FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

**Division of Environmental Assessment and Restoration**,

**Bureau of Watershed Restoration** 

NORTHEAST DISTRICT • UPPER EAST COAST BASIN

### Final TMDL Report

# Nutrient TMDL for Tomoka River (Fresh Water), WBID 2634

Wayne Magley, Ph.D., P.E.



May 2013

### **Acknowledgments**

Editorial assistance provided by: Jan Mandrup-Poulsen and Linda Lord. Geographic information assistance (GIS) provided by: Ronald Hughes

For additional information on the watershed management approach and impaired waters in the Upper East Coast Basin, contact:

Charles Gauthier Florida Department of Environmental Protection Bureau of Watershed Restoration Watershed Planning and Coordination Section 2600 Blair Stone Road, Mail Station 3565 Tallahassee, FL 32399-2400 Email: charles.gathier@dep.state.fl.us Phone: (850) 245–8555 Fax: (850) 245–8434

Access to all data used in the development of this report can be obtained by contacting: Wayne Magley

ii

Florida Department of Environmental Protection Bureau of Watershed Restoration Watershed Evaluation & TMDL Section 2600 Blair Stone Road, Mail Station 3555 Tallahassee, FL 32399-2400 Email: <u>wayne.magley@dep.state.fl.us</u> Phone: (850) 245–8463 Fax: (850) 245–8444

### Contents

| Chapt | er 1:                       | INTRODUCTION                                                              | 1               |
|-------|-----------------------------|---------------------------------------------------------------------------|-----------------|
| 1.1   | Purp                        | ose of Report                                                             | 1               |
| 1.2   | Ident                       | ification of Waterbody                                                    | 1               |
| 1.3   | Back                        | ground                                                                    | 1               |
| Chapt | er 2:                       | DESCRIPTION OF WATER QUALITY PROBLEM                                      | 6               |
| 2.1   | Statu                       | tory Requirements and Rulemaking History                                  | 6               |
| 2.2   | Infor                       | mation on Verified Impairment                                             | 6               |
| Chapt | er 3.                       | DESCRIPTION OF APPLICABLE WATER QUALITY<br>STANDARDS AND TARGETS          | 8               |
| 3.1   | Class                       | sification of the Waterbody and Criteria Applicable to the TMDL_          | 8               |
| 3.2   | Appli<br>Targe              | cable Water Quality Standards and Numeric Water Quality                   | 8               |
| Chapt | er 4:                       | ASSESSMENT OF SOURCES                                                     | _10             |
| 4.1   | Туре                        | s of Sources                                                              | 10              |
| 4.2   | <b>Pote</b><br><i>4.2.1</i> | ntial Sources of Nutrients in the Tomoka River Watershed<br>Point Sources | <b>10</b><br>10 |
|       | 4.2.2                       | Land Uses and Nonpoint Sources                                            | 11              |
| 4.3   | Sour                        | ce Summary                                                                | 19              |
|       | 4.3.1                       | Summary of Nutrient Loadings to Tomoka River from Point<br>Sources        | 19              |
|       | 4.3.2                       | Summary of Nutrient Loadings to Tomoka River from Nonpoint Sources        | 19              |
| Chapt | er 5:                       | DETERMINATION OF ASSIMILATIVE CAPACITY                                    | _22             |
| 5.1   | Deter                       | mination of Loading Capacity                                              | 22              |
|       | 5.1.1                       | Data Used in the Determination of the TMDL                                | 22              |
|       | 5.1.2<br>5.1.3              | Critical Conditions/Seasonality                                           | 35<br>42        |
| Chapt | er 6:                       | DETERMINATION OF THE TMDL                                                 | _43             |
| 6.1   | Expre                       | ession and Allocation of the TMDL                                         | 43              |
| 6.2   | Load                        | Allocation                                                                | 44              |
| 6.3   | Wast                        | eload Allocation                                                          | 44              |
|       | 6.3.1                       | NPDES Wastewater Discharges                                               | 44              |

| 6.3.2 NPDES Stormwater Discharges                                                                                                                                                              | 44     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 6.4 Margin of Safety                                                                                                                                                                           | 44     |
| Chapter 7: NEXT STEPS: IMPLEMENTATION PLAN<br>DEVELOPMENT AND BEYOND                                                                                                                           | _46    |
| 7.1 Basin Management Action Plan                                                                                                                                                               | 46     |
| References                                                                                                                                                                                     | 48     |
| Appendices                                                                                                                                                                                     | <br>49 |
| Appendix A: Background Information on Federal and State Stormwater<br>Programs                                                                                                                 | 49     |
| Appendix B: Historical Corrected Chla, TEMP, TN, TP, and TSS<br>Observations in Palm Coast, 1968–2011                                                                                          | 50     |
| Appendix C: LSPC Modeling Methodology, Daytona Watershed                                                                                                                                       | 68     |
| Appendix D: Kruskal–Wallis Analysis of Corrected Chla, INORGN, TN,<br>INORGP, TP, COND, Color, and TSS, Observations versus Season in<br>Tomoka River                                          | 90     |
| Appendix E: Kruskal–Wallis Analysis of Corrected Chla, INORGN, TN,<br>INORGP, TP, COND, Color, and TSS Observations versus Year in<br>Tomoka River                                             | 93     |
| Appendix F: Chart of Corrected Chla, INORGN TN, INORGP, TP, Cond,<br>Color, and TSS Observations by Year, Season, and Station, in<br>Tomoka River                                              | _101   |
| Appendix G: Monthly and Annual Precipitation at Daytona International<br>Airport, 1937–2011                                                                                                    | _117   |
| Appendix H: Spearman Correlation Matrix Analysis for Water Quality<br>Parameters in Tomoka River                                                                                               | _119   |
| Appendix I: Linear Regression Analysis of CHLAC Observations versus<br>COND, SALINITY, TEMPC, Nutrients, TSS, TURBIDITY, V14DAY,<br>V21DAY, and FLOW in Tomoka River                           | _123   |
| Appendix J: Linear Regression Analysis of Annual Average CHLAC<br>Observations versus COND, SALINITY, TEMPC, Nutrients, Rainfall,<br>Rainfall Deficits, and Annual Stream Flow in Tomoka River | _129   |
| Appendix K: Annual and Monthly Average Precipitation Plots for<br>Daytona International Airport                                                                                                | _137   |
| Appendix L: Response to Comments from September 2012 Workshop                                                                                                                                  | _142   |
| Appendix M: Response to Comments from April 2013 Workshop                                                                                                                                      | _151   |

#### **List of Tables**

| Table 2.1.               | Summary of Corrected Chlorophyll a (CHLAC) Monitoring<br>Data for Tomoka River (WBID 2634) During the Verified<br>Period (January 1, 2004 – June 30, 2011) | 7   |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2.2.               | Summary of Annual Average CHLAC for the Cycle 2 Verified<br>Period (January 1, 2004 – June 30, 2011)                                                       | 7   |
| Table 4.1.               | Classification of Land Use Categories in the Tomoka River<br>Watershed                                                                                     | 11  |
| Table 4.2.               | Description of Hydrologic Soil Classes from the SSURGO<br>Database                                                                                         | 15  |
| Table 4.3.               | Estimated Nitrogen and Phosphorus Annual Loading from<br>Septic Tanks in the Tomoka River Watershed                                                        | 17  |
| Table 4.4.               | Estimated Annual Average Discharge, TN and TP Loads from the Tomoka Farms Road Landfill                                                                    | 19  |
| Table 4.5.               | Estimated Annual Average LSPC Derived Discharge, TN, TP<br>Loads and Concentrations from the Tomoka River                                                  | 20  |
| Tabla 5 1                | Sampling Station Summary for the Tomoka River Watershed                                                                                                    | 20  |
| Table 5.1.<br>Table 5.2. | Statistical Summary of Historical CHLAC Data for Tomoka                                                                                                    | 25  |
| Table 5.3.               | Summary Statistics for Major Water Quality Parameters<br>Measured in Tomoka River                                                                          | 23  |
| Table 5.4.               | Statistical Summary of Historical CHLAC Data by Year for the<br>Tomoka River                                                                               | 31  |
| Table 5.5                | Statistical Summary of Historical TN Data by Year for the<br>Tomoka River                                                                                  | 32  |
| Table 5.6.               | Statistical Summary of Historical TP Data by Year for the<br>Tomoka River                                                                                  | .34 |
| Table 6.1.               | TMDL Components for Tomoka River                                                                                                                           | 54  |

v

### List of Figures

| Figure 1.1. | Location of the Tomoka River (WBID 2634) in Volusia           |    |
|-------------|---------------------------------------------------------------|----|
| 0           | County                                                        | 3  |
| Figure 1.2. | Location of the Tomoka River (WBID 2634) in Volusia           |    |
|             | County and Major Hydrological Features in the Area            | 4  |
| Figure 1.3. | WBIDs in the Halifax River Planning Unit                      | 5  |
| Figure 4.1. | Principal Land Uses in the Tomoka River Watershed             | 14 |
| Figure 4.2  | Hydrologic Soil Groups Distribution in the Tomoka River       |    |
|             | Watershed                                                     | 15 |
| Figure 4.3. | Onsite SewageTreatment Disposal Systems in the Tomoka         |    |
|             | River Watershed                                               | 18 |
| Figure 4.4. | Box Plot of Average Daily Flow for the Tomoka River near      |    |
|             | Holly Hill (USGS gage 02247510)                               | 21 |
| Figure 5.1. | Historical Sampling Sites in the Tomoka River Watershed       | 28 |
| Figure 5.2. | Historical CHLAC Observations for the Tomoka River            | 29 |
| Figure 5.3. | Historical TN Observations for the Tomoka River               | 29 |
| Figure 5.4. | Historical TP Observations for the Tomoka River               | 30 |
| Figure 5.5. | Historical Color Observations for the Tomoka River            | 30 |
| Figure 5.6. | Historical Total Suspended Solids Observations for the        |    |
|             | Tomoka River                                                  | 31 |
| Figure 5.7. | Historical Time Series of the TN/TP Ratio for the Tomoka      |    |
|             | River                                                         | 36 |
| Figure 5.8. | Annual Average CHLA versus Salinity for the Tomoka River      | 37 |
| Figure 5.9. | CHLA Time Series for Three Long-term Stations in the          |    |
|             | Tomoka River                                                  | 39 |
| Figure 5.10 | D. Total Nitrogen Time Series for Three Long-term Stations in |    |
|             | the Tomoka River                                              | 39 |
| Figure 5.11 | . Total Phosphorus Time Series for Three Long-term Stations   |    |
|             | in the Tomoka River                                           | 40 |
| Figure 5.12 | 2. Salinity Time Series for Three Long-term Stations in the   |    |
|             | I omoka River                                                 | 40 |
| Figure 5.13 | 3. General Linear Model of Annual Average CHLAC versus        |    |
|             | IN and TP in the Tomoka River                                 | 41 |

#### **Websites**

# Florida Department of Environmental Protection, Bureau of Watershed Restoration

**TMDL Program** 

http://www.dep.state.fl.us/water/tmdl/index.htm Identification of Impaired Surface Waters Rule http://www.dep.state.fl.us/water/tmdl/docs/AmendedIWR.pdf STORET Program http://www.dep.state.fl.us/water/storet/index.htm

2012 305(b) Report

http://www.dep.state.fl.us/water/docs/2012\_integrated\_report.pdf

Basin Assessment Report for the Upper East Coast Basin

http://www.dep.state.fl.us/water/basin411/uppereast/assessment.htm

U.S. Environmental Protection Agency, National STORET Program

http://www.epa.gov/storet/

### Chapter 1: INTRODUCTION

#### 1.1 Purpose of Report

This report presents the Total Maximum Daily Load (TMDL) for nutrients for the Tomoka River in the Halifax River Planning Unit of the Upper East Coast Basin. The segment was verified as impaired for nutrients based on chlorophyll <u>a</u> during the second cycle, and was included on the Verified List of impaired waters for the Upper East Coast Basin that was adopted by Secretarial Order on February 7, 2012. Based on the median TN/TP ratio of 18.1, total nitrogen and total phosphorus were identified as co-limiting nutrients. This TMDL establishes the allowable loadings to this portion of the Tomoka River that would restore the waterbody so that it meets its applicable water quality criterion for nutrients.

