh <i>Salix caroliniana</i> (Carolina willow). Coarse woody debris, snags, dens are appropriate. Plants in good condition, no evidence of chlorotic or spindly growth. Land management is appropriate - restored canal, prescribed burns in area, some hunting pressure. Hummocks are appropriate and normal topographic features. Emergent vegetation looks healthy as does canopy and midstory. Score was knocked down for <i>Salvinia minima</i> cover which changes light penetration, water temperature, ?water level because of evaporation/transpiration rates, etc.				
Score = sum of above scores/30 (if uplands, divide by 20)	If preservation as mitigates	· · ·		For impact asses	sment areas
current or w/o pres with 0.83	Adjusted mitigation del	ta =	FL =	delta x acres =	
	If mitigation		F	or mitigation asse	essment areas
Delta = [with-current]	Time lag (t-factor) =				
	Risk factor =		RFG	= delta/(t-factor x	risk) =

Toso_SHR Wetland Rapid Assessment Procedure, page 1

Project Name: Toso_SHR - Tosohatchee State Reserve Mitigation Bank

Date: 9/14/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Edge grades out from hardwood hammock/cabbage palm hammock wetland with *Acer rubrum* (red maple), *Sabal palmetto* (cabbage palm), *Myrica cerifera* (wax myrtle), *Salix caroliniana* (Carolina willow), and *Cephalanthus occidentalis* (buttonbush). Center becomes mainly *Salix caroliniana* shrub head. Some emergent grasses and herbaceous vegetation, mainly in shallow areas and on hummocks. Appears to have historic impacts such as hydrologic alterations (from now restored canal) and logging history.

Wetland Assessment Area: 1.6 ha (4 ac)

FLUCCS Code/Description: 2000 SJRWMD 6460 Mixed Scrub-Shrub Wetland

2.5	Wildlife Utilization (WU)		
3.0	Wetland Canopy (O/S)		
2.0	Wetland Ground Cover (GC)		
2.5	Habitat Support/Buffer		
3.0	Field Hydrology (HYD)		
3.0	WQ Input & Treatment (WQ)		
16.0	SUM		
6	Count		
0.89	WRAP		

Toso_SHR Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Leopard frog. No fish noted but they should occur here, Salvinia minima (water spangles) covered much of the water surface so perhaps they were just difficult to see. Should be appropriate habitat for alligators, snakes, frogs. Visit at 2 pm limited wildlife viewing. Evidence of large mammals (mainly deer) in adjacent hammock area. Abundant food sources and cover in wetland and adjacent habitats, though in one area there is patchy/sparse vegetation with some exotic species. This community type is often considered typical of distrubance, but this did not seem to impede wildlife habitat. Has Beeline Highway (busy 4-lane toll road connecting Orlando to the East Coast) and the filled/restored canal within a short distance. Expect wetland to support wading birds and fish, though did not observe these. Uncertain about lack of wildlife evidence, should have seen feathers and fish, but perhaps we did not because it was mid afternoon on a hot sunny day. We visually inspected about 1/4 of the wetland. Tony climbed a tree and surveyed the remainding portion suggesting a similar species composition throughout. As we walked towards the center the ground sloped down quickly and became much deeper - this appeared to be ideal habitat for alligators.

3.0 Wetland Canopy (O/S)

The edge is mixed species Acer rubrum (red maple), Sabal palmetto (cabbage palm), Salix caroliniana (Carolina willow), Myrica cerifera (wax myrtle), and Cephalanthus occidentalis (buttonbush). The interior is mainly Salix caroliniana. The trees occur on large hummocks. This area probably had been logged as evidenced by the large old hummocks that don't seem to match up with the smaller dbh residents. Remnant human disturbance is evident, but this is not a continued influence and the system now appears to be recovering from previous impacts. There were no invasive canopy or midstory trees. There is good habitat support. There are young trees growing on the hummocks (regeneration), which are full of vegetation. There are crevices for animals to hide in and there are some lying down rotted out trunks for cover. The canopy is healthy with some areas more open than others mainly based on where the hummocks are established. There is good nesting habitat for wading birds and the deeper areas provide good wading bird protection from predatory terrestrial species.

2.0 Wetland Ground Cover (GC)

In areas Salvinia minima (water spangles) covers much of the water surface, is patchy in other areas, and has nearly no cover in other areas - however there are more areas with cover than without cover. Paspalum repens (water paspalum) an infrequent native is locally abundant. Land management practices will probably never exclude Salvinia minima but at the edges of the wetland there are many other native and desirable species emergent through the standing covered water. The ground is not heavily disturbed, not rutted up. The edges are managed with periodic burns though prescribed fires should not burn into this area because the water is deep and appears somewhat permanent.

2.5 Habitat Support/Buffer

Located within the Tosohatchee State Reserve Mitigation Bank and surrounded by the Tosohatchee State Reserve. Surrounded mainly by hydric hammock which is adjacent to a restored canal with open patches of vegetation with some exotic species. The Beeline Highway is to the north and this will hinder larger terrestrial species (deer, bobcat) by means of limiting access. This area should support alligators. There have been historic panther sightings in the State Reserve. In the area immediately adjacent to the wetland is a hydric hammock with <10% nuisance or exotic species.

