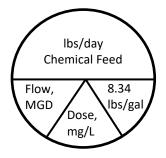
FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION <u>Wastewater Treatment Formulas/Conversion Table</u>

12 in = 1 ft	27 cu. ft. = 1 cu. yd.	1,000 mg = 1 gm
3 ft = 1 yd	7.48 gal= 1 cu. ft.	1,000 gm = 1 kg
5,280 ft = 1 mi	8.34 lbs= 1 gal	1,000 ml = 1 liter
43,560 sq. ft.= 1 acre	62.4 lbs= 1 cu. ft.	454 gm = 1 lb.
43,560 cu. ft.= 1 acre-ft	2.31 ft water = 1 psi	10,000 mg/L = 1%
325,829 gal = 1 acre-ft	0.433 psi = 1 ft water	1 mg/l = 1ppm
60 sec = 1 min	1 Hp= 0.746 kW	1 kg = 2.2 lbs.
60 min = 1 hour	1 Hp = 33,000 ft lbs/min	1 MGD = 695 gpm
1,440 min = 1 day	1 kW = 1,000 W	1 MGD = 1.549 cfs
L Leweth D Dees M/ Midth LL Llaight D Dedius D Discussion - 244		


L = Length B = Base W = Width H = Height R = Radius D = Diameter π = 3.14

Activated Sludge

Change, WAS Rate, MGD = (Current Solids Inventory, lbs.) - (Desired Solids Inventory, lbs.) (WAS, mg/L) (8.34 lbs./gal)			
Food to Microorganism Ratio (F/M) = (Aeration Tank Cap., MG) (MLVSS, mg/L) (8.34 lbs/gal)			
Mean Cell Residence Time (MCRT), days = <u>Solids Inventory, lbs.</u> (Effluent Solids, lbs/day) + (WAS, lbs/day)			
Solids Inventory, lbs. = (Aeration Tank Cap., MG) (MLSS, mg/L) (8.34 lbs/gal)			
WAS, lbs/day = (Waste Sludge Flow, MGD) (Waste Conc., mg/L) (8.34 lbs/gal)			
Effluent Solids, lbs/day = (Plant Flow, MGD) (Effluent TSS, mg/L) (8.34 lbs/gal)			
WAS, lbs/day to Waste = (Solids Inventory, lbs. Target MCRT, days			
WAS Flow Rate, MGD = (WAS, mg/L) (8.34 lbs/gal)			
Return Sludge (RAS) Rate, MGD = (1,000 ml/L) - (Settleable Solids, ml)			
Sludge Age, days = Solids Inventory, lbs Inf. Solids Added, lbs/day			
Sludge Volume Index (SVI), ml/g = MLSS, mg/L x 1,000 mg/g			

Area, Circumference, and Volume

Area (A), sq. ft. Circle, $A = \pi \times R^2$ or $A = 0.785 \times D^2$ Cylinder, (outside surface area): $A = [(2 \times 0.785 \times D^2) + (\pi \times D \times H)]$ or $[(2 \times \pi \times R^2) + (\pi \times D \times H)]$ Rectangle, $A = L \times W$		
Circumference, linear ft. Circle, ft = $\pi \times D$ Rectangle, ft = (2 x L) + (2 x W)		
Volume (V), cu. ft. Cylinder, V = $\pi x R^2 x H$ or V = 0.785 x D ² x H Rectangle, V = L x W x H		
Average (Arithmetic Mean) = Sum of All Terms or Measurements Number of Terms or Measurements		
Annual Running Average = Sum of All Averages Number of Averages		
<u>Chemical Feed</u>		
Chemical solution, lbs/gal = (solution, as a decimal) (8.34 lbs/gal)		
Feed Pump Flow, gpd = Chemical Feed, lbs/day Chemical Solution, lbs/gal		
Feed Pump Stroke Setting, % = Maximum Feed Rate, gpd x 100%		
<u>Feed Rate</u>		
Feed Rate, Ibs/day = (Chemical Purity, as a decimal)		

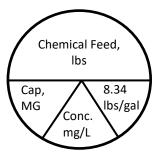
Using the Davidson Pie Chart

- <u>To find the quantity above the horizontal line</u>: Multiply the 3 pie wedges below the line together. Next, divide by the % purity as a decimal (i.e., 65% = 0.65).
- <u>To solve for one of the pie wedges below the horizontal line</u>: Divide the 2 bottom pie wedges into the quantity of lbs above the horizontal line. Next, multiply by the % purity as a decimal (i.e., 65% = 0.65).
- The given units must match the units shown in the pie wheel.