#### **1.2 Identification of Waterbody**

The Tomoka River, located in Volusia County, originates in wetlands southwest of Daytona Beach and flows north until it turns northeast and enters the Halifax River north of Ormond Beach. For assessment purposes, the Tomoka River has been divided into a fresh water and a marine segment. This TMDL addresses the fresh water portion of the Tomoka River. The fresh water segment of the Tomoka River is approximately 13.6 miles long, with a watershed area of approximately 30 square miles. Interstate 95 crosses the Tomoka River and through the watershed, while Interstate 4 intersects the southern portion of the watershed (**Figure 1.1**).

For assessment purposes, the Florida Department of Environmental Protection (Department) has divided the Upper East Coast Basin into water assessment polygons with a unique waterbody identification (WBID) number for each watershed or stream reach. This TMDL addresses WBID 2634, the fresh water segment of the Tomoka River for nutrients (Figure 1.2).

The Tomoka River watershed is part of the Halifax River Planning Unit. Planning units are groups of smaller watersheds (WBIDs) that are part of a larger basin unit, in this case the Upper East Basin. The Halifax River Planning Unit consists of 56 WBIDs. **Figure 1.3** shows the locations of these WBIDs and the Halifax River's location in the planning unit.

#### 1.3 Background

This report was developed as part of the Department's watershed management approach for restoring and protecting state waters and addressing TMDL Program requirements. The watershed approach, which is implemented using a cyclical management process that rotates through the state's 52 river basins over a 5-year cycle, provides a framework for implementing the TMDL Program–related requirements of the 1972 federal Clean Water Act and the 1999 Florida Watershed Restoration Act (FWRA) (Chapter 99-223, Laws of Florida).

A TMDL represents the maximum amount of a given pollutant that a waterbody can assimilate and still meet water quality standards, including its applicable water quality criteria and its designated uses. TMDLs are developed for waterbodies that are verified as not meeting their water quality standards. They provide important water quality restoration goals that will guide restoration activities.



Figure 1.1. Location of the Tomoka River (WBID 2634) in Volusia County



#### Figure 1.2. Location of the Tomoka River (WBID 2634) in Volusia County and Major Hydrological Features in the Area



#### Figure 1.3. WBIDs in the Halifax River Planning Unit

### Chapter 2: DESCRIPTION OF WATER QUALITY PROBLEM

#### 2.1 Statutory Requirements and Rulemaking History

Section 303(d) of the federal Clean Water Act requires states to submit to the U.S. Environmental Protection Agency (EPA) lists of surface waters that do not meet applicable water quality standards (impaired waters) and establish a TMDL for each pollutant causing the impairment of listed waters on a schedule. The Department has developed such lists, commonly referred to as 303(d) lists, since 1992. The list of impaired waters in each basin, referred to as the Verified List, is also required by the FWRA (Subsection 403.067[4], Florida Statutes [F.S.]); the state's 303(d) list is amended annually to include basin updates.

Florida's 1998 303(d) list included 15 waterbodies and 50 parameters in the Upper East Coast Basin. However, the FWRA (Section 403.067, F.S.) stated that all previous Florida 303(d) lists were for planning purposes only and directed the Department to develop, and adopt by rule, a new science-based methodology to identify impaired waters. After a long rulemaking process, the Environmental Regulation Commission adopted the new methodology as Rule 62-303, Florida Administrative Code (F.A.C.) (Identification of Impaired Surface Waters Rule, or IWR), in April 2001; the rule was modified in 2006 and 2007.

#### 2.2 Information on Verified Impairment

The Department used the IWR to assess water quality impairments in the Tomoka River watershed and has verified that this fresh water waterbody segment is impaired for nutrients, based on data in the Department's IWR database. **Tables 2.1** and **2.2** summarize the corrected chlorophyll <u>a</u> (CHLAC) data for the verification period, which for Cycle 2 of the Group 5 waters was January 1, 2004, through June 30, 2011.

The IWR listing threshold for nutrients in estuaries was based on exceeding the historic minimum chlorophyll annual average of 3  $\mu$ g/L by more than 50 percent in at least two consecutive years (2008 – 2010).

Possible relationships between chla and other water quality parameters are further assessed in Chapter 5, using the complete historical dataset.

6

# Table 2.1.Summary of Corrected Chlorophyll a (CHLAC) MonitoringData for Tomoka River (WBID 2634) During the VerifiedPeriod (January 1, 2004 – June 30, 2011)

| Parameter                                                                          | CHLAC<br>(µg/L) |
|------------------------------------------------------------------------------------|-----------------|
| Total number of samples                                                            | 237             |
| IWR-annual average threshold for the Verified List<br>(50% above historic minimum) | 5               |
| Number of observed exceedances (yrs)                                               | 2               |
| Number of observed nonexceedances (yrs)                                            | 4               |
| Number of seasons during which samples were<br>collected                           | 4               |
| Lowest individual observation ( $\mu$ g/L)                                         | 1               |
| Highest individual observation ( $\mu$ g/L)                                        | 28              |
| Median TN/TP ratio for 186 observations                                            | 18.1            |
| Possible causative pollutant by IWR                                                | TN and TP       |
| FINAL ASSESSMENT:                                                                  | Impaired        |

## Table 2.2.Summary of Annual Average CHLAC for the Cycle 2Verified Period (January 1, 2004 – June 30, 2011)

CHLAC is in µg/L.

| Year | Number of<br>Samples | Minimum | Maximum | Annual Mean | Mean<br>Precipitation<br>(inches) |
|------|----------------------|---------|---------|-------------|-----------------------------------|
| 2004 | 15                   | 2.4     | 15.5    | 2           | 62.97                             |
| 2005 | 36                   | 1.0     | 12.2    | 2           | 65.77                             |
| 2006 | 17                   | 2.0     | 7.3     | 1           | 31.36                             |
| 2007 | 16                   | 2.2     | 12.6    | 1           | 45.02                             |
| 2008 | 64                   | 1.2     | 10.0    | 10          | 42.67                             |
| 2009 | 50                   | 1.6     | 21.0    | 11          | 50.3                              |
| 2010 | 33                   | 2.4     | 28.0    | 6           | 39.39                             |
| 2011 | 6                    | 3.4     | 7.8     |             | 48.71                             |

Precipitation based on Daytona International Airport (Appendix G)

### Chapter 3. DESCRIPTION OF APPLICABLE WATER QUALITY STANDARDS AND TARGETS

#### 3.1 Classification of the Waterbody and Criteria Applicable to the TMDL

Florida's surface waters are protected for five designated use classifications, as follows:

| Class I   | Potable water supplies                                       |
|-----------|--------------------------------------------------------------|
| Class II  | Shellfish propagation or harvesting                          |
| Class III | Recreation, propagation, and maintenance of a healthy, well- |
|           | balanced population of fish and wildlife                     |
| Class IV  | Agricultural water supplies                                  |
| Class V   | Navigation, utility, and industrial use (there are no state  |
|           | waters currently in this class)                              |

The Tomoka River (WBID 2634) is a Class III fresh water waterbody, with a designated use of recreation, propagation, and maintenance of a healthy, well-balanced population of fish and wildlife. The Class III water quality criterion applicable to the impairment addressed by this TMDL is for nutrients.

#### 3.2 Applicable Water Quality Standards and Numeric Water Quality Target

The nutrient criterion in Rule 62-302, F.A.C., is expressed as a narrative: *Nutrients:* 

In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna [Note: For Class III waters in the Everglades Protection Area, this criterion has been numerically interpreted for phosphorus in Section 62-302.540, F.A.C.].

To assess whether this narrative criterion was being exceeded, the IWR provides thresholds for nutrient impairment in estuaries based on annual average chla levels. The following language is found in Rule 62-303, F.A.C.:

62-303.351 Nutrients in Streams.

A stream or stream segment shall be included on the planning list for nutrients if the following biological imbalances are observed:

(1) Algal mats are present in sufficient quantities to pose a nuisance or hinder reproduction of a threatened or endangered species, or

(2) Annual mean chlorophyll a concentrations are greater than 20  $\mu$ g/L or if data indicate annual mean chlorophyll a values have increased by more than 50% over historical values for at least two consecutive years.

#### 62-303.450 Interpretation of Narrative Nutrient Criteria.

(1) A water shall be placed on the verified list for impairment due to nutrients if there are sufficient data from the last five years preceding the planning list assessment, combined with historical data (if needed to establish historical chlorophyll a levels or historical TSIs), to meet the data sufficiency requirements of subsection 62-303.350(2), FA.C. If there are insufficient data, additional data shall be collected as needed to meet the requirements. Once these additional data are collected, the Department shall determine if there is sufficient information to develop a site-specific threshold that better reflects conditions beyond which an imbalance in flora or fauna occurs in the water segment. If there is sufficient information, the Department shall re-evaluate the data using the sitespecific thresholds. If there is insufficient information, the Department shall re-evaluate the data using the thresholds provided in Rules 62-303.351-.353. F.A.C., for streams, lakes, and estuaries, respectively. In any case, the Department shall limit its analysis to the use of data collected during the five years preceding the planning list assessment and the additional data collected in the second phase. If alternative thresholds are used for the analysis, the Department shall provide the thresholds for the record and document how the alternative threshold better represents conditions beyond which an imbalance in flora or fauna is expected to occur.

#### 62-303.350 Interpretation of Narrative Nutrient Criteria

(3) When comparing changes in chlorophyll a or TSI values to historical levels, historical levels shall be based on the lowest five-year average for the period of record. To calculate a five-year average, there must be annual means from at least three years of the five-year period.

The annual average chla concentrations in 2008, 2009, and 2010 exceeded the historic minimum of  $3.0 \mu g/L$  (1999 – 2003) by 50% or greater, and, based on the TN/TP ratio, nitrogen and phosphorus were identified as co-limiting nutrients.

### Chapter 4: ASSESSMENT OF SOURCES

#### 4.1 Types of Sources

An important part of the TMDL analysis is the identification of pollutant source categories, source subcategories, or individual sources of pollutants in the watershed and the amount of pollutant loading contributed by each of these sources. Sources are broadly classified as either "point sources" or "nonpoint sources." Historically, the term "point sources" has meant discharges to surface waters that typically have a continuous flow via a discernable, confined, and discrete conveyance, such as a pipe. Domestic and industrial wastewater treatment facilities (WWTFs) are examples of traditional point sources. In contrast, the term "nonpoint sources" was used to describe intermittent, rainfall-driven, diffuse sources of pollution associated with everyday human activities, including runoff from urban land uses, agriculture, silviculture, and mining; discharges from failing septic systems; and atmospheric deposition.

However, the 1987 amendments to the Clean Water Act redefined certain nonpoint sources of pollution as point sources subject to regulation under the EPA's National Pollutant Discharge Elimination System (NPDES) Program. These nonpoint sources included certain urban stormwater discharges, including those from local government master drainage systems, construction sites over five acres, and a wide variety of industries (see **Appendix A** for background information on the federal and state stormwater programs).

To be consistent with Clean Water Act definitions, the term "point source" will be used to describe traditional point sources (such as domestic and industrial wastewater discharges) and stormwater systems requiring an NPDES stormwater permit when allocating pollutant load reductions required by a TMDL (see **Section 6.1**). However, the methodologies used to estimate nonpoint source loads do not distinguish between NPDES stormwater discharges and non-NPDES stormwater discharges, and as such, this source assessment section does not make any distinction between the two types of stormwater.