	Buffer Type	(Score) x	(% of Area)	= Sub Total
	Hydric Hammock	3.0	0.67	2.0
	Retsored Canal	1.5	0.33	0.5
				0.0
				0.0
				0.0
				0.0
				0.0
:				0.0
				0.0
			Total =	2.5

3.0 Field Hydrology (HYD)

Clear tanic water. Plants healthy, no stress apparent. Ferns grew along edges, suggesting moist conditions. Water stain lines visible on hummocks and also moss collars visible. Hydrology adequate to maintain a viable wetland. Previous impacts from 15 ft deep Mud Lake Canal are noted, but the canal has been restored. This acts as an "isolated" feature which may spill over waters only in times of severely high waters and run into the St. Johns River. Primarily a rainwater fed system.

3.0 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
nat. undev.	3.0	1.0	3.0
			0.0
	•	LU Total =	3.0

PRETREATMENT CATEGORY (PT)

Pretreatment Category (Score) x (% of Area) = Sub Total nat. undev. 3.0 1.0 3.0 0.0 0.0			PT Total =	3.0
Category (Score) x (% of Area) = Sub Total				0.0
	nat. undev.	3.0	1.0	3.0
Pretreatment	Category	(Score) x	(% of Area)	= Sub Total
	Pretreatment			

Toso_MAR Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name	ame Application Number		ber Assessment Area Name or Number		or Number	
Tosohatchee State Reserve M	litigation Bank		NA		Toso	_MAR
FLUCCs code	Further classifica			Impac	t or Mitigation Site?	Assessment Area Size
6410 Freshwater Marsh		ssed as 6260 Hyd e palm and not pi canopy species.			Mitigation Bank	0.3 ha (0.8 ac)
	fected Waterbody (Clas	ss)	Special Classification	on (i.e.C	DFW, AP, other local/state/federa	designation of importance)
Upper St Johns River HUC 03080101	Class I	II	William Bea	rdall T	osohatchee State Rese	erve listed as OFW
Geographic relationship to and hydrol	ogic connection with	wetlands, other su	ırface water, uplar	nds		
Wetlands support the St Johns River William Beardall Tosohatchee State F	Reserve. Separated i	nto North and Sou	,	Beelir	ne Expressway, a high	
Assessment area description	<u> </u>	<u> </u>				
FWCC Biodiversity Hotspots - 7+ Foo as Pineda. Area is characterized groundcover laye	with open canopy of	Sabal palmetto (cabbage palm) wit	h <10 ⁹		cies richness in the
Significant nearby features			Uniqueness (collandscape.)	nsideri	ing the relative rarity in	relation to the regional
Within the boundaries of the William and bordered to the East by the St.			Embedded within a State Reserve.			
Functions			Mitigation for prev	vious p	permit/other historic use	2
Water storage during droughts. Reduction of water flow during floods. Nutrient assimilation, improving water quality before water enters rivers and lakes (in times of overflowing waters and for groundwater). Essential breeding grounds for many species of amphibians. Important wildlife habitat, especially as wintering habitat for wading birds.			A portion of mitig		oank consists of old FD d for hydrologic restora	OT canal that has been tion.
Anticipated Wildlife Utilization Based that are representative of the assessment be found)		•		T, SSC	y Listed Species (List s C), type of use, and inte	
white-tailed deer, bobcat, raccoon, op birds, salamanders,	oossum, rabbit, squirr toads, frogs, snakes		white ibis (SSC)		thill crane (T), wood sto SC), tricolored heron (S	
Observed Evidence of Wildlife Utilizat	ion (List species direc	ctly observed, or o	ther signs such as	s track	s, droppings, casings,	nests, etc.):
Game trails, leopard frog, green anol	e, spiders, insects (?a cicadas, cloudless su					usia, peacock butterfly,
Additional relevant factors:						
Ditches are intact along the Powerline Rd. to the N which could contribute to the backflow of water to this wetland system leading to nutrient enrichment which is suggested to be responsible for the recent appearance of <i>Typha</i> sp. (cattail) in the wetland.						
Assessment conducted by:			Assessment date	e(s):		
Kelly Chinners Reiss, Erica Hernande	Z		9/14/2005			

