Understanding Risk AKA The First Step to Reducing Vulnerability

Renee Collini Resilient Florida Planning, Policy and Practice Tampa, FL • 08/07/2019

OF MEXICO

A few definitions...

 Vulnerability – state of being exposed to the possibility of being attacked or harmed

• Risk – possibility of loss or injury

Vulnerability means you're at risk

Where we're heading today...

- Sea-level rise increases risk
- Risk and uncertainty
- Risk-tolerance based planning
- Understanding vulnerability

Small Rise Causes Big Changes

Coastal Dynamics of Sea Level Rise (SLR)

AGU Journal Earth's Future Special Issue on Gulf Sea Level Rise

Exacerbates existing risks:

- Storm surge
- Nuisance flooding
- Erosion
- Salt-water intrusion
- Storm water management

How do we know?

https://tidesandcurrents.noaa.gov/sltrends/

Risk and Uncertainty

Global Scenarios - 2017

Why such a large range?

Three major reason

Big companies' climate chang are 'unambitious'. sav analvst

U.S. NEWS

US companies act on climate despite Trump: Survey

Companies are still among the most ambitious in setting targets to combat

ump's plans to quit the Paris

Ireland secures 'fair deal' on carbon emissions under EU pact

a 2017 "A list" of 159 companies g climate change and protecting

Implementing the Paris Agreement in the Pacific

by 2% in 2012-15

PTI | Oct 25, 2017, 02.23 PM IST

1 – We do not know how much carbon will be in the atmosphere.

Three major reasons for scenarios

2 – Natural variability

Three major reasons for scenarios

3 – Still studying the ice sheet melt – the science to watch!

Global Scenarios - 2017

Working with uncertainty

Step 1 - Understanding probabilities

Likelihood of scenarios

Global Sea Level Rise Scenario	RCP2.6 dramatic reduction of carbon emissions	RCP4.5 modest reduction in carbon emissions	RCP8.5 no change in carbon emissions
Low	94%	98%	100%
Intermediate-low	49%	73%	96%
Intermediate	2%	3%	17%
Intermediate-high	0.4%	0.5%	1.3%
High	0.1%	0.1%	0.3%
Extreme	0.05%	0.05%	0.1%

Working with uncertainty

Step Two - Identify your risk tolerance

What is your flood risk tolerance?

High Tolerance for Risk

Moderate Tolerance for Risk

Minor Impact

Moderate Impact

Low Tolerance for Risk

Major Impact

Thinking about your risk tolerance

- Scale dependent
- Location dependent
- Cost/value
- Function
 - Critical service?
 - Number of people impacted
- Length of Time

High Tolerance for Risk

Moderate Tolerance for Risk

Low Tolerance for Risk

Risk Tolerance Examples

- Hospital
 - High Expense
 - Critical function
 - Long-term
- Buying A Home
 - Moderate Expense
 - Critical function to who?
 - Mid-term (30 years)
- Shed
 - Minor Expense
 - Not critical
 - Short-term

Working with uncertainty

Step 3 - Linking flood risk tolerance and probabilities

Linking risk tolerance & likelihood

Sea level rise scenario Li	kelihood	
Low	100%	
Intermediate-low	96%	
Intermediate	17%	
Intermediate-high	1.3%	
High	0.3%	
Extreme	0.1%	

Would have a this in the part of the part

Putting it all together

Looking at data, time frame, risk, and probability together.

Hospital in a Coastal County

Risk tolerance?

• Low

Scenario?

• High or Extreme

High Tolerance for Risk Sea level rise scenario Likelihood

Low	100%	
Intermediate-low	96%	
Intermediate	17%	
Intermediate-high	1.3%	
High	0.3%	
Extreme	0.1%	
Low Tolerance for Risk		

Hospital in Coastal County

Next Steps

AKA – How to reduce vulnerability?

Translate your scenario – new high tide

Translate your scenario – future storm surge

An EESLR-NGOM Story Map

Coastal Dynamics of Sea Level Rise: Simulated Storm Surge

Stillwater Storm Surge

Download the data

By using state-of-the-art high-resolution astronomic tide, wind-wave, and hurricane storm surge modeling, **return period (percent annual chance) stillwater elevation** maps under four different sea level rise scenarios were developed. These 1% and 0.2% annual chance data (commonly referred to as 100 and 500 year flood plains) were developed to assess the effects of future coastal change on stillwater storm surge under different SLR scenarios.

Inundation depth above ground (m)

6.0+ (m) - 4 - 2 - 0.1 (m)

Stillwater storm surge inundation depth above ground (in meters) in 2100 for Low (+0.2m or 0.7ft in left panel) and Intermediate-High (+1.2m or 3.9ft in right panel) sea level rise scenarios. Data ranges shown are equivalent to 0.3 to 19.7 feet.

Shown at right are the <u>1% annual chance probability</u> of storm surge inundation in 2100 for Low (+0.2m or 0.7ft in <u>left panel</u>) and **Intermediate-High** (+1.2m or 3.9ft in <u>right panel</u>) SLR scenarios.

Try this:

Slide the bar to see changes in storm surge inundation depth between these two scenarios. Enter 'Pensacola, FL' in the location search box (top right) to see storm surge differences near Pensacola, FL.

Recap

- Scenario probabilities = planning power
- Risk-tolerance planning is a useful approach to handling uncertain risk
- Scenario selection is step one of integrating sea-level rise
- Use that information to understand and reduce your vulnerability

Questions???

r.collini@msstate.edu