#### 4.2 Potential Sources of Nutrients in the Tomoka River Watershed

#### 4.2.1 Point Sources

There is one NPDES wastewater facility that discharges directly into this portion of the Tomoka River. The Tomoka Farms Road Landfill (FL0037877) has a design discharge of 0.11 MGD. Over the January 2000 through March 2012 period (202 months), there were 16 months when discharge occurred. The average of the reported monthly maximum discharge events was 0.89 MGD. Daily maximum concentrations of TN and TP were reported for October 2011 and were 0.93 mg/L and < 0.05 mg/L, respectively.

#### **Municipal Separate Storm Sewer System Permittees**

Portions of the Tomoka River fall within the boundaries of several Phase II municipal separate storm sewer system (MS4) permits. These include the Phase II permits for the City of Daytona

Beach (FLR04E0115) and Volusia County (FLR04E033). The Florida Department of Transportation District 5 is a co-permittee with Volusia County (FLR04E024).

#### 4.2.2 Land Uses and Nonpoint Sources

Nutrient loadings to the Tomoka River are generated from nonpoint sources in the watershed. These potential sources include loadings from surface runoff, ground water inflow, and septic tanks.

#### Land Uses

The spatial distribution and acreage of different land use categories were identified using the SJRWMD's year 2004 land use coverage contained in the Department's geographic information system (GIS) library. Land use categories in the watershed were aggregated using the Level 3 land use codes and tabulated in **Table 4.1**. Figure 4.1 shows the principal land uses in the watershed at the Level 1 land use code. The SJRWMD's year 2009 land use coverage was also compared to the 2004 coverage and there were insignificant differences between the two periods.

As shown in **Table 4.1**, the total area of the Tomoka River watershed (WBID 2634) is about 19,053 acres. Water and wetlands represents approximately 32 percent of the watershed with forested land uses accounting for approximately 30 of the watershed. Residential land use accounts for approximately 11 percent of the watershed with nearly 8 percent of the watershed classified as medium density residential. Agricultural and rangeland land uses represented 10 percent of the watershed area.

| Level 3<br>Land Use Code | Attribute                                                  | Acres   | % of Total |
|--------------------------|------------------------------------------------------------|---------|------------|
| 1100                     | Residential, low density - less than 2 dwelling units/acre | 251.03  | 1.32       |
| 1180                     | Rural residential                                          | 64.62   | 0.34       |
| 1190                     | Low density under construction                             | 9.13    | 0.05       |
| 1200                     | Residential, medium density - 2-5 dwelling units/acre      | 1421.69 | 7.46       |
| 1290                     | Medium Density Under Construction                          | 47.6    | 0.25       |
| 1300                     | Residential, high density - 6 or more dwelling units/acre  | 252.61  | 1.33       |
| 1400                     | Commercial and services                                    | 670.77  | 3.52       |
| 1490                     | Commercial & services under construction                   | 39.84   | 0.21       |
| 1550                     | Other light industrial                                     | 66.85   | 0.35       |
| 1600                     | Extractive                                                 | 24.35   | 0.13       |
| 1620                     | Sand and Gravel Pits                                       | 11.48   | 0.06       |
| 1660                     | Holding ponds                                              | 49.3    | 0.26       |
| 1700                     | Institutional                                              | 190.8   | 1.00       |

### Table 4.1. Classification of Land Use Categories in the TomokaRiver Watershed

| Level 3<br>Land Use Code | Attribute                                                                 | Acres    | % of Total |
|--------------------------|---------------------------------------------------------------------------|----------|------------|
| 1820                     | Holding ponds                                                             | 242.63   | 1.27       |
| 1860                     | Institutional                                                             | 29.82    | 0.16       |
| 1900                     | Open land                                                                 | 14.89    | 0.08       |
| 2110                     | Improved pastures (monoculture, planted forage crops)                     | 331.8    | 1.74       |
| 2130                     | Woodland pastures                                                         | 46.5     | 0.24       |
| 2150                     | Field crops                                                               | 123.54   | 0.65       |
| 2210                     | Citrus Groves < Orange, grapefruit, tangerines, etc.>                     | 0.92     | 0.00       |
| 3100                     | Herbaceous upland nonforested                                             | 659.46   | 3.46       |
| 3200                     | Shrub and brushland (wax myrtle or saw palmetto, occasionally scrub       | 273.6    | 1.44       |
| 3300                     | Mixed upland nonforested/Mixed Rangeland                                  | 455.78   | 2.39       |
| 4110                     | Pine flatwoods                                                            | 2654.8   | 13.93      |
| 4120                     | Longleaf pine - xeric oak                                                 | 21.3     | 0.11       |
| 4130                     | Sand pine                                                                 | 113.88   | 0.60       |
| 4200                     | Upland hardwood forests                                                   | 49.97    | 0.26       |
| 4340                     | Upland mixed coniferous/hardwood                                          | 741.84   | 3.89       |
| 4410                     | Coniferous pine                                                           | 916.86   | 4.81       |
| 4430                     | Forest regeneration areas                                                 | 1,294.39 | 6.79       |
| 5100                     | Streams and waterways                                                     | 156.92   | 0.82       |
| 5300                     | Reservoirs - pits, retention ponds, dams                                  | 357.58   | 1.88       |
| 6110                     | Bay swamp (if distinct)                                                   | 284.82   | 1.49       |
| 6170                     | Mixed wetland hardwoods                                                   | 1,602.09 | 8.41       |
| 6181                     | Willow and Elderberry                                                     | 38.4     | 0.20       |
| 6210                     | Cypress                                                                   | 193.06   | 1.01       |
| 6220                     | Pond Pine                                                                 | 1.35     | 0.01       |
| 6250                     | Hydric pine flatwoods                                                     | 848.9    | 4.46       |
| 6300                     | Wetland forested mixed                                                    | 1,492.25 | 7.83       |
| 6410                     | Fresh water marshes                                                       | 82.66    | 0.43       |
| 6420                     | Saltwater marshes                                                         | 72.19    | 0.38       |
| 6430                     | Wet prairies                                                              | 296.98   | 1.56       |
| 6440                     | Emergent aquatic vegetation                                               | 14.27    | 0.07       |
| 6460                     | Treeless Hydric Savanna/Mixed scrub-shrub wetland                         | 573.72   | 3.01       |
| 7400                     | Disturbed land                                                            | 21.45    | 0.11       |
| 7410                     | Rural land in transition without positive indicators of intended activity | 137.77   | 0.72       |
| 7420                     | Borrow Areas                                                              | 20.84    | 0.11       |
| 7430                     | Spoil areas                                                               | 12.42    | 0.07       |
| 8110                     | Airports                                                                  | 95.99    | 0.50       |
| 8140                     | Roads and highways (divided 4-lanes with medians)                         | 670.26   | 3.52       |
| 8200                     | Communications                                                            | 8.65     | 0.05       |
| 8320                     | Electrical power transmission lines                                       | 244.13   | 1.28       |
| 8350                     | Solid Waste Disposal                                                      | 749.56   | 3.93       |

| Level 3<br>Land Use Code | Attribute                       | Acres    | % of Total |
|--------------------------|---------------------------------|----------|------------|
| 8370                     | Surface water collection basins | 4.6      | 0.02       |
|                          | SUM                             | 19,052.9 | 100.00     |



Figure 4.1. Principal Land Uses in the Tomoka River Watershed

#### **Soil Characteristics**

The Soil Survey Geographic Database (SSURGO) in the Department's GIS database from the SJRWMD was accessed to provide coverage of hydrologic soil groups in the Tomoka River watershed (**Figure 4.2**). **Table 4.2** briefly describes the major hydrology soil classes. As seen in **Figure 4.2**, soil group A/D was the most common in the watershed

# Table 4.2. Description of Hydrologic Soil Classes from the SSURGODatabase

| Hydrology Class                | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A                              | Soils in this group have low runoff potential when<br>thoroughly wet. Water is transmitted freely through the<br>soil. Group A soils typically have less than 10 percent<br>clay and more than 90 percent sand or gravel and have<br>gravel or sand textures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В                              | Soils in this group have moderately low runoff potential<br>when thoroughly wet. Water transmission through the<br>soil is unimpeded. Group B soils typically have between<br>10 percent and 20 percent clay and 50 percent to 90<br>percent sand and have loamy sand or sandy loam<br>textures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| С                              | Soils in this group have moderately high runoff potential<br>when thoroughly wet. Water transmission through the<br>soil is somewhat restricted. Group C soils typically have<br>between 20 percent and 40 percent clay and less than<br>50 percent sand and have loam, silt loam, sandy clay<br>loam, clay loam, and silty clay loam textures                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D                              | Soils in this group have high runoff potential when<br>thoroughly wet. Water movement through the soil is<br>restricted or very restricted. Group D soils typically have<br>greater than 40 percent clay, less than 50 percent sand,<br>and have clayey textures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dual hydrologic soil<br>groups | Certain wet soils are placed in group D based solely on<br>the presence of a water table within 60 centimeters [24<br>inches] of the surface even though the saturated<br>hydraulic conductivity may be favorable for water<br>transmission. If these soils can be adequately drained,<br>then they are assigned to dual hydrologic soil groups<br>(A/D, B/D, and C/D) based on their saturated hydraulic<br>conductivity and the water table depth when drained.<br>The first letter applies to the drained condition and the<br>second to the undrained condition. For the purpose of<br>hydrologic soil group, adequately drained means that the<br>seasonal high water table is kept at least 60 centimeters<br>[24 inches] below the surface in a soil where it would be<br>higher in a natural state. |

Source: USDA NRCS, Part 630 Hydrology National Engineering Handbook , Chapter 7 Hydrologic Soil Groups, January 2009

#### Figure 4.2 Hydrologic Soil Groups Distribution in the Tomoka River Watershed



#### **Population**

The 2010 U.S. Census block data was used to estimate the human population in the Tomoka River watershed. Total population data for census blocks covering the Tomoka River watershed was clipped using GIS to estimate the population within the watershed based on the fraction of the block contained within the watershed. This yielded an estimated population of 13,452 in the Tomoka River watershed. Based on an average of 2.51 persons per household in Volusia County (U.S Census) there was an estimated 5,359 occupied residential units within the WBID boundary.

#### **Septic Tanks**

Based on the Florida Department of Health January 2012 GIS coverage of onsite sewage treatment disposal systems (OSTDS), there were approximately 643 septic tanks located in the watershed (**Figure 4.3**). Using 70 gallons/day/person (EPA, 1999), and drainfield total nitrogen (TN) and total phosphorus (TP) concentrations of 36 mg/L and 15 mg/L, respectively, potential annual ground water loads of TN and TP were calculated. This is a screening level calculation, and soil types, the age of the system, vegetation, proximity to a receiving water, and other factors will influence the degree of attenuation of this load (**Table 4.3**).

### Table 4.3. Estimated Nitrogen and Phosphorus Annual Loading fromSeptic Tanks in the Tomoka River Watershed

| Estimated<br>No.<br>Households<br>on Septic | Estimated<br>No.<br>Persons<br>Per<br>Household <sup>1</sup> | Gallons/<br>Person/<br>Day <sup>2</sup> | TN in<br>Drainfield<br>(mg/L) | TP in<br>Drainfield<br>(mg/L) | Estimated<br>Annual TN<br>Load<br>(Ibs/yr) | Estimated<br>Annual TP<br>Load<br>(Ibs/yr) |
|---------------------------------------------|--------------------------------------------------------------|-----------------------------------------|-------------------------------|-------------------------------|--------------------------------------------|--------------------------------------------|
| 643                                         | 2.51                                                         | 70                                      | 36                            | 15                            | 12,388                                     | 5,161                                      |

<sup>1</sup> U.S Census Bureau; <sup>2</sup> EPA, 1999.