Toso_MAR Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name	Application Number Assessment Area Name or N			a Name or Number	
Tosohatchee State Res	erve Mitigation Bank	NA		Toso_MAR	
Impact or Mitigation		Assessment conducted by:		Assessment date):
Mitigation	Bank	Kelly Chinners Reiss, Erica I	Kelly Chinners Reiss, Erica Hernandez 9/14/2005		9/14/2005
Scoring Guidance	Optimal (10)	Moderate(7)	Mi	nimal (4)	Not Present (0)
The scoring of each indicator is based on what would be suitable for the type of wetland or surface water assessed	The scoring of each indicator is based on what would be suitable for the type of wetland or surface Condition is optimal and fully supports wetland/surface water functions			Minimal (4) Mor Present (Mor Present (Condition is insuffic wetland/surface water functions water function	
.500(6)(a) Location and Landscape Support w/o pres or current with	nent area provide optimal supples occur nearby. The roads and nose identified as <i>Urena lobativeroides</i> (alligator weed), <i>Pistikomordica charantia</i> (balsamples teters away. Downstream fish is outside the assessment are ere noisy low-flying helicopters not solely dependent, though it no flow restrictions. The adjactagement.	d the edge of a (Caesar was stratiotes ear), etc. Act and wildlife a have few a soverhead.	of the restored car veed), Schinus ter (water-lettuce), Eccess not limited. e not limited by dis adverse impacts - Downstream the rtant contribution f	nal are vectors for exotic rebinthifolius (Brazilian ichhornia crassipes Small dirt roads or grass tance or barriers - this is a the Beeline Highway is St. John's River is for water quality and	
Water levels and flows appear appropriate. Hydrologic indicators are consistent with expected hydrologic corfor example, Sabal palmetto (cabbage palm) grew on hummocks out of the standing water. The soil moisture appropriate, most of the site was inundated, there was no evidence of soil subsidence. Animals with specific hydrologic requirements included fish eating spiders, gambusia, and frogs. No evidence of soil erosion or soil deposition. No atypical fire history. Vegetation appears appropriate with changes in vegetation as water deposition. Some Myrica cerifera (wax myrtle) throughout, probably because of previous fire suppression. Vegetation does not appear stressed with no excessive death or mortality. Some Typha sp. (cattail) is growing the closer to the restored canal, cover is <1%. Standing water is clear and tannic. Turbidity may be slightly higher anticipated but not abnormally high. Some algal growth in open patches, but not considered excessive.				ter. The soil moisture was Animals with specific of soil erosion or soil etation as water depth fire suppression. sp. (cattail) is growing may be slightly higher than	
1. Vegetation and/or 2. Benthic Community w/o pres or current with High herbaceous species richness. Nearly all cover by appropriate species, some throughout but mostly on edges and will be controlled with prescribed fire. Some Ty of marsh. Juniperus virginiana (red cedar) growing on hummocks, though an upland species, many flowers and seeds throughout marsh. Sabal palmetto (cabbage pa hummocks. Amount of woody debris is appropriate, some dead Sabal palmetto tree as well. No evidence of chlorotic or spindly growth. No evidence of stress. Land may have been drafted. There is particularly the submerged leaves, but not impeding plant growth.				fire. Some Typha ough an upland sp o (cabbage palm) I palmetto trees al ress. Land mana ed. There is perical ponds. Some sil	a sp. (cattail) covering <1% lecies. Much proliferation or regeneration apparent on nd snags and some cavities gement optimal. Hydrology odic exotic species removal.
	1				
Score = sum of above scores/30 (if uplands, divide by 20)	If preservation as mitigate	ation,		For impact assess	sment areas
current pr w/o pres 0.90	Preservation adjustmer Adjusted mitigation delt		FL = (delta x acres =	
<u> </u>	If mitigation				1
Delta = [with-current]	Time lag (t-factor) =		F	or mitigation asse	ssment areas
	Risk factor =		RFG	= delta/(t-factor x	risk) =
	J		<u> </u>		

Toso_MAR Wetland Rapid Assessment Procedure, page 1

Project Name: Toso_MAR - Tosohatchee State Reserve Mitigation Bank

Date: 9/14/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: *Spartina bakeri* (sand cordgrass) marsh with sparse *Sabal palmetto* (cabbage palm) canopy.

Wetland Assessment Area: 0.3 ha (0.8 ac)

FLUCCS Code/Description: Called 6170 Mixed Wetland Hardwood, but clearly very low density of woody species. Could be more appropriate classed 6410 Freshwater Marsh

3.0	Wildlife Utilization (WU)		
NA	Wetland Cano	py (O/S)	
3.0	Wetland Grou	nd Cover (GC)	
2.0	Habitat Support/Buffer		
3.0	Field Hydrology (HYD)		
3.0	WQ Input & Treatment (WQ)		
14.0	SUM		
5	Count		
0.93	WRAP		

Toso_MAR Wetland Rapid Assessment Procedure, page 2

3.0 Wildlife Utilization (WU)

Game trails, leopard frog, green anole, spiders, insects on *Polygonum* sp. seed head - could be assassin bugs. Caterpillars, many ants, small fish (mainly gambusia), peacock butterfly, cicadas, cloudless sulfur butterfly, fish eating spiders, green dragonfly. Little *Sabal palmetto* (cabbage palm) hummocks provide elevation and refugia. Abundant cover and habitat within wetland. Negligible human disturbance since 1995/1996 when the adjacent canal was restored. Abundant upland food sources. Strong evidence of use by wildlife.

NA Wetland Canopy (O/S)

Sabal palmetto (cabbage palm) overstory is sparse, edge of assessment area bordered by a more elevated strip with Myrica cerifera (wax myrtle) and Acer rubrum (red maple). Throughout the marsh there is some sparse Baccharis sp. (saltbush) and Myrica cerifera. Not more than 10% cover by woody vegetation in the canopy or midstory. Fire scars apparent up Sabal palmetto up the fronds, some estimated at 20 ft tall.

