

Florida Department of Environmental Protection

Update on DEP Septic Tank Research Activities

October 20, 2017

Info Covered

- Wekiva area homeowner's septic tank study
- Ichetucknee experimental drainfield
- Apopka experimental drainfield

Wekiva Study

Key Activities

- Homeowner septic tank study
 - Homeowner meeting (March 2015)
 - Screening and selection of 11 study sites (June 2015)
 - Site instrumentation (July-August 2015)
 - Monitoring period, bi-monthly sampling (September 2015-October 2016)

Wekiva Homeowner Study Objectives

The results of the study help us better understand:

- Attenuation and leaching of nitrogen from existing septic systems into the soil and potentially to ground water
- Other sources of nitrogen in residential areas
- Conditions that may influence nitrogen attenuation in the Wekiva area
- Influence of septic tank pumping on treatment

Information on Study Sites

Site ID	City	No. residents	Drainfield repair/replacement history	Maintenance info	Fertilizer use	Soil	
Α	Sorrento	2	infiltrators (original)	pumped regularly	yes, self applied	Candler fine sand	
В	Apopka	3	infiltrators (2009)	pumped in 2013	yes, self applied	Candler fine sand	
С	Apopka	3	infiltrators (2010)	septic tank pumped in 2013	yes, self applied	Candler fine sand	
D	Apopka	2	pipe in gravel (original)	not pumped out lately	yes, commercial service	Candler fine sand	
E	Apopka	2	pipe in gravel (1989)	not pumped	yard mostly mulched beds	Candler fine sand	
F	Apopka	4	infiltrators (2010)	pumped in 2014	not lately	Candler fine sand	
G	Apopka	3	pipe in gravel (original)	pumped in 2014	yard mostly mulched beds	Candler fine sand	
Н	Apopka	2	pipe in gravel (original)	not pumped	yes, commercial service	Candler fine sand	
I	Longwood	1-2	infiltrators (1989)	pumped in 2015	yes, commercial service	Urban land	
J	Longwood	2	mounded pipe in gravel bed	pumped regularly	yes, commercial service	Urban land	
K	Apopka	2	pipe in gravel (original)	pumped in 2015	yard mostly mulched beds	Candler fine sand	

10/25/2017 6

Types of drainfields in study

Figure 4 - Schematic of a Sand Mound System

Scope

- Install and sample lysimeters to monitor soil pore water below drainfields and at background locations
- Install risers for septic tank effluent monitoring
- Install and sample monitoring wells at two locations
- Attempt to collect data on water use to estimate loading

Soil Pore Water Monitoring

Site	Lysimeters Installed	Total Depth (ft below land surface)	Location	
A	AL1S-AL4S	5	Drainfield	
	AL5S	5	Background	
	AL2D	10	Drainfield adjacent to AL2S	
В	BL1S-BL4S	5	Drainfield	
	BL5S	5	Background	
	BL3D	10	Drainfield, adjacent to BL3S	
	BL3E	15	Drainfield, adjacent to BL3S	
С	CL1S-CL3S	5	Drainfield	
	CL4S	5	Background	
D	DL1S-DL2S	5	Drainfield	
	DL3S	5	Background	
E	EL1S-EL3S	5	Drainfield	
	EL4S	5	Background	
F	FL1S-FL3S	5	Drainfield	
	FL4S	5	Background	
	FL2D	10	Drainfield, adjacent to FL2S	
G	GL1S-GL2S	5	Drainfield	
	GL3S	5	Background	
	GL1D	10	Drainfield, adjacent to GL1S	
	GL1E	15	Drainfield, adjacent to GL1S	
H	HL1S-HL2S	5	Drainfield	
	HL3S	5	Background	
I	IL1S-IL3S	5	Drainfield	
	IL4S	5	Background	
J	JL1S-JL3S	5	Drainfield	
	JL4S	5	Background	
K	KL1S-KL4S	5	Drainfield	
	KL5S	5	Background	

Lysimeter Installation

Septic Tank Effluent Sampling

Septic tank effluent samples collected bimonthly at 8 sites. Results in mg/L.

Site	Average Total Nitrogen	Average Chloride	TN/Chloride Ratio	Average Total Phosphorus
Α				•
A	61	32	1.91	7.8
В	93	43	2.16	9.3
C	101	63	1.60	12
E	57	47	1.21	6.8
F	57	45	1.27	6.8
G	75	42	1.79	7.5
I	140	87	1.61	16
J	93	74	1.26	9.3
All Sites	85	54	1.57	9.4

10/23/2015 12/12/2015 1/31/2016 3/21/2016 5/10/2016 6/29/2016 8/18/2016 10/7/2016 11/26/2016

10/23/2015 12/12/2015 1/31/2016 3/21/2016 5/10/2016 6/29/2016 8/18/2016 10/7/2016 11/26/2016

Summary Findings for Lysimeter Samples

Site	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg
	TN	TN	TN	Chloride	Chloride	Chloride	TP	TP	TP
A	132	0.96	37	81	0.04	26	3.6	0.034	0.89
В	254	1.5	49	180	1.6	33	3.6	0.008	0.32
С	67	0.83	19	67	6.5	30	1.2	0.033	0.38
D	22	1.3	6.0	28	2.7	13	2.1	0.053	1.2
E	103	0.74	22	94	2.9	37	1.9	0.11	0.77
F	112	7	42	56	1.3	18	6.1	0.047	1.8
G	152	2.2	49	2600	5.8	234	7.9	0.04	1.8
Н	10	1.5	6.3	92	1.9	24	0.12	0.021	0.07
I	69	0.6	8.5	120	3.9	21	2.3	0.048	0.80
J	56	0.56	4.0	96	2.2	24	0.12	0.015	0.038
K	192	0.43	31	260	1.3	55	8.2	0.32	3.0

Information about drainfield-related N attenuation

Results from some of the sites where TN was mostly from drainfields during some portion of the monitoring period are summarized below.