#### Figure 4.3. Onsite SewageTreatment Disposal Systems in the **Tomoka River Watershed**



#### 4.3 Source Summary

### **4.3.1 Summary of Nutrient Loadings to Tomoka River from Point** Sources

Section 4.2.1 provided information on the one point source discharge in the watershed (i.e., the Tomoka Farms Road Landfill). A conservative approach was used to estimate annual TN and TP loads based on discharge monitoring reports. For each month in which a discharge was reported, a load was calculated assuming that the daily maximum reported discharge occurred for the whole month and that TN and TP concentrations in the discharge were equal to 0.93 mg/L and 0.05 mg/L, respectively (**Table 4.4**).

| YEAR | DISCHARGE<br>(MG/ACRE-FT) | TN LOAD<br>(LBS/YR) | TP LOAD<br>(LBS/YR) |
|------|---------------------------|---------------------|---------------------|
| 1999 | 0                         | 0                   | 0                   |
| 2000 | 0                         | 0                   | 0                   |
| 2001 | 60/186                    | 469                 | 25                  |
| 2002 | 0                         | 0                   | 0                   |
| 2003 | 0                         | 0                   | 0                   |
| 2004 | 0                         | 0                   | 0                   |
| 2005 | 0                         | 0                   | 0                   |
| 2006 | 0                         | 0                   | 0                   |
| 2007 | 0                         | 0                   | 0                   |
| 2008 | 75/231                    | 584                 | 31                  |
| 2009 | 135/414                   | 1048                | 56                  |
| 2010 | 95/293                    | 741                 | 40                  |
| 2011 | 23/72                     | 182                 | 10                  |

### Table 4.4. Estimated Annual Average Discharge, TN and TP Loads from theTomoka Farms Road Landfill

### 4.3.2 Summary of Nutrient Loadings to Tomoka River from Nonpoint Sources

As part of EPA's efforts to establish numeric nutrient criteria for Florida's estuaries, Tetra Tech setup a watershed model (LSPC) to estimate nutrient loadings to the Mantanzas and Halifax River estuaries. The model simulation covered the 1997 – 2009 period. Ms. Erin Lincoln (Tetra Tech, personal communication, 5/2/2012) provided model outputs of daily flow, TN concentration, TP concentrations, TN loads, and TP loads based on HUC 12 delineations. Daily flows and nutrient loads were summed by year to obtain estimates of annual nitrogen and phosphorus loadings from the Tomoka watershed (**Table 4.5**). These estimates did not include potential contribution of the marine segment of the Tomoka River. **Appendix C** describes the

calibration of the LSPC watershed model. The USGS gage on the Tomoka River on the downstream side of the LPGA Boulevard bridge near Holly Hill (02247510) was used in the calibration of the watershed model. A box plot of daily flows by year is graphed in **Figure 4.4**. Daily flows ranged between 0 and 4,570 cfs, with 25<sup>th</sup>, median, and 75<sup>th</sup> percentile values of 4.6, 15, and 63 cfs, respectively.

| <b>Table 4.5</b> . | Estimated Annual Average LSPC Derived Discharge, TN, TP Loads |
|--------------------|---------------------------------------------------------------|
|                    | and Concentrations from the Tomoka River Watershed            |

| YEAR    | DISCHARGE<br>(ACRE-FT) | TN LOAD<br>(LBS/YR) | TP LOAD<br>(LBS/YR) | MEAN TN<br>(MG/L) | MEAN TP<br>(MG/L) | RAINFALL<br>(INCHES/YR) |
|---------|------------------------|---------------------|---------------------|-------------------|-------------------|-------------------------|
| 1997    | 77293                  | 255465              | 19606               | 1.18              | 0.095             | 54.69                   |
| 1998    | 76406                  | 265739              | 17446               | 1.27              | 0.102             | 40.51                   |
| 1999    | 37663                  | 133992              | 14093               | 1.32              | 0.120             | 46.37                   |
| 2000    | 37612                  | 128705              | 11952               | 1.25              | 0.111             | 40.16                   |
| 2001    | 167150                 | 529670              | 32105               | 1.18              | 0.083             | 58.27                   |
| 2002    | 94904                  | 300034              | 19138               | 1.10              | 0.077             | 59.94                   |
| 2003    | 135629                 | 438091              | 24496               | 1.14              | 0.075             | 57.3                    |
| 2004    | 173117                 | 562603              | 34182               | 1.12              | 0.079             | 62.97                   |
| 2005    | 260400                 | 848249              | 49287               | 1.17              | 0.065             | 65.77                   |
| 2006    | 49006                  | 153621              | 11584               | 1.12              | 0.086             | 31.36                   |
| 2007    | 40967                  | 127797              | 11092               | 1.26              | 0.099             | 45.02                   |
| 2008    | 108896                 | 350285              | 21926               | 1.19              | 0.089             | 42.67                   |
| 2009    | 94333                  | 309810              | 20410               | 1.11              | 0.091             | 50.3                    |
| AVERAGE | 104106                 | 338774              | 22101               | 1.19              | 0.090             | 50.41                   |

Precipitation based on Daytona International Airport (Appendix G)





### Chapter 5: DETERMINATION OF ASSIMILATIVE CAPACITY

#### 5.1 Determination of Loading Capacity

#### 5.1.1 Data Used in the Determination of the TMDL

There are sixty-three sampling stations in the watershed, of which fifty-eight have historical CHLAC observations (**Figure 5.1**). Thirty-three of those sites had only one CHLAC observation. **Table 5.1** contains summary information on each of the stations (N represents the number of CHLAC observations). **Table 5.2** provides a statistical summary of CHLAC observations at each station, and **Appendix B** contains historical CHLAC, temperature (TEMPC), TN, TP, and TSS available observations from sampling sites in WBID 2634 from 1968 through 2011. **Figure 5.2** displays the historical CHLAC observations over time. The simple linear regression of CHLAC versus sampling date in **Figure 5.2** was not significant at an alpha ( $\alpha$ ) level of 0.05. **Appendix F** contains plots of CHLAC by year, season, and station,

Elevated levels of CHLAC during June 2008 are shown in **Figure 5.2**. Seven of the highest eleven historical CHLAC measurements were reported at the seven randomized ambient monitoring stations (21FLGW 34952 – 34958) collected between June 17 – 19, 2008 in the northern most 4.64 miles of the Tomoka River WBID 2634 segment. CHLAC concentrations ranged from 48 to 450 µg/L at these stations. Salinities reported at these stations during this period ranged between 21.4 and 24.1 ppt. With respect to historical CHLAC measurements, the 75<sup>th</sup>, 80<sup>th</sup>, and 90<sup>th</sup> percentiles are 3.1 µg/L, 4.5 µg/L, and 13.7 µg/L, respectively. Similarly, based on historical salinity measurements the 75<sup>th</sup>, 80<sup>th</sup> and 90<sup>th</sup> percentiles are 0.23 ppt, 0.60 ppt, and 10.52 ppt, respectively.

**Figures 5.3** through **5.6** present historical TN, TP, Color, and Total Suspended Solids (TSS) observations, respectively. Linear regressions of each parameter versus sampling date indicated that none of the regressions were significant at an  $\alpha$  level of 0.05. **Appendix F** contains additional plots by season, station, and year. A statistical summary of major water quality parameters from the available data is presented in **Table 5.3**.

#### Table 5.1. Sampling Station Summary for the Tomoka River Watershed

| Station                                          | STORET ID         | Station Owner | Years<br>With Data | N  |
|--------------------------------------------------|-------------------|---------------|--------------------|----|
| CANAL TO TOMOKA @ 265 CHEROKEE<br>RD             | 21FLA 27010429FLA | FDEP          | 2009               | 5  |
| TOMOKA RIVER BETWEEN AIRPORT<br>DITCH AND ISLAND | 21FLA 27010572    | FDEP          | 1985 - 1986        | 7  |
| TOMOKA RIVER EAST FORK AROUND<br>ISLAND          | 21FLA 27010573    | FDEP          | 1985 - 1986        | 7  |
| TOMOKA RIVER AT INTERSTATE 95<br>BRIDGE          | 21FLA 27010574    | FDEP          | 1985 - 1986        | 7  |
| TOMOKA RIVER AT STATE ROUTE 40<br>BRIDGE         | 21FLA 27010578    | FDEP          | 1985 - 2009        | 11 |
| TOMOKA RIVER AT ELEVENTH STREET<br>BRIDGE        | 21FLA 27010579    | FDEP          | 1985 - 1998        | 9  |
| TOMOKA RIVER AT RIVER BEND PARK                  | 21FLA 27010923    | FDEP          | 2009               | 5  |
| TOMOKA RIVER AT LPGA BLVD.                       | 21FLA 27010924    | FDEP          | 2009               | 5  |
| TOMOKA RIVER @ 1-4                               | 21FLCEN 27010075  | FDEP          | 2005               | 1  |
| TOMOKA RIVER AT INTERSTATE 95<br>BRIDGE          | 21FLCEN 27010574  | FDEP          | 2005               | 1  |
| TOMOKA RIVER AT 11TH STREET<br>BRIDGE            | 21FLCEN 27010579  | FDEP          | 2000 - 2010        | 11 |
| TOMOKA RIVER AT U.S. HIGHWAY 92                  | 21FLCEN 27010596  | FDEP          | 2000 - 2005        | 3  |
| TOMOKA RIVER AT SR 40 (TOMOKA<br>ROAD)           | 21FLCEN 27010830  | FDEP          | 2005               | 4  |
| TOMOKA RIVER AT U.S. HIGHWAY 92                  | 21FLGW 34921      | FDEP          | 2008               | 1  |
| SJ7-LR-2003 TOMOKA RIVER                         | 21FLGW 34929      | FDEP          | 2008               | 1  |
| SJ7-LR-2004 TOMOKA RIVER                         | 21FLGW 34930      | FDEP          | 2008               | 1  |
| SJ7-LR-2009 TOMOKA RIVER                         | 21FLGW 34931      | FDEP          | 2008               | 1  |
| SJ7-LR-2010 TOMOKA RIVER                         | 21FLGW 34932      | FDEP          | 2008               | 1  |
| SJ7-LR-2015 TOMOKA RIVER                         | 21FLGW 34933      | FDEP          | 2008               | 1  |
| SJ7-LR-2017 TOMOKA RIVER                         | 21FLGW 34934      | FDEP          | 2008               | 1  |
| SJ7-LR-2019 TOMOKA RIVER                         | 21FLGW 34935      | FDEP          | 2008               | 1  |
| SJ7-LR-2024 TOMOKA RIVER                         | 21FLGW 34936      | FDEP          | 2008               | 1  |
| SJ7-LR-2029 TOMOKA RIVER                         | 21FLGW 34937      | FDEP          | 2008               | 1  |
| SJ7-LR-2032 TOMOKA RIVER                         | 21FLGW 34938      | FDEP          | 2008               | 1  |
| SJ7-LR-2034 TOMOKA RIVER                         | 21FLGW 34939      | FDEP          | 2008               | 1  |
| SJ7-LR-2039 TOMOKA RIVER                         | 21FLGW 34940      | FDEP          | 2008               | 1  |
| SJ7-LR-2040 TOMOKA RIVER                         | 21FLGW 34941      | FDEP          | 2008               | 1  |
| SJ7-LR-2043 TOMOKA RIVER                         | 21FLGW 34942      | FDEP          | 2008               | 1  |
| SJ7-LR-2044 TOMOKA RIVER                         | 21FLGW 34943      | FDEP          | 2008               | 1  |
| SJ7-LR-2049 TOMOKA RIVER                         | 21FLGW 34944      | FDEP          | 2008               | 1  |