3.0 Wetland Ground Cover (GC)

Minimum disturbance to groundcover. Managed periodic burns. Less than 10% nuisance plants, no exotic species within the wetland assessment area. Groundcover characterized by: Sagittaria lancifolia (bulltongue arrowhead), Ipomoea sagittata (saltmarsh morning-glory), Mikania scandens (climbing hempvine), Woodwardia virginica (Virginia chain fern), Diodia virginiana (Virginia buttonweed), Polygonum hydropiperoides (swamp smartweed), large and small Panicum spp. (grasses), Juniperus virginiana (red cedar) seedlings on hummocks, Rhynchospora inundata (narrowfruit horned beaksedge), and other Rhynchospora spp. (beaksedges), Pluchea sp. (camphorweed), Callicarpa americana (American beautyberry), Bacopa caroliniana (blue waterhyssop), Spartina bakeri (sand cordgrass), Ludwigia repens (creeping primrosewillow), Hyptis alata (clustered bushmint), Juncu megacephalus (bighead rush), Juncus roemerianus (black needlerush), Eupatorium capilifolium (dogfennel), Eupatorium mikanioides (semaphore thoroughwort), Typha sp. (cattail), I

Hydrocotyle sp. (marshpennywort), Toxicodendron radicans (Eastern poison ivy), Rubus argutus (sawtooth blackberry) growing out of downed palmetto trunk, Eleocharis cellulosa (gulf coast spikerush), small Eleocharis spp. (spikerush), Centella asiatica (spadeleaf).

2.0 Habitat Support/Buffer

E-restored canal into continuous marsh separated linearly by elevated area with *Sabal palmetto* (cabbage palm) and *Myrica cerifera* (wax myrtle) with some breaks which increases connectivity of contiguous wetland complex. Grades into *Pinus elliottii* (slash pine) system to W. Greater than 300 ft buffer with predominantly desirable plant species all around, <10% nuisance or exotic species in the buffer area.

Buffer Type	(Score) x	(% of Area)	= Sub Total
nat. undev.	2.0	1	2.0
			0.0
			0.0
			0.0
		Total =	2.0

3.0 Field Hydrology (HYD)

Some algae growing throughout open areas of water with less vegetation. Obligate and facultative wetland species were dominant. *Sabal palmetto* (cabbage palm) trees growing on hummocks elevating them out of the standing water. Darker tannic water perhaps high Total Suspended Solids, though submerged species appear to be healthy. No evidence of soil subsidence. Plants healthy, no stress apparent. No negative impacts.

3.0 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use Category	(Score) x	(% of Area)	= Sub Total
nat. undev.	3.0	1.0	3.0
			0.0
		LU Total =	3.0

PRETREATMENT CATEGORY (PT)

		PT Total =	3.0
			0.0
nat. undev.	3.0	1.0	3.0
Category	(Score) x	(% of Area)	= Sub Total
Pretreatment			

 $\label{eq:mainwater} \begin{tabular}{ll} Main water source is rainfall and sheet flow from State lands S of the bank property, area considered in natural/undeveloped. Originally the canal was approximately 15 ft deep, filled in 1995/1996. \\ \end{tabular}$

Burned this area 2 years ago.

Ditches in tact along power line road, could contribute to the backflow of water bringing in nutrient enrichment which is suggested to be bringing in the *Typha* sp. (cattail) we noted. There is westerly flow associated with the St. Johns River because of the high water levels currently in the River.

Appendix B-28. Tupelo Mitigation Bank



Figure B-28.1. Landscape location of Tupelo Mitigation Bank (green line). The boundary of the wetland assessment area Tup_PRA is outlined in orange and the boundary for Tup_FOR is outlined in blue.

Figure B-28.2. Site photos of (A) Tup_PRA and (B) Tup_FOR.