Detention Time

Detention Time, days = —	Tank Volume, gallons Flow Rate, gal/day	Note: for detention time in hours, multiply by 24 hrs/day For detention time in minutes, multiply by 1,440 min/day	
Disinfection			
Chlorine Demand, mg/L = Ch	nlorine Dosage, mg/L – Ch	lorine Residual, mg/L	
Chlorine Dosage, mg/L = Ch	nlorine Demand, mg/L + C	Chlorine Residual, mg/L	
Chlorine Residual, mg/L = Ch	nlorine Dosage, mg/L – Ch	llorine Demand, mg/L	
Horsepower & Force			
Water Horsepower (WHP) =	_(Flow, gpm) (Hea 3,960	ad, ft)	
Pump Brake Horsepower (BH		n) (Head, ft) ficiency as decimal)	
Motor Brake Horsepower (MHP) = (Flow, gpm) (Head, ft)			
(3,960) (Pump Efficiency as decimal) (Motor Efficiency as decimal)			
Upward Force, lbs = (62.4 lbs)	/cu. ft.) (ground water he	ight over tank bottom, ft) (tank bottom area, ft ²)	
Side Wall Force, lbs = (31.2 lb	s/cu.ft.) (height, ft) (lengt	:h, ft)	
Motor Horsepower, Hp = <u>(Po</u>	wer to electric motor, kW 0.746 kW	V) (Motor efficiency as decimal) V/Hp	
Pump System Efficiency, % =	Water horsepower, Motor horsepower	X 100%	
Kilowatt, hrs/day = (Motor ho	orsepower, Hp) (Motor ru	n time, hrs/day) (0.746 Kw/Hp)	
Energy Cost, \$/day = (Kilowat	t, hrs/day) (Energy cost, \$	\$/kWh)	
Total Dynamic Head, ft = Static head, ft + Friction losses, ft			
Static Head, ft = Suction lift, f	t + Discharge head, ft		

Laboratory Procedures & Measurements


RDD = dried residue + dish + disc (filter), grams Tare weight (DD) = dish + disc (filter), grams FDD = fired residue + dish + disc (filter), grams 1 M = 1,000,000

MLVSS, mg/L = (MLSS, mg/L) (VSS % as decimal)

Parts per Million (ppm) & Pounds (lbs)

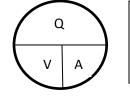
PPM (mg/L) =	Pounds of Chemical	
	(MG <i>or</i> MGD) (8.34 lbs/gal)	

Lbs. = (Capacity, MG) (Concentration, mg/L) (8.34 lbs/gal)

Sedimentation & Loadings

Weir Overflow Rate, gpd/sq ft = -	Total Flow, gpd Weir Length, ft	
Solids Loading Rate, lbs/day/ft ² =	Solids applied, lbs/day Surface area, ft ²	_
Efficiency, % = $\frac{(In - Out)}{In}$ x 100%		
Hydraulic (Surface) Loading, gpd/ft ²	$\frac{Flow Rate, gpd}{Surface area, ft^2}$	
Trickling Filter Organic Loading, Ibs CBOD/day/1,000 ft ³ = CBOD applied, Ibs/day Media volume, as 1,000 ft ³ units		

Sludge Digestion


Dry Solids, lbs = (Raw sludge, gal) (raw sludge, % solids) (8.34 lbs/gal)

Seed Sludge, lbs. volatile solids (VS) =	VS pumped, lbs VS/day Loading factor, lbs VS/day/lb VS in digester	
Seed Sludge, gal =	l sludge, lbs volatile solids al) (solids %, as decimal) (VS, as decimal)	
Lime Required, lbs. = (sludge volume, MG) (Volatile acids, mg/L) (8.34 lbs/gal)		
Volatile Solids Reduction, % = (In - Out) In - (In x Out) x 100 %		
Volatile Solids Destroyed, lbs/day/ft ³ =	(VS added, lbs/day) (VS reduction, %) Digester volume, ft ³	
Gas Production, ft ³ /lb Volatile Solids =	Gas produced, cu ft/day VS destroyed, lbs/day	
Temperature Conversions		
Degrees Celsius, °C = (°F - 32) (0.555) or	<u>(°F - 32)</u> 1.8	

Degrees Fahrenheit, °F = (°C x 1.8) + 32

Velocities & Flow Rates

Velocity, fps = $\frac{\text{Flow Rate, cfs}}{\text{Area, sq ft}}$ or $\frac{\text{Distance, ft}}{\text{Time, seconds}}$

Where: Q = flow rate, cfs V = velocity, fps A = area, ft²

Flow Rate, cfs = (Area, sq. ft.) (Velocity, ft/sec) or Q = V x A

Flow Rate, gpm = (Area, sq. ft.) (Velocity, ft/sec) (7.48 gal/cu ft) (60 sec/min) or Q = V x A x 7.48 x 60

Abbreviations:

BOD	Biochemical Oxygen Demand	mg	Milligrams
cfs	Cubic feet per second	mg/L	Milligrams per liter
CBOD	Carbonaceous Biochemical Oxygen Demand	MG	Million gallons
DO	Dissolved oxygen	MGD	Million gallons per day
ft	Feet	mL	Milliliter
fps	Feet per second	MLSS	Mixed liquor suspended solids
gm	Grams	MLVSS	Mixed liquor volatile suspended solids
gpd	Gallons per day	PPM	Parts per million
gpm	Gallons per minute	psi	Pounds per square inch
gph	Gallons per hour	Q	Flow
hp	Horsepower	RAS	Return Activated Sludge
in	Inch	SS	Settleable solids
kg	Kilogram	TSS	Total suspended solids
kW	Kilowatt	VS	Volatile solids
kWh	Kilowatt-hour	W	Watt
lbs	Pounds	WAS	Waste Activated Sludge
Lbs/day	Pounds per day		