| Station                                                        | STORET ID        | Station Owner  | Years<br>With Data | N   |
|----------------------------------------------------------------|------------------|----------------|--------------------|-----|
| SJ7-LR-2050 TOMOKA RIVER                                       | 21FLGW 34945     | FDEP           | 2008               | 1   |
| SJ7-LR-2053 TOMOKA RIVER                                       | 21FLGW 34946     | FDEP           | 2008               | 1   |
| SJ7-LR-2054 TOMOKA RIVER                                       | 21FLGW 34947     | FDEP           | 2008               | 1   |
| SJ7-LR-2055 TOMOKA RIVER                                       | 21FLGW 34948     | FDEP           | 2008               | 1   |
| SJ7-LR-2060 TOMOKA RIVER                                       | 21FLGW 34949     | FDEP           | 2008               | 1   |
| SJ7-LR-2064 TOMOKA RIVER                                       | 21FLGW 34950     | FDEP           | 2008               | 1   |
| SJ7-LR-2069 TOMOKA RIVER                                       | 21FLGW 34951     | FDEP           | 2008               | 1   |
| SJ7-LR-2072 TOMOKA RIVER                                       | 21FLGW 34952     | FDEP           | 2008               | 1   |
| SJ7-LR-2074 TOMOKA RIVER                                       | 21FLGW 34953     | FDEP           | 2008               | 1   |
| SJ7-LR-2080 TOMOKA RIVER                                       | 21FLGW 34954     | FDEP           | 2008               | 1   |
| SJ7-LR-2083 TOMOKA RIVER                                       | 21FLGW 34955     | FDEP           | 2008               | 1   |
| SJ7-LR-2084 TOMOKA RIVER                                       | 21FLGW 34956     | FDEP           | 2008               | 1   |
| SJ7-LR-2089 TOMOKA RIVER                                       | 21FLGW 34957     | FDEP           | 2008               | 1   |
| SJ7-LR-2091 TOMOKA RIVER                                       | 21FLGW 34958     | FDEP           | 2008               | 1   |
| TOMOKA RIVER AT ELEVENTH STREET<br>BRIDGE                      | 21FLGW 3516      | FDEP           | 1998 - 2011        | 143 |
| TOMOKA RIVER AT 11TH STREET<br>BRIDGE                          | 21FLSJWM27010579 | SJRWMD         | 1995 - 1998        | 22  |
| TOMOKA RIVER UPSTREAM AT U.S. 92<br>BRIDGE                     | 21FLSJWMNCBTR05  | SJRWMD         | 2005 - 2006        | 5   |
| TOMOKA RIVER EAST BRIDGE ON<br>POWERLINE ACCESS NEAR LPGA GOLF | 21FLSJWMNCBTR06  | SJRWMD         | 2008 - 2011        | 42  |
| TOMOKA RIVER @ 11TH STREET<br>BRIDGE                           | 21FLSJWMTR11     | SJRWMD         | 1993 - 1995        | 10  |
| TOMOKA RIVER UPSTREAM OF S.R. 40<br>BRIDGE                     | 21FLVEMDTR03     | Volusia County | 1993 - 1998        | 54  |
| TOMOKA RIVER UPSTREAM OF 11TH ST.<br>BRIDGE                    | 21FLVEMDTR04     | Volusia County | 1993 - 1998        | 51  |
| TOMOKA RIVER UPSTREAM OF U.S. 92<br>BRIDGE                     | 21FLVEMDTR05     | Volusia County | 1993 - 1998        | 30  |
| TOMOKA RIVER FROM UPSTREAM SIDE<br>OF S.R. 40                  | 21FLVEMDVC-077   | Volusia County | 1999 - 2011        | 78  |
| TOMOKA RIVER, FROM UPSTREAM SIDE OF LPGA BLVD.                 | 21FLVEMDVC-078   | Volusia County | 1999 - 2011        | 71  |
| TOMOKA RIVER FROM UPSTREAM SIDE<br>OF U.S. 92                  | 21FLVEMDVC-079   | Volusia County | 1999 - 2006        | 26  |
| TOMOKA RIVER @ 11TH STREET                                     | 21FLWPB 20010739 | FDEP           | 2003               | 6   |
| TOMOKA RIVER @ STATE HIGHWAY 40                                | 21FLWPB 20010740 | FDEP           | 2003               | 6   |
| TOMOKA RIVER AT CR216A (WBID 2634)                             | 21FLWQSPVOL358LR | FDEP           | 2005               | 3   |

#### Table 5.2. Statistical Summary of Historical CHLAC Data for Tomoka River

| Station                                          | N  | Minimum | Maximum | Median | Mean |
|--------------------------------------------------|----|---------|---------|--------|------|
| CANAL TO TOMOKA @ 265<br>CHEROKEE RD             | 5  | 2.8     | 9.2     | 7.5    | 6.1  |
| TOMOKA RIVER BETWEEN<br>AIRPORT DITCH AND ISLAND | 7  | 1.2     | 39.9    | 4.5    | 11.6 |
| TOMOKA RIVER EAST FORK<br>AROUND ISLAND          | 7  | 1.0     | 84.3    | 4.3    | 15.1 |
| TOMOKA RIVER AT INTERSTATE<br>95 BRIDGE          | 7  | 1.0     | 18.9    | 1.4    | 6.6  |
| TOMOKA RIVER AT STATE<br>ROUTE 40 BRIDGE         | 11 | 1.0     | 20.0    | 2.0    | 4.1  |
| TOMOKA RIVER AT ELEVENTH<br>STREET BRIDGE        | 9  | 1.0     | 2.9     | 1.0    | 1.5  |
| TOMOKA RIVER AT RIVER BEND<br>PARK               | 5  | 8.0     | 26.0    | 13.0   | 15.1 |
| TOMOKA RIVER AT LPGA BLVD.                       | 5  | 1.0     | 3.9     | 1.8    | 2.2  |
| TOMOKA RIVER @ 1-4                               | 1  | 2.4     | 2.4     | 2.4    | 2.4  |
| TOMOKA RIVER AT INTERSTATE<br>95 BRIDGE          | 1  | 1.4     | 1.4     | 1.4    | 1.4  |
| TOMOKA RIVER AT 11TH STREET<br>BRIDGE            | 11 | 1.0     | 2.9     | 1.4    | 1.5  |
| TOMOKA RIVER AT U.S.<br>HIGHWAY 92               | 3  | 2.8     | 6.2     | 3.2    | 4.1  |
| TOMOKA RIVER AT SR 40<br>(TOMOKA ROAD)           | 4  | 1.4     | 5.6     | 1.4    | 2.4  |
| TOMOKA RIVER AT U.S.<br>HIGHWAY 92               | 1  | 1.0     | 1.0     | 1.0    | 1.0  |
| SJ7-LR-2003 TOMOKA RIVER                         | 1  | 28.0    | 28.0    | 28.0   | 28.0 |
| SJ7-LR-2004 TOMOKA RIVER                         | 1  | 18.0    | 18.0    | 18.0   | 18.0 |
| SJ7-LR-2009 TOMOKA RIVER                         | 1  | 2.1     | 2.1     | 2.1    | 2.1  |
| SJ7-LR-2010 TOMOKA RIVER                         | 1  | 9.4     | 9.4     | 9.4    | 9.4  |
| SJ7-LR-2015 TOMOKA RIVER                         | 1  | 11.0    | 11.0    | 11.0   | 11.0 |
| SJ7-LR-2017 TOMOKA RIVER                         | 1  | 7.0     | 7.0     | 7.0    | 7.0  |
| SJ7-LR-2019 TOMOKA RIVER                         | 1  | 23.0    | 23.0    | 23.0   | 23.0 |
| SJ7-LR-2024 TOMOKA RIVER                         | 1  | 19.0    | 19.0    | 19.0   | 19.0 |
| SJ7-LR-2029 TOMOKA RIVER                         | 1  | 2.6     | 2.6     | 2.6    | 2.6  |
| SJ7-LR-2032 TOMOKA RIVER                         | 1  | 22.0    | 22.0    | 22.0   | 22.0 |

| Station                                                           | N   | Minimum | Maximum | Median | Mean  |
|-------------------------------------------------------------------|-----|---------|---------|--------|-------|
| SJ7-LR-2034 TOMOKA RIVER                                          | 1   | 10.0    | 10.0    | 10.0   | 10.0  |
| SJ7-LR-2039 TOMOKA RIVER                                          | 1   | 19.0    | 19.0    | 19.0   | 19.0  |
| SJ7-LR-2040 TOMOKA RIVER                                          | 1   | 14.0    | 14.0    | 14.0   | 14.0  |
| SJ7-LR-2043 TOMOKA RIVER                                          | 1   | 7.3     | 7.3     | 7.3    | 7.3   |
| SJ7-LR-2044 TOMOKA RIVER                                          | 1   | 17.0    | 17.0    | 17.0   | 17.0  |
| SJ7-LR-2049 TOMOKA RIVER                                          | 1   | 4.4     | 4.4     | 4.4    | 4.4   |
| SJ7-LR-2050 TOMOKA RIVER                                          | 1   | 12.0    | 12.0    | 12.0   | 12.0  |
| SJ7-LR-2053 TOMOKA RIVER                                          | 1   | 10.0    | 10.0    | 10.0   | 10.0  |
| SJ7-LR-2054 TOMOKA RIVER                                          | 1   | 10.0    | 10.0    | 10.0   | 10.0  |
| SJ7-LR-2055 TOMOKA RIVER                                          | 1   | 1.0     | 1.0     | 1.0    | 1.0   |
| SJ7-LR-2060 TOMOKA RIVER                                          | 1   | 15.0    | 15.0    | 15.0   | 15.0  |
| SJ7-LR-2064 TOMOKA RIVER                                          | 1   | 22.0    | 22.0    | 22.0   | 22.0  |
| SJ7-LR-2069 TOMOKA RIVER                                          | 1   | 4.5     | 4.5     | 4.5    | 4.5   |
| SJ7-LR-2072 TOMOKA RIVER                                          | 1   | 120.0   | 120.0   | 120.0  | 120.0 |
| SJ7-LR-2074 TOMOKA RIVER                                          | 1   | 450.0   | 450.0   | 450.0  | 450.0 |
| SJ7-LR-2080 TOMOKA RIVER                                          | 1   | 98.0    | 98.0    | 98.0   | 98.0  |
| SJ7-LR-2083 TOMOKA RIVER                                          | 1   | 65.0    | 65.0    | 65.0   | 65.0  |
| SJ7-LR-2084 TOMOKA RIVER                                          | 1   | 48.0    | 48.0    | 48.0   | 48.0  |
| SJ7-LR-2089 TOMOKA RIVER                                          | 1   | 49.0    | 49.0    | 49.0   | 49.0  |
| SJ7-LR-2091 TOMOKA RIVER                                          | 1   | 210.0   | 210.0   | 210.0  | 210.0 |
| TOMOKA RIVER AT ELEVENTH<br>STREET BRIDGE                         | 143 | 1.0     | 7.7     | 1.0    | 1.3   |
| TOMOKA RIVER AT 11TH STREET<br>BRIDGE                             | 22  | 1.0     | 5.6     | 1.0    | 1.7   |
| TOMOKA RIVER UPSTREAM AT<br>U.S. 92 BRIDGE                        | 5   | 1.0     | 1.3     | 1.1    | 1.1   |
| TOMOKA RIVER EAST BRIDGE<br>ON POWERLINE ACCESS NEAR<br>LPGA GOLF | 42  | 1.0     | 356.8   | 1.2    | 13.7  |
| TOMOKA RIVER @ 11TH STREET<br>BRIDGE                              | 10  | 1.0     | 6.2     | 1.5    | 2.1   |

| Station                                           | Ν  | Minimum | Maximum | Median | Mean |
|---------------------------------------------------|----|---------|---------|--------|------|
| TOMOKA RIVER UPSTREAM OF<br>S.R. 40 BRIDGE        | 54 | 1.0     | 36.6    | 1.1    | 5.3  |
| TOMOKA RIVER UPSTREAM OF<br>11TH ST. BRIDGE       | 51 | 1.0     | 4.2     | 1.0    | 1.2  |
| TOMOKA RIVER UPSTREAM OF<br>U.S. 92 BRIDGE        | 30 | 1.0     | 17.3    | 1.4    | 3.0  |
| TOMOKA RIVER FROM<br>UPSTREAM SIDE OF S.R. 40     | 78 | 1.0     | 200.6   | 3.0    | 9.7  |
| TOMOKA RIVER, FROM<br>UPSTREAM SIDE OF LPGA BLVD. | 71 | 1.0     | 3.7     | 1.0    | 1.1  |
| TOMOKA RIVER FROM<br>UPSTREAM SIDE OF U.S. 92     | 26 | 1.0     | 160.7   | 3.2    | 20.8 |
| TOMOKA RIVER @ 11TH STREET                        | 6  | 1.0     | 2.0     | 1.0    | 1.2  |
| TOMOKA RIVER @ STATE<br>HIGHWAY 40                | 6  | 1.0     | 18.6    | 3.5    | 7.3  |
| TOMOKA RIVER AT CR216A<br>(WBID 2634)             | 3  | 1.0     | 1.1     | 1.0    | 1.0  |

CHLAC concentrations are µg/L.