Tup_FOR Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name Tupelo Mitigation Bank		Application Number	er		Assessment Area Name	e or Number
Tunelo Mitigation Bank						
L L L L L L L L L L L L L L L L L L L		NA			Tup_FOR	
FLUCCs code	Further classifica	ation (optional)		Impac	et or Mitigation Site?	Assessment Area Size
SSURGO soil Rivi				Mitiga	ation Bank	1.63 acres/0.7 ha
St.John's River Lower HUC	ffected Waterbody (Cla	ss)	Special Classificati None	on (i.e.(OFW, AP, other local/state/feder	ral designation of importance)
Geographic relationship to and hydro	logic connection with	wetlands, other su	urface water, uplar	nds		
Isolated depression feature. Catchm areas on the eastern edge have left r on this side of the wetland.	ent for this wetland h	as been reduced o	lue to bedding and	l rows		
Assessment area description On eastern side of forested wetland s any butresses, some fluting on laurel about 5 cm, trees more prominately b Flatwoods or wet prairie around wetla red maple (Acer rubrum) regeneratir gum, and red maple.	l oak (<i>Quercus laurifo</i> butressed and moss c and is very wet. Cand	lia). Some portion collars are more di ppy mixed age, son	as of center of wetl stinct, loop roots f me very tall trees, rodium ascendens	and harom bl some) codo	ave shallow surface was ack gum (<i>Nyssa sylva</i> high dbh trees. No tra brinant with, slash pir	ater. In deeper water ntica var. biflora). ansitional ecotone. Many ne (Pinus elliottii), black
Significant nearby features			Uniqueness (co landscape.)	nsider	ing the relative rarity ir	relation to the regional
St. John's River is about 6 miles wes western corner of the bank and even archaeological sites in area.			Jacksonville is ex partly low density being there appe	reside ar to b		silviculture. For the time n the landscape. These
Functions			Mitigation for previous permit/other historic use			
Wildlife habitat and refuge, in particul animals, which may depend on such provide water storage by holding exc the water table; enhance water qualit water.	swamps for breeding ess water and slowly	purposes; releasing it into	Numerous slash		Pinus elliottii) stumps v andscape has been si	
Anticipated Wildlife Utilization Based that are representative of the assessibe found)				T, SS	y Listed Species (List C), type of use, and int	
Mole salamander, oak toad, dwarf sa pinewoods treefrog, little grass frog, i mud turtles, eastern mud snake, cott swallow-tailed kite, barred owl, pileate flycatcher, prothonotory warbler, and	narrowmouth toad, sn conmouth, wood duck, ed woodpecker, great	apping turtle, woodstork,	Wood stork (<i>Myo</i> forficatus) SSC	teria a	americana) ^E ; Swallow-	tailed kite (<i>Elanoid</i> es
Observed Evidence of Wildlife Utiliza	ition (List species dire	ctly observed, or o	other signs such a	s track	s, droppings, casings,	nests, etc.):
Cricket frog, blue jay, leopard frog, sr woodpecker, downy woodpecker	mall fish, tiger swallov	vtail, red tailed hav	vk, dragon fly, gre	en and	ole, spiders, tufted titm	ouse, red bellied
Additional relevant factors:						
Assessment conducted by:			Assessment date	(s)·		
Erica Hernandez, Kelly Chinners Reis	ss, Tony Davanzo		9/30/2005			

Tup_FOR Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

low route							
Site/Project Name Tupelo mitigation bank			Application Number		Assessment Area Name or Number		r
·	elo mitiga	tion bank	NA		Tup_FOR		
Impact or Mitigation			Assessment conducted by: Frica Hernandez Kelly Chin	Assessment date:			
	Mitigation	Bank	Erica Hernandez, Kelly Chinners Reiss, Tony Davanzo 9/30/2005				
Scoring Guidance Optimal (10)			Moderate(7)	Mi	nimal (4)	Not Present	· (0)
The scoring of each	7	Optimal (10)	Condition is less than		ai (4)	NOT TESEM	. (0)
indicator is based on wh would be suitable for th		Condition is optimal and fully supports wetland/surface	optimal, but sufficient to maintain most		vel of support of /surface water	Condition is insur provide wetland	
type of wetland or surface		water functions	wetland/surface		inctions	water functi	
water assessed			waterfunctions				
		I					
.500(6)(a) Location and Landscape Support 1/3 of wetland assessment a (Taxodium ascendens) wetla apparent. Wildlife access me not appropriate as this is a de assessment area boundary is			ssment area provide support increa edge. 2/3 of clear-cut are not less than 200 meters away be somewhat limited by becapressional system (no outflow o	a has some y across the dding. Dista vs). When t dverse impa	habitat support, or clear cut area. In ince not a limitation he planted pine or cts and increase i	offsite pondcypress nvasive exotic specton. Downstream be nother 1/3 of wetlatin edge effects. No	cies not enefits and o clear
.500(6)(b)Water Environment (n/a for uplands) Water level indicators not as subsidence is minimal. Soil edge inappropriate for syster vines coming into wetland, n Canopy is still composed of ascendens). Some fish and			n appropriate and east side of distinct or consistent as expersaturated but not inundated or n being evaluated. Wax myrth obligate or facultative wetland in the side of the s	cted. In wet n east side. e (<i>Myrica ce</i> d species in d species. Note that the control of the co	area, moss collar No atypical fire hi erifera), saw palm ground cover or No regeneration o an expected). No	rs are more distinctions of the story. Vegetation of the etto (Serenoa repersentating on each of pondcypress (Tabovegetative indicated)	t. Soil on east ens), and ast side. axodium cors of
.500(6)(c)Community structure Trees healthy, no apparent stress throughout. Some cut stumps and many dead turpentine too. On east side species not appropriate in ground and shrub stratum. No exotics present maple (<i>Acer rubrum</i>) throughout. No pondcypress (<i>Taxodium ascendens</i>) regeneration or though 50% of canopy is pondcypress. Some black gum (<i>Nyssa sylvatica</i> var. <i>biflora</i>) and (<i>Cephalanthus occidentalis</i>) regeneration, suggest transition from pondcypress to hardwood distribution as a whole appears appropriate, although pondcypress lacks young cohorts. De coarse woody debris provides optimal habitat support. Land management practices caused alterations, change in catchement size and change of wetland vegetation to upland vegetati Topographic features are appropriate in center but there is a drop off of elevation on edge cand bedding that prevents a smooth transition to adjacent landuse.			sent. Regeneration or recruitment at and buttonbush woods. Age and size Density and qualities bedding and vetation on east side	n of red all even ze class ty of vater			
Score = sum of above sco	ores/30 (if	If preservation as mitiga	ation,		For impact asses	sment areas	
uplands, divide by	20)	Preservation adjustmer	nt factor =				
current or w/o pres	with	I -		FL =	delta x acres =		
0.63		Adjusted mitigation delt	a =				
		ı					
		If mitigation		F	or mitigation asse	essment areas	
Delta = [with-curre	ent]	Time lag (t-factor) =		—			
		Risk factor =		RFG	= delta/(t-factor x	risk) =	