- At Site E, 39 % of nitrogen was reduced with 10% due to dilution.
- At Site G, 42 to 46 % of nitrogen was reduced in shallow and deep lysimeters with no dilution.
- At Site J where there is a shallow water table, 35 % of the nitrogen was reduced in a shallow well with no dilution.
- At Site K, 44 % of nitrogen was reduced with no dilution.

Using data from multiple sites, it appears that attenuation of N by means other than dilution is about 42 % (based on assumed TN/CI relationship)

Soil Attenuation Modeling

The Florida Onsite Sewage Nitrogen Reduction Strategies (FOSNRS) Project

FOSNRS 6: STUMOD-FL - A Tool for Predicting Fate and Transport of Nitrogen in Soil Treatment Units in Florida

April 7, 2014

Mengistu Geza¹, Kathryn S Lowe¹, Cliff Tonsberg¹, John McCray¹ and Epethal and Epe

¹Civil and Environmental Engineering, Colorado School of Mines, Golden, CO

²Division of Disease Control and Health Protection Bureau of Environmental Health, Florida Department of Health, Tallahassee, FL

STUMOD runs for study sites

10/25/2017 26

STUMOD runs for study sites

10/25/2017 27

Potential application of STUMOD on regional scale

Septic Tank Effluent and Influence of Pumping

- Midway through the study, 4 septic tanks were pumped. Others left as control.
- Septic tanks at sites A, B, E and G were pumped in March 2016, between February and April monitoring events

+

 G^1

79

128

73

149

106

General statistics for all sites

Site	TN	TN	%	Chloride	Chloride	%	TP	TP	%
	Before	After	Chg	Before	After	Chg	Before	After	Chg
A ¹	55	65	+18	30	34	+13	6	9	+5
B ¹	97	90	-7	43	42	-2	9	9	0
С	101	100	-1	63	60	-5	12	11	-8
E ¹	45	65	+44	46	48	+4	5	8	+60
F	56	65	+18	45	48	+7	6	8	+33

42

90

76

-2

+8

+7

8

15

-13

+13

+140

17

12

43

83

71

Notes: 1- septic tank pumped in March 2016. Other sites are controls.

-8

+16

+38

TN Trends after pumping

- Intentionally low-tech, low cost design (added approximately \$300 to the cost of a new drainfield)
- Ichetucknee Springs State Park manager's house
- With DOH construction and operating permits, and under a Memorandum of Understanding
- Installed a second drainfield underlain by wood chips
- Installed monitoring system and monitored
- Put in the ground in March 2014 and septic tank effluent diverted to new system

Figure 1. View East: First phase of lignocellulosic layer installation. ~11:20 am

Figure 6. Installation of deep lysimeters (buckets contain silica mix), ~1:55 pm.

Figure 10. Installation of three rows of chambers at a slight angle to the length axis of the mulch bed. ~4:36 pm

Soil pore water sampling using lysimeters

Monitoring includes

- Pore water from lysimeters set above and below the mulch layer
- Shallow ground water from beneath the drainfield
- Septic tank effluent
- Water level in a shallow piezometer to measure mounding

Plan view

Cross section

Shallow Lysimeter Data

Shallow Lysimeters - Chloride mg/L

Shallow Lysimeters - Total Nitrogen mg/L

Deep lysimeter data

Deep Lysimeters - Chloride mg/L

Deep Lysimeters - Total Nitrogen mg/L

Groundwater monitoring

- Water table at about 20-24 ft below land surface
- Two wells installed between infiltrator rows
- Beneath active drainfield nitrate ranged from 18 to 26 mg/L over the past year, increasing from original background concentration of 3.3 mg/L

Evaluating subsidence

Figure 13. Land Surface Elevation (LSE) Survey of Drainfield July 2017

Evaluating mulch condition

Figure 15. Photographs of mulch from March 2014 (at installation), January 2015 and July 2017

Apopka Lined Drainfield Site

- Experimental drainfield
 - Passive drainfield with mulch on liner
 - Recycled wood mulch
 - No pump
 - Installed August 2016
 - Monthly monitoring for 1 year followed by quarterly monitoring

0 12.5 25 50 Feet

Wood mulch and liner extend 3-5' beyond edge of drainfield

10/25/2017

55

Shallow Lysimeter Results for First Year

Figure-4.--Shallow-Lysimeters---Chloride-mg/L¶

 $\textit{Figure-5.} \cdot Shallow-\textit{Lysimeters} - \cdot \textit{Total-Nitrogen-mg/L} \P$

Horizontal Well Results for First Year

Horizontal Monitoring Wells - Chloride mg/L

Horizontal Monitoring Wells - Total Nitrogen mg/L

Deep Lysimeter Results for First Year

 $Figure \cdot 10. \cdot \cdot Deep \cdot Lysim \not\models ters - \cdot Chloride \cdot mg/L\P$

 $Figure \cdot 11. \cdot \cdot Deep \cdot Ly sime ters - \cdot Total \cdot Nitrogen \cdot mg/L \P$

Groundwater Monitoring

- One well adjacent to active end of drainfield
- Nitrate increased from 3.5 mg/L pre-installation to 6.0 mg/L one year later
- Depth to groundwater about 30 feet below land surface

Questions?