# Table 5.3.Summary Statistics for Major Water Quality ParametersMeasured in Tomoka River

| PARAMETER       | Ν   | MIN   | 25%   | MEDIAN | MEAN  | 75%   | MAX    |
|-----------------|-----|-------|-------|--------|-------|-------|--------|
| BOD (mg/L)      | 71  | 0.4   | 0.8   | 1.4    | 1.7   | 2.0   | 6.1    |
| CHLAC (µg/L)    | 654 | 0.0   | 1.0   | 1.1    | 6.9   | 3.1   | 450.0  |
| COLOR (PT-CO)   | 670 | 5     | 85    | 160    | 236   | 320   | 1200   |
| COND (uS/cm)    | 690 | 0     | 172   | 315    | 4308  | 483   | 76100  |
| DO (mg/L)       | 696 | 0.00  | 3.19  | 4.51   | 4.53  | 5.82  | 19.19  |
| DOSAT (%)       | 243 | 0.00  | 38.65 | 53.90  | 51.99 | 66.00 | 133.00 |
| NH4 (mg/L)      | 312 | 0.001 | 0.018 | 0.028  | 0.060 | 0.047 | 1.500  |
| NO3O2 (mg/L)    | 649 | 0.000 | 0.019 | 0.038  | 0.051 | 0.060 | 0.640  |
| PH (su)         | 729 | 4.04  | 6.75  | 7.04   | 6.97  | 7.30  | 8.43   |
| SALINITY (PPT)  | 588 | 0.00  | 0.10  | 0.15   | 2.83  | 0.23  | 233.00 |
| SD (m)          | 553 | 0.0   | 0.4   | 0.5    | 0.6   | 0.8   | 25.0   |
| TEMPC (°C)      | 738 | 3.50  | 17.59 | 22.00  | 21.43 | 25.53 | 35.00  |
| TN (mg/L)       | 628 | 0.15  | 0.79  | 1.01   | 1.15  | 1.33  | 4.52   |
| TP (mg/L)       | 649 | 0.01  | 0.04  | 0.05   | 0.10  | 0.09  | 4.20   |
| TSS (mg/L)      | 579 | 0     | 2     | 4      | 4     | 5     | 55     |
| TURBIDITY (NTU) | 642 | 1     | 2     | 3      | 4     | 4     | 84     |
| INORGP (mg/L)   | 516 | 0.001 | 0.015 | 0.024  | 0.033 | 0.036 | 0.457  |
| INORGN (mg/L)   | 304 | 0.01  | 0.05  | 0.08   | 0.12  | 0.11  | 1.52   |
| TN/TP RATIO     | 601 | 0.00  | 11.96 | 17.96  | 22.87 | 28.51 | 153.40 |
| INORGNINORGP    | 200 | 0.39  | 2.26  | 3.27   | 5.98  | 4.99  | 99.09  |



#### Figure 5.1. Historical Sampling Sites in the Tomoka River Watershed


#### Figure 5.2. Historical CHLAC Observations for the Tomoka River

#### Figure 5.3. Historical TN Observations for the Tomoka River





Figure 5.4. Historical TP Observations for the Tomoka River







Figure 5.6. Historical Total Suspended Solids Observations for the Tomoka River

Available CHLAC, TN, and TP measurements were also summarized by year (**Tables 5.4–5.6**). Annual means were based on the IWR methodology that based the average on quarterly averages. A nonparametric test (Kruskal-Wallis) was applied to the CHLAC, INORGN, TN, INORGP, TP, COND, Color, and TSS datasets to determine whether there were significant differences among seasons (**Appendix D**). At an  $\alpha$  level of 0.05, differences were significant among seasons all the parameters. A similar test for differences among years was significant for all the parameters (**Appendix E**).

| Year | N  | Minimum | Maximum | Median | Mean |
|------|----|---------|---------|--------|------|
| 1985 | 9  | 1.0     | 4.3     | 1.0    |      |
| 1986 | 24 | 1.0     | 84.3    | 4.4    |      |
| 1992 | 34 | 1.0     | 160.7   | 1.4    | 11.2 |
| 1993 | 31 | 1.0     | 200.6   | 2.3    | 13.6 |
| 1994 | 40 | 1.0     | 84.7    | 1.6    | 5.8  |

# Table 5.4. Statistical Summary of Historical CHLAC Data by Year for theTomoka River

| Year | N  | Minimum | Maximum | Median | Mean |
|------|----|---------|---------|--------|------|
| 1995 | 35 | 1.0     | 22.0    | 1.0    | 3.3  |
| 1996 | 33 | 1.0     | 15.4    | 1.0    | 2.3  |
| 1997 | 21 | 1.0     | 8.2     | 1.0    | 2.3  |
| 1998 | 36 | 1.0     | 23.9    | 1.0    | 2.5  |
| 1999 | 35 | 1.0     | 25.2    | 1.1    | 3.7  |
| 2000 | 10 | 1.0     | 13.1    | 1.1    | 2.7  |
| 2001 | 21 | 1.0     | 14.4    | 1.0    | 1.8  |
| 2002 | 19 | 1.0     | 16.8    | 1.0    | 2.6  |
| 2003 | 33 | 1.0     | 18.6    | 1.0    | 2.2  |
| 2004 | 20 | 1.0     | 7.7     | 1.0    | 1.9  |
| 2005 | 43 | 1.0     | 21.6    | 1.4    | 2.4  |
| 2006 | 21 | 1.0     | 28.5    | 1.0    | 2.6  |
| 2007 | 19 | 1.0     | 2.5     | 1.0    | 1.3  |
| 2008 | 64 | 1.0     | 450.0   | 2.4    | 10.2 |
| 2009 | 50 | 1.0     | 356.8   | 2.6    | 11.4 |
| 2010 | 33 | 1.0     | 76.0    | 1.3    | 6.4  |
| 2011 | 24 | 1.0     | 21.5    | 1.3    | 5.9  |

CHLAC concentrations are µg/L.

Blank cells in the mean column represent cases where data were not collected in each of the four quarters.

# Table 5.5Statistical Summary of Historical TN Data by Year for the TomokaRiver

| Year | N  | Minimum | Maximum | Median | Mean |
|------|----|---------|---------|--------|------|
| 1975 | 1  | 0.70    | 0.70    | 0.70   |      |
| 1983 | 3  | 0.49    | 2.00    | 0.49   |      |
| 1984 | 6  | 0.80    | 1.30    | 1.05   |      |
| 1985 | 10 | 0.75    | 2.48    | 1.06   |      |

| Year | N  | Minimum | Maximum | Median | Mean |
|------|----|---------|---------|--------|------|
| 1986 | 25 | 0.67    | 1.61    | 1.06   |      |
| 1992 | 33 | 0.53    | 2.68    | 1.24   | 1.26 |
| 1993 | 33 | 0.39    | 2.74    | 0.91   | 1.08 |
| 1994 | 42 | 0.37    | 3.38    | 1.32   | 1.47 |
| 1995 | 37 | 0.56    | 2.47    | 1.40   | 1.48 |
| 1996 | 34 | 0.47    | 1.75    | 0.96   | 1.01 |
| 1997 | 22 | 0.48    | 1.90    | 0.98   | 0.92 |
| 1998 | 35 | 0.62    | 1.85    | 1.13   | 1.17 |
| 1999 | 35 | 0.15    | 2.24    | 0.78   | 0.93 |
| 2000 | 12 | 0.46    | 1.73    | 0.81   | 0.91 |
| 2001 | 21 | 0.29    | 1.91    | 0.72   | 0.91 |
| 2002 | 21 | 0.65    | 1.56    | 1.05   | 1.06 |
| 2003 | 32 | 0.67    | 1.48    | 1.02   | 1.02 |
| 2004 | 22 | 0.60    | 2.40    | 0.92   | 1.06 |
| 2005 | 38 | 0.69    | 1.94    | 1.01   | 1.08 |
| 2006 | 19 | 0.50    | 1.13    | 0.70   | 0.73 |
| 2007 | 17 | 0.50    | 1.24    | 0.74   | 0.76 |
| 2008 | 60 | 0.48    | 4.52    | 0.97   | 1.82 |
| 2009 | 21 | 0.69    | 3.42    | 1.14   | 1.40 |
| 2010 | 27 | 0.66    | 2.25    | 1.00   | 1.13 |
| 2011 | 22 | 0.56    | 4.36    | 0.83   | 1.19 |

TN concentrations are mg/L. Blank cells in the mean column represent cases where data were not collected in each of the four quarters.

#### Table 5.6. Statistical Summary of Historical TP Data by Year for the Tomoka River

| Year | N  | Minimum | Maximum | Median | Mean  |
|------|----|---------|---------|--------|-------|
| 1968 | 1  | 0.130   | 0.130   | 0.130  |       |
| 1969 | 1  | 0.114   | 0.114   | 0.114  |       |
| 1970 | 1  | 0.068   | 0.068   | 0.068  |       |
| 1971 | 1  | 0.117   | 0.117   | 0.117  |       |
| 1975 | 1  | 0.090   | 0.090   | 0.090  |       |
| 1983 | 3  | 0.050   | 0.520   | 0.050  |       |
| 1984 | 6  | 0.050   | 0.260   | 0.070  |       |
| 1985 | 10 | 0.020   | 0.070   | 0.030  |       |
| 1986 | 25 | 0.020   | 0.230   | 0.090  |       |
| 1992 | 34 | 0.020   | 1.910   | 0.090  | 0.149 |
| 1993 | 28 | 0.020   | 4.200   | 0.095  | 0.335 |
| 1994 | 42 | 0.025   | 0.570   | 0.104  | 0.152 |
| 1995 | 37 | 0.015   | 0.180   | 0.067  | 0.071 |
| 1996 | 34 | 0.010   | 0.070   | 0.030  | 0.032 |
| 1997 | 22 | 0.010   | 0.150   | 0.031  | 0.047 |
| 1998 | 37 | 0.010   | 0.170   | 0.040  | 0.048 |
| 1999 | 35 | 0.023   | 0.140   | 0.040  | 0.053 |
| 2000 | 10 | 0.010   | 0.495   | 0.105  | 0.228 |
| 2001 | 21 | 0.010   | 0.640   | 0.052  | 0.123 |
| 2002 | 19 | 0.019   | 0.093   | 0.050  | 0.050 |
| 2003 | 34 | 0.010   | 0.210   | 0.051  | 0.059 |
| 2004 | 20 | 0.020   | 0.091   | 0.040  | 0.046 |
| 2005 | 38 | 0.020   | 0.091   | 0.050  | 0.050 |
| 2006 | 23 | 0.020   | 0.100   | 0.045  | 0.051 |

| Year | Ν  | Minimum | Maximum Median |       | Maximum Median Me |  | Mean |
|------|----|---------|----------------|-------|-------------------|--|------|
| 2007 | 18 | 0.010   | 0.081          | 0.042 | 0.043             |  |      |
| 2008 | 63 | 0.020   | 20 0.970 0.110 |       | 0.100             |  |      |
| 2009 | 30 | 0.028   | 0.540 0.050    |       | 0.093             |  |      |
| 2010 | 33 | 0.010   | 0.470 0.048    |       | 0.084             |  |      |
| 2011 | 22 | 0.020   | 0.180          | 0.057 | 0.057             |  |      |

TP concentrations are mg/L.