Tup_FOR Wetland Rapid Assessment Procedure, page 1

Project Name: Tup_FOR, Tupelo Mitigation Bank

Date: 9/30/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Forested depression, altered hydrology evident,

canopy of cypress and mixed hardwoods some slash pine

Wetland Size: 0.7 ha (1.63 ac)

FLUCCS Code/Description: 6300 Wetland forested mixed

2.5	Wildlife Utilization (WU)		
2.0	Wetland Cano	py (O/S)	
2.5	Wetland Ground Cover (GC)		
2.0	Habitat Support/Buffer		
1.5	Field Hydrology (HYD)		
2.1	WQ Input & Treatment (WQ)		
12.6	SUM		
6	Count		
0.70	WRAP		

Tup_FOR Wetland Rapid Assessment Procedure, page 2

2.5 Wildlife Utilization (WU)

Saw deer and turkey tracks in bank. Some fish in standing water, frogs, green anoles, dragonfly, red shouldered hawk, song birds in canopy. Adjacent food sources are not optimal. Abundant cover for wildlife within wetland. Elevation change on eastern clear cut edge outside wetland assessment area, moat like feature from earth moving and ruts.

2.0 Wetland Canopy (O/S)

No exotics. Overstory appropriate many young black gum (Nyssa sylvatica var. biflora), wax myrtle (Myrica cerifera), buttonbush (Cephalanthus occidentalis), and swamp bay (Persea palustris) coming up. No pondcypress (Taxodium ascendens) regeneration. Much red maple (Acer rubrum) and some black gum regeneration. Habitat support ideal because of tall trees, some snags and den trees. Canopy appears healthy. Some cut stumps and old dead turpentine trees.

2.5 Wetland Ground Cover (GC)

Wetland vegetation lacking in some areas. On eastern side, saw palmetto (Serenoa repens) and wax myrtle (Myrica cerifera) could be interfering with presence of any desirable ground cover. No nuisance or exotic species. Minimal disturbance to groundcover. Some spots with potential earth moving from previous land management activities, some upland and vine species encroachment to the east. No evidence of fire (atypical or otherwise). Thick vegetation around edge of wetland assessment area on higher elevation. Cabbage palms (Sabal palmetto) do not have boots.

2.0 Habitat Support/Buffer

1/3 planted pine, young trees, bedded, dense shrubs
300' buffer, not full of desirable species
2/3 bedded still with some cuts for hydrologic connection,
"restored" flatwoods, very wet, upland species on beds
wetland vegetation in the troughs, no bunch grasses or wire
grass evident, not all appropriate desired species

>	Buffer Type	(Score) x	(% of Area)	= Sub Total
	planted pine	1.5	0.33	0.66
	flatwoods	2	0.66	1.32
			Total =	2.0

1.5 Field Hydrology (HID)

Adjacent to negative impacts. Will maintain wetland on western side of wetland assessment area, but eastern side does not seem to have adequate hydrology to maintain viable wetland. Many upland and vine species encroaching. Less water coming into wetland assessment area, reduced catchment side from land use impacts, moat like feature around wetland assessment area edge, no ecotone. West side evidence of minimal subsidence. Water on west side is cool, clear and tannic. Issue is water quantity not necessarily quality.

2.1 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

Land Use			= Sub
Category	(Score) x	(% of Area)	Total
clear cut			
flatwoods	2.5	0.66	1.7
planted pine	2.0	0.33	0.7
		I II Total -	2.3

PRETREATMENT CATEGORY (PT)

		PT Total =	2.0
		7.00	
no treatment	0.0	0.33	0.0
area	3.0	0.66	2.0
natural undeveloped			
Category	(Score) x	(% of Area)	= Sub Total
Pretreatment			

^{*} Used FLUCCS unimproved pasture/ rangeland score: 2.5 as land use for clear cut "restored flatwoods" Used citrus score: 2.0 for planted pine

Tup_PRA Uniform Mitigation Assessment Method, page 1

PART I – Qualitative Description (See Section 62-345.400, F.A.C.)

Site/Project Name			Application Number		Assessment Area Name or Number		
Tupelo Mitigation Bank			NA			Tup_PRA	
FLUCCs code Further classification (opt		ition (optional)	Impact or Mitigation Site?		Assessment Area Size		
FLUCCS 2000: 6430 wet prairie wet flatwoods		ods			Mitiga	ation Bank	~ 2.8 ha (~7 ac)
Basin/Watershed Name/Number	Affected Waterbo	ody (Cla	ss)	Special Classificati	on (i.e.0	OFW, AP, other local/state/federal	designation of importance)
St John's River, Lower	Class III			medium priority c	ritical	wildlife corridor	
Geographic relationship to and hyd	rologic connection	on with	wetlands, other su	urface water, uplar	nds		
This wet prairie/wet flatwoods is in sheet flow from the region moves n			•	or surface water fl	ow. V	Vater does pool up insid	e the bedding. Over all
Assessment area description							
Clear cut wet prairie, planted with s long time period. Land is still in bed rural low density residential develop	ds but there are		•			-	· ·
Significant nearby features				Uniqueness (collandscape.)	nsider	ing the relative rarity in	relation to the regional
Medium importance critical wildlife connection. St John's River is 2 miles west. Archeological sites on bank and in landscape. Twelve Mile Swamp Conservation area about 3 miles to northeast.				Jacksonville is expanding greatly to south and west. This area is partly low density residential, agriculture, and silviculture. Flatwoods and wet prairie do not appear to be common on the landscape and most are probably altered or impacted in some way.			
Functions				Mitigation for previous permit/other historic use			
Habitat for flora and fauna. Forage quality. Nutrient cycling with seaso		Enhan	cing water	Clear cutting silviculture practiced for years. Now used for mitigation.			
Anticipated Wildlife Utilization Base that are representative of the asses be found)				Anticipated Utilization by Listed Species (List species, their legal classification (E, T, SSC), type of use, and intensity of use of the assessment area)			
Oak toad, cricket frog, chorus frog, black racer, yellow rate snake, diamondback rattle snake, pygmy rattlesnake, red-shouldered hawk, bobwhite, opossum, cottontail rabbit, cotton rat, cotton mouse, raccoon, striped skunk, bobcat, white-tailed deer, and grassland birds.				Black bear could use this area as a corridor if appropriate connection are available.			
Observed Evidence of Wildlife Utiliz	zation (List spec	ies dire	ctly observed, or c	other signs such as	s track	s, droppings, casings, r	nests, etc.):
Cricket frog, common yellow throat insects.	, large raccoon t	tracks, r	raccoon scat, rabb	oit, small fish trapp	ed in o	drying puddles in trough	s. Heard cricket type
Additional relevant factors:							
Rutting very apparent. Not restored about lack of fine fuels and bunch of	•					,	0 0
Assessment conducted by:				Assessment date	e(s):		
EH, KCR, TD				9/30/2005			

Tup_PRA Uniform Mitigation Assessment Method, page 2

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Site/Project Name			Application Number	Ass	essment Area	Name or Number	
Tupelo Mitigation Bank			NA		Tup_PRA		
, ,			Assessment conducted by:		Assessment date:		
Mitigation Bank			EH, KCR, TD			9/30/2005	
Sporing Cuidonos	_	Ontimal (40)	Madarata/7\	Minima	1 (4)	Not Droppet (0)	
		Condition is optimal and fully supports wetland/surface	Moderate(7) Condition is less than optimal, but sufficient to maintain most wetland/surface waterfunctions	Minimal level o	Minimal (4) Not Prese Minimal level of support of wetland/surface water functions Condition is ins provide wetlan water functions		ent to
.500(6)(a) Location Landscape Supp w/o pres or current 6		the landscape due to widespr assessment area evident. So dispersal for some small rept be reducing hydrologic conne for fish because they dry dow silviculture are young with de	due to reduced availability of read conversion to silviculture ome pasture grasses on road iles and amphibians. Even the ections for surface water flows on quickly and trap the fish. Lanse slash pine (<i>Pinus elliottii</i>) iciated with flowing water featuver and hydrology.	. No invasive ex- edges. Bedding ough there are s and isolating smanduses outside trees, they do no	otic species in in landscape ome cuts into nall pockets out offer much	n proximity to the wetla may be a barrier to the bedding, it appear f water that are unsuita ent area that are in habitat support. There	and rs to able e are
.500(6)(b)Water Envir (n/a for uplands w/o pres or current 5		plants. No drift lines, rafted of has been bedded it is difficult erosion (would not be expect support wetland vegetation, thowever vegetation is linear of Some frogs and small fish in alterations in water or hydrological plants.	ed. The only evident water levelebris, or stain lines observed. to comment on any natural ced for the system). No evider he bedding supports upland von the landscape. Vegetation shallow drying pools. No evicey. Not really any significant quality data available. Could natural flows are interrupted.	Soils in troughs onditions expected of fire or atypegetation, upland does not appear lence of species depth of standing	s were satural ed of the soil. ideal in the land divegetation report to be experied tolerant of management of correct to correct to the correct to the satural to the satur	ted but because this ar No evidence of soil dscape. Low troughs encing hydrologic stres oderate degradation or mment on except for th	rea S Ss.
.500(6)(c)Community s 1. Vegetation and 2. Benthic Commu w/o pres or current 5	d/or	fuels, specifically bunch grass look robust. Age and size cla restoration efforts. The amou that were cut and left, however many because tree density sl resulted in partial removal an not adequate or available, be	position is appropriate, having ses, were not present. No invass distribution is inappropriate unt of coarse woody debris ware no large snags standing. No hould be fairly low. Plant cond alteration of natural structur dding is not appropriate. As othe function has been reduced.	asive exotic spere with only young as higher than ex lo cavities or denditions look healthe and introduced compared to refe	cies present. g slash pine (I pected, there gs, in a wet fla hy. Land man l artificial feat rence condition	Many plants in flower Pinus elliottii) planted fi were young small tree ttwood would not expect nagement practices ha ures. Refugia ponds a ons of a wet flatwoods	and for es ct too ave are
Score = sum of above sco	res/30 (if	If preservation as mitiga	ation	For i	mpact assess	sment areas	
current pr w/o pres 0.53		Preservation adjustment factor =					
		Adjusted mitigation delt		FL = delta	x acres =		
		J		-			
		If mitigation		For m	itigation asse	ssment areas	
Delta = [with-curre	ent]	Time lag (t-factor) = Risk factor =		RFG = de	lta/(t-factor x	risk) =	
		INSK IDOLOI –					