Blank cells in the mean column represent cases where data were not collected in each of the four quarters.

#### 5.1.2 TMDL Development Process

As part of evaluating potential relationships between CHLAC and other variables, rainfall records for the Daytona International Airport (**Appendix J**) were used to determine rainfall amounts associated with individual sampling dates. Rainfall recorded on the day of sampling (PRECIP), the cumulative total for the day of and the previous two days (V3DAY), the cumulative total for the day of and the previous six days (V7DAY), the cumulative total for the day of and the previous two total for the day of and the previous two total for the day of and the previous two total for the day of and the previous two total for the day of and the previous two total for the day of and the previous twenty days (V21DAY) were all paired with the respective water quality parameter observation.

A Spearman correlation matrix was used to assess potential relationships between CHLAC and other water quality parameters (**Appendix G**). At an alpha ( $\alpha$ ) level of 0.05, correlations between CHLAC, COND, SALINITY, water temperature (TEMPC), NO3O2, TN, TP, TSS, TURBIDITY, V14DAY, V21DAY, and daily streamflow were significant. A simple linear regression of CHLAC versus SALINITY explained nearly 10 percent of the variance in CHLAC while the regression with TN also explained nearly 10 percent of the variance in CHLAC (**Appendix I**).

The impairment listing identified TN and TP as co-limiting nutrients. **Figure 5.7** illustrates the time series of the TN/TP ratio. Although the trend line indicates an increase in the TN/TP ratio, the regression was not significant at an alpha ( $\alpha$ ) level of 0.05 (p=0.872). A similar plot of the INORGN/INORGP ratio had a slope of 0.00007. Summary statistics for the ratio's can be found in **Table 5.3**. Based on the INORGN/INORGP ratio, it appeared that inorganic forms of nitrogen were typically limiting compared to inorganic phosphorus (75% value was 4.99).



# Figure 5.7. Historical Time Series of the TN/TP Ratio for the Tomoka River

As the impairment for nutrients was based on an annual average for CHLAC, annual averages for water quality parameters were also calculated using available data and linear regressions were performed. The calculations of annual averages followed the methodology described in the IWR for the calculation of annual CHLAC averages.

Based on simple linear regression using annual averages, correlations between CHLAC and COND, SALINITY, NH4, INORGN, TN, and TP were significant at an alpha ( $\alpha$ ) level of 0.05 (**Appendix JI**). Approximately 55 percent of the variance in the annual average CHLAC was explained with the annual average SALINITY concentration. Annual average NH4 explained nearly 48 percent (INORGN explained 46 percent) of the variance in the annual average CHLAC concentrations. TN and TP explained 32 percent and 37 percent of the variance, respectively. INORGP regressions with CHLAC were significant at an alpha ( $\alpha$ ) level of 0.05. Simple linear regressions with annual average CHLAC concentrations versus the model predicted annual average TN and TP watershed loads (**Table 4.5**) were not significant at an alpha ( $\alpha$ ) level of 0.05 (**Appendix J**).

Although the regression between CHLAC and annual rainfall was not significant ( $r^2 = 0.130$ , p=0.118), annual rainfall patterns were examined further to evaluate whether there were cumulative effects due to reduced rainfall. Annual rainfall totals over the 1937 through 2011 were ranked (**Appendix K**). With the exception of 2009 (50.3 inches), rainfall totals over the 2008 – 2011 period were below the long-term annual average of 49.63 inches. To evaluate the longer term effects of below average rainfall years, an annual rainfall deficit was calculated

based on the long-term average. The cumulative effect of deficits was calculated by summing over a three-year (current year and two previous years) and a five-year (current year and the four previous years) period. Simple linear regressions of the annual average CHLAC versus the three-year cumulative and five-year cumulative deficits were significant at an alpha ( $\alpha$ ) level of 0.05 (**Appendix J**). Plots of the annual rainfall deficit and cumulative three and five-year deficits can be found in **Appendix K**. As seen in the plots, following the high rainfall in 2005 (65.77 inches), the cumulative three and five-year deficits increased sharply.

In seventeen of the twenty years for which annual averages for salinity were calculated, the annual average salinity was below 2.7 ppt and represented fresh water conditions. In those seventeen years, the maximum annual average CHLAC concentration was 11.2  $\mu$ g/L with thirteen of the years averaging less than 3.8  $\mu$ g/L. For the three years where the annual average salinity exceeded 3 ppt (1993, 2008, and 2009), annual average CHLAC concentration in 2010 was 6.4  $\mu$ g/L and the annual average salinity was 0.7 ppt. This is illustrated in **Figure 5.8**.



#### Figure 5.8. Annual Average CHLA versus Salinity for the Tomoka River

As discussed in Section 5.1.1, thirty-three of the fifty-eight stations with CHLAC had only one observation. Patterns of CHLAC, SALINITY, TN, and TP were further explored at three long-term stations that were sampled over the 1998 – 2011 period. The following plots (**Figures 5.9** – **5.12**) illustrate conditions at stations 21FLGW 3516, 21FLVEMDVC-077, and 21FLVEMDVC-078. Stations 21FLVEMDVC-078 and 21FLGW 3516 are located near the LPGA Blvd crossing of the Tomoka River, approximately 2.9 miles south of the 21FLVEMDVC-077 station near SR

40 (**Figure 5.1**). Both CHLAC and SALINITY levels at the 21FLVEMDVC-077 site are elevated relative to the two sites to the south. Thirty percent of the reported salinity measurements at 21FLVEMDVC-077 represented predominantly marine conditions. In contrast, the maximum salinities at stations 21FLVEMDVC-078 and 21FLGW 3516 were both less than 0.5 ppt. Between 30 and 40 percent of the CHLAC observations at station 21FLVEMDVC-077 exceeded 5  $\mu$ g/L. Approximately 45 percent of the period of record salinity observations reported for stations in the WBID located at or above SR 40 represented predominantly marine conditions, suggesting some tidal transport into this portion of the Tomoka.



# Figure 5.9. CHLA Time Series for Three Long-term Stations in the Tomoka River

Figure 5.10. Total Nitrogen Time Series for Three Long-term Stations in the Tomoka River







Figure 5.12. Salinity Time Series for Three Long-term Stations in the Tomoka River



As the nutrient impairment listing was based on exceeding an annual average CHLA concentration of 5  $\mu$ g/L for two consecutive years, a target annual average CHLAC concentration of 4.5  $\mu$ g/L was considered as an appropriate protective target and used to develop nutrient reductions. Correlations between annual average concentrations of CHLAC and inorganic nitrogen (as well as NH4), TN, and TP were significant. A general linear model GLM) that included TN and TP explained nearly 67 percent of the variance in annual average CHLAC concentrations (**Appendix J**). As discussed earlier and illustrated in Figure 5.7, TN/TP ratios indicated co-limitation of nitrogen and phosphorus. Therefore, similar reductions to TN and TP were applied with the GLM until annual average CHLAC concentrations were less than 4.5  $\mu$ g/L (**Figure 5.13**).



#### Figure 5.13. General Linear Model of Annual Average CHLAC versus TN and TP in the Tomoka River

CHLAC
GLMCHLAC
GLM90PERCENT
GLM85PERCENT
GLM75PERCENT
GLM70PERCENT

Annual average TN concentrations over the 1992 – 2011 period ranged between 0.73 mg/L (2006) and 1.82 mg/L (2008) with an overall average of 1.12 mg/L. Over the same period, TP concentrations ranged between 0.032 mg/L (1996) and 0.335 mg/L (1993) with an overall average of 0.094 mg/L. Applying a thirty percent reduction (GLM70PERCENT) to the annual average TN concentrations yielded a range between 0.51 mg/L and 1.27 mg/L, with an overall average of 0.78 mg/L. Application of the thirty percent reduction to the annual average TP concentrations yielded a range between 0.022 mg/L and 0.234 mg/L, with an overall average of 0.065 mg/L. The annual average TN and TP concentrations of 0.78 mg/L and 0.065 mg/L, respectively were used as the nutrient targets in the TMDL to achieve an annual CHLAC target

of 4.5  $\mu$ g/L or less. Use of the averages addresses year-to-year variations in nutrient levels observed historically in the watershed.

Over the September 1992 to May 2012 period, 24 stream condition index (SCI) assessments have been conducted in this WBID. The SCI uses 10 metrics to evaluate the biological health of the macroinvertebrate community. All twenty-four assessments have concluded that the biological community is healthy with good or excellent ratings. Reductions in TN ,TP and CHLAC concentrations are not expected to adversely affect the existing biological community.

Estimated watershed TN and TP concentrations and loads were provided by Tetra Tech (**Table 4.5**) for the 1997 – 2009 period. Predicted annual average TN concentrations over the simulation period ranged from 1.10 mg/L to 1.32 mg/L, with an overall average of 1.19 mg/L. Annual TN loadings ranged from 127,797 lbs/yr to 848,249 lbs/yr, with an overall average of 338,774 lbs/yr. Predicted annual average TP concentrations over the simulation period ranged from 0.065 mg/L to 0.120 mg/L, with an overall average of 0.090 mg/L. Annual TP loadings ranged from 11,092 lbs/yr to 49,287 lbs/yr, with an overall average of 22,101 lbs/yr. Simple linear regressions of the model predicted annual average TN load or TP load versus the annual average CHLAC concentration were not significant at an  $\alpha$  level of 0.05, so a TMDL-related load associated with a 30 percent reduction in annual average TN or TP concentrations were not calculated using the model.

#### 5.1.3 Critical Conditions/Seasonality

Nonparametric tests (Kruskal-Wallis) were presented in **Appendices C** and **D** that illustrated significant differences in CHLAC and nutrients on both a seasonal and annual basis. The nutrient impairment was based on annual average CHLAC concentrations exceeding a historic minimum by 50 percent or more over two consecutive years. The methodology used for calculating an annual average is based on computing individual seasonal averages. Consequently, seasonality is incorporated into the process of assessment and TMDL development. Reductions in TN and TP were based on setting a CHLAC target and corresponding TN and TP concentrations below the historic minimum chlorophyll listing threshold.