Tup_PRA Wetland Rapid Assessment Procedure, page 1

Project Name: Tup_PRA

Date: 9/30/2005

Evaluator(s): Kelly Chinners Reiss & Erica Hernandez

Wetland Type/Description: Newly planted wet flatwoods/wet prairie, previously clearcut for silviculture. Ground is still in beds and rows although some breaks were cut for hydrologic connection.

Wetland Size: ~2.8 ha (~7 ac)

FLUCCS Code/Description: 6430 FLUCCS wet prairie

0.59	WRAP				
6	Count				
10.7	SUM				
2.5	WQ Input & Treatment (WQ)				
1.5	Field Hydrology (HYD)				
2.2	Habitat Support/Buffer				
1.5	Wetland Groun	Wetland Ground Cover (GC)			
1.5	Wetland Cano	py (O/S)			
1.5	Wildlife Utilization (WU)				

Tup PRA Wetland Rapid Assessment Procedure, page 2

1.5 Wildlife Utilization (WU)

Mammals probably utilize troughs for movement across this area, game trails are difficult to detect. Some evidence of raccoons from tracks and scat. Common yellow throat in wax myrtle (*Myrica cerifera*) growing on beds. Small fish in drying puddles between troughs. No evidence of large mammal or reptile utilization. The backing up of pools of water and lack of a natural sheet flow is not optimal for macroinvertebrates and forage fish. Small reptiles and amphibians could have a difficult time overcoming beds. No remnant patch of natural uplands. The bedding does support some upland plant species. Birds should be able to utilize this area. A natural flatwoods system would have more refugia, a less homogenous landscape, and a smoother topographic gradient.

1.5 Wetland Canopy (O/S)

This area was in silviculture and clearcut. Some young slash pine (*Pinus elliottii*) has been planted. No invasive exotic species present. Native shrubs on beds are full and healthy. Shrubs should provide some habitat support but linear structure on landscape is not optimal. Canopy too young to provide much habitat support or snags or dens. Flatwoods naturally have low densities of trees and shrubs. Eventually these planted trees will provide some structure.

1.5 Wetland Ground Cover (GC)

Nice species composition, good species richness, no exotic species, plants look healthy. Did not see fine fuels specifically bunch grasses and wiregrass (*Aristida stricta* var. beyrichiana) that will be important for carrying fire. Ground cover is rutted and bedded from silviculture practices. Distinct linear features in vegetation growth. Some areas in beds are cut out and provide some connection but other wise very tall beds and low troughs.

2.2 Habitat Support/Buffer

Cleared area very expansive, all of it with ruts, bedding and linear features. Some cypress (*Taxodium ascendens*) domes in landscape, patches of planted slash pine (*Pinus elliottii*), areas in agriculture, and low density housing in support landscape. Buffer is greater than 300 feet. Silvicultural areas do not offer much buffer support and this area is not connected to other wetlands except for the continuous cleared area and the two cypress domes. However this is a large area with some structure providing food and cover.

Buffer Type	(Score) x	(% of Area)	= Sub Total
planted pine	2.0	0.25	0.5
flatwoods	2.0	0.60	1.2
cypress dome	3.0	0.15	0.5
		Total =	2.2

1.5 Field Hydrology (HID)

Beds are not optimal for hydrology. There are some breaks in the beds for connection. Water appears to pool in some areas and draw down rapidly. Vegetation is distinctly wetlands in troughs, upland on beds. Plants do not appear stressed. This area could not support a natural hydroperiod. Zonation is inappropriate because of linear features in bedding. Upland species are not invading the lower areas. Hydrologic regime is probably adequate to maintain the vegetation in the troughs. These features may be impacting cypress (*Taxodium ascendens*) domes in the landscape.

2.5 WQ Input & Treatment (WQ)*

*The value of WQ is obtained by adding the TOTAL scores of Land Use Category and Pretreatment Category then dividing by 2.

LANDUSE CATEGORY (LU)

			= Sub
Land Use Category	(Score) x	(% of Area)	Total
planted pine	2.0	0.15	0.3
forested depression	3.0	0.09	0.3
clearcut/wet prairie	2.5	0.76	1.9
		LU Total =	2.5

PRETREATMENT CATEGORY (PT)

			= Sub
Pretreatment Category	(Score) x	(% of Area)	Total
no treatment	0.0	0.15	0.0
natural undeveloped	3.0	0.85	2.6
		PT Total -	2.6

* Used FLUCCS unimproved pasture/ rangeland score: 2.5 as land use for clear cut

"restored flatwoods" Used citrus score: 2.0 for planted pine