### **Chapter 6: DETERMINATION OF THE TMDL**

#### 6.1 Expression and Allocation of the TMDL

The objective of a TMDL is to provide a basis for allocating acceptable loads among all of the known pollutant sources in a watershed so that appropriate control measures can be implemented and water quality standards achieved. A TMDL is expressed as the sum of all point source loads (Wasteload Allocations, or WLAs), nonpoint source loads (Load Allocations, or LAs), and an appropriate margin of safety (MOS), which takes into account any uncertainty concerning the relationship between effluent limitations and water quality:

 $\mathsf{TMDL} = \Sigma \square \mathsf{WLAs} + \Sigma \square \mathsf{LAs} + \mathsf{MOS}$ 

As discussed earlier, the WLA is broken out into separate subcategories for wastewater discharges and stormwater discharges regulated under the NPDES Program:

#### **TMDL** $\cong \Sigma \square WLA_{Swastewater} + \Sigma \square WLA_{SNPDES Stormwater} + \Sigma \square LAS + MOS$

It should be noted that the various components of the revised TMDL equation may not sum up to the value of the TMDL because (a) the WLA for NPDES stormwater is typically based on the percent reduction needed for nonpoint sources and is also accounted for within the LA, and (b) TMDL components can be expressed in different terms (for example, the WLA for stormwater is typically expressed as a percent reduction, and the WLA for wastewater is typically expressed as mass per day).

WLAs for stormwater discharges are typically expressed as "percent reduction" because it is very difficult to quantify the loads from MS4s (given the numerous discharge points) and to distinguish loads from MS4s from other nonpoint sources (given the nature of stormwater transport). The permitting of stormwater discharges also differs from the permitting of most wastewater point sources. Because stormwater discharges cannot be centrally collected, monitored, and treated, they are not subject to the same types of effluent limitations as wastewater facilities, and instead are required to meet a performance standard of providing treatment to the "maximum extent practical" through the implementation of BMPs.

This approach is consistent with federal regulations (40 CFR § 130.2[I]), which state that TMDLs can be expressed in terms of mass per time (e.g., pounds per day), toxicity, or **other appropriate measure**. The nutrient TMDL for the Tomoka River is expressed in terms of a percent reduction in total nitrogen and total phosphorus nutrient criteria and corresponding concentrations (**Table 6.1**).

|      |           |                             | WLA                  | WLA                                               |                                  |          |
|------|-----------|-----------------------------|----------------------|---------------------------------------------------|----------------------------------|----------|
| WBID | Parameter | TMDL <sup>1</sup><br>(mg/L) | Wastewater<br>(mg/L) | NPDES<br>Stormwater<br>(% Reduction) <sup>1</sup> | LA<br>(% Reduction) <sup>2</sup> | MOS      |
| 2634 | TN        | 0.78                        | N/A                  | 30%                                               | 30%                              | Implicit |
| 2634 | TP        | 0.065                       | N/A                  | 30%                                               | 30%                              | Implicit |

#### Table 6.1. TMDL Components for Tomoka River

<sup>1</sup>Nutrient concentrations represent annual averages

<sup>2</sup> As the TMDL represents a percent reduction, it also complies with EPA requirements to express the TMDL on a daily basis.

#### 6.2 Load Allocation

Total nitrogen and total phosphorus reductions of 30 percent are required from nonpoint sources. It should be noted that the load allocation includes loading from stormwater discharges that are not part of the NPDES Stormwater Program.

#### 6.3 Wasteload Allocation

#### 6.3.1 NPDES Wastewater Discharges

There is currently one permitted NPDES discharge in the Tomoka River watershed. Based on discharge monitoring reports, the Tomoka Farms Road Landfill (FL0037877) has an infrequent discharge to the Tomoka River and the reported TN and TP concentrations are below the target concentration.

#### 6.3.2 NPDES Stormwater Discharges

Several Phase II municipal separate storm sewer system (MS4) permits cover portions of the watershed, including permits for the City of Daytona Beach (FLR04E0115) and Volusia County (FLR04E033. The Florida Department of Transportation District 5 is a co-permittee with Volusia County (FLR04E024). It should be noted that any MS4 permittee is only responsible for reducing the loads associated with stormwater outfalls that it owns or otherwise has responsible control over, and it is not responsible for reducing other nonpoint source loads in its jurisdiction.

#### 6.4 Margin of Safety

Consistent with the recommendations of the Allocation Technical Advisory Committee (Department, 2001), an implicit MOS was used in the development of this TMDL. An MOS was included in the TMDL by setting an annual CHLAC target concentration of 4.5  $\mu$ g/L which was below the historic minimum listing threshold and applying a 30 percent reduction to annual average TN and TP concentrations. The 30 percent reduction was based on application of a general linear model to achieve annual average CHLAC concentrations below 4.5  $\mu$ g/L. The

assessment process would require at least two consecutive years CHLAC at or above 5  $\mu$ g/L before being listed as impaired for nutrients.

### Chapter 7: NEXT STEPS: IMPLEMENTATION PLAN DEVELOPMENT AND BEYOND

#### 7.1 Basin Management Action Plan

Following the adoption of this TMDL by rule, the Department will determine the best course of action regarding its implementation. Depending upon the pollutant(s) causing the waterbody impairment and the significance of the waterbody, the Department will select the best course of action leading to the development of a plan to restore the waterbody. **Often** this will be accomplished cooperatively with stakeholders by creating a Basin Management Action Plan, referred to as the BMAP. Basin Management Action Plans are the primary mechanism through which TMDLs are implemented in Florida [see Subsection 403.067(7) F.S.]. A single BMAP may provide the conceptual plan for the restoration of one or many impaired waterbodies.

If the Department determines a BMAP is needed to support the implementation of this TMDL, a BMAP will be developed through a transparent stakeholder-driven process intended to result in a plan that is cost-effective, technically feasible, and meets the restoration needs of the applicable waterbodies. Once adopted by order of the Department Secretary, BMAPs are enforceable through wastewater and municipal stormwater permits for point sources and through BMP implementation for nonpoint sources. Among other components, BMAPs typically include:

- Water quality goals (based directly on the TMDL);
- Refined source identification;
- Load reduction requirements for stakeholders (quantitative detailed allocations, if technically feasible);
- A description of the load reduction activities to be undertaken, including structural projects, nonstructural BMPs, and public education and outreach;
- A description of further research, data collection, or source identification needed in order to achieve the TMDL;
- Timetables for implementation;
- Implementation funding mechanisms;
- An evaluation of future increases in pollutant loading due to population growth;
- Implementation milestones, project tracking, water quality monitoring, and adaptive management procedures; and
- Stakeholder statements of commitment (typically a local government resolution).

BMAPs are updated through annual meetings and may be officially revised every five years. Completed BMAPs in the state have improved communication and cooperation among local stakeholders and state agencies, improved internal communication within local governments, applied high-quality science and local information in managing water resources, clarified obligations of wastewater point source, MS4 and non-MS4 stakeholders in TMDL implementation, enhanced transparency in DEP decision-making, and built strong relationships between DEP and local stakeholders that have benefited other program areas.

### References

Florida Administrative Code. Rule 62-302, Surface water quality standards.

——. Rule 62-303, Identification of impaired surface waters.

Florida Department of Environmental Protection. February 2001. A report to the Governor and the Legislature on the allocation of Total Maximum Daily Loads in Florida. Tallahassee, Florida: Bureau of Watershed Management.

——. 2005. status report. Tallahassee, Florida. Available: <u>http://www.dep.state.fl.us/water/basin411/uppereast/status.htm.</u>

Florida Department of Health Website. 2011. Available: <u>http://www.doh.state.fl.us/</u>.

Florida Watershed Restoration Act. Chapter 99-223, Laws of Florida.

- U. S. Census Bureau Website. 2010. Available: http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml.
- U. S. Environmental Protection Agency. 1999. *Protocol for developing nutrient TMDLs.* First Edition. EPA 841–B–99–007.
- U. S. Environmental Protection Agency Region 4. 2002. *Estimating water quality loadings from MS4 areas.*

### **Appendices**

#### Appendix A: Background Information on Federal and State Stormwater Programs

In 1982, Florida became the first state in the country to implement statewide regulations to address the issue of nonpoint source pollution by requiring new development and redevelopment to treat stormwater before it is discharged. The Stormwater Rule, as authorized in Chapter 403, F.S., was established as a technology-based program that relies on the implementation of BMPs that are designed to achieve a specific level of treatment (i.e., performance standards) as set forth in Rule 62-40, F.A.C. In 1994, the Department's stormwater treatment requirements were integrated with the stormwater flood control requirements of the water management districts, along with wetland protection requirements, into the Environmental Resource Permit regulations.

Rule 62-40 also requires the state's water management districts to establish stormwater pollutant load reduction goals (PLRGs) and adopt them as part of a Surface Water Improvement and Management (SWIM) plan, other watershed plan, or rule. Stormwater PLRGs are a major component of the load allocation part of a TMDL. To date, stormwater PLRGs have been established for Tampa Bay, Lake Thonotosassa, the Winter Haven Chain of Lakes, the Everglades, Lake Okeechobee, and Lake Apopka.

In 1987, the U.S. Congress established Section 402(p) as part of the federal Clean Water Act Reauthorization. This section of the law amended the scope of the federal NPDES permitting program to designate certain stormwater discharges as "point sources" of pollution. The EPA promulgated regulations and began implementing the Phase I NPDES stormwater program in 1990. These stormwater discharges include certain discharges that are associated with industrial activities designated by specific standard industrial classification (SIC) codes, construction sites disturbing 5 or more acres of land, and master drainage systems of local governments with a population above 100,000, which are better known as MS4s. However, because the master drainage systems of most local governments in Florida are interconnected, the EPA implemented Phase I of the MS4 permitting program on a countywide basis, which brought in all cities (incorporated areas), Chapter 298 urban water control districts, and the Florida Department of Transportation throughout the 15 counties meeting the population criteria. The Department received authorization to implement the NPDES stormwater program in 2000.

An important difference between the federal NPDES and the state's stormwater/environmental resource permitting programs is that the NPDES Program covers both new and existing discharges, while the state's program focus on new discharges only. Additionally, Phase II of the NPDES Program, implemented in 2003, expands the need for these permits to construction sites between 1 and 5 acres, and to local governments with as few as 1,000 people. While these urban stormwater discharges are now technically referred to as "point sources" for the purpose of regulation, they are still diffuse sources of pollution that cannot be easily collected and treated by a central treatment facility, as are other point sources of pollution such as domestic and industrial wastewater discharges. It should be noted that all MS4 permits issued in Florida include a reopener clause that allows permit revisions to implement TMDLs when the implementation plan is formally adopted.

49

| Appendix B: | Historical Corrected Chla, TEMP, TN, TP, and TSS |
|-------------|--------------------------------------------------|
|             | Observations in Palm Coast, 1968–2011            |

| Station         | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|-----------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 112WRD 02247510 | 05/03/1968  |                        | 26           |              | 0.1304       |                |
| 112WRD 02247510 | 05/01/1969  |                        | 21           |              | 0.1141       |                |
| 112WRD 02247510 | 05/15/1970  |                        | 23           |              | 0.0685       |                |
| 112WRD 02247510 | 05/14/1971  |                        | 25.5         |              | 0.1174       |                |
| 112WRD 02247510 | 11/14/1973  |                        | 16.5         |              |              |                |
| 112WRD 02247510 | 01/04/1974  |                        | 19           |              |              |                |
| 112WRD 02247510 | 02/22/1974  |                        | 18.5         |              |              |                |
| 112WRD 02247510 | 04/19/1974  |                        | 19.5         |              |              |                |
| 112WRD 02247510 | 06/19/1974  |                        | 27           |              |              |                |
| 112WRD 02247510 | 08/05/1974  |                        | 24           |              |              |                |
| 21FLA 27010830  | 03/18/1975  |                        | 21.2         | 0.704        | 0.09         | 4              |
| 112WRD 02247510 | 10/31/1979  |                        | 20.5         |              |              |                |
| 112WRD 02247510 | 01/07/1980  |                        | 12           |              |              |                |
| 112WRD 02247510 | 02/20/1980  |                        | 13           |              |              |                |
| 112WRD 02247510 | 04/16/1980  |                        | 17           |              |              |                |
| 112WRD 02247510 | 06/09/1980  |                        | 27.5         |              |              |                |
| 112WRD 02247510 | 08/06/1980  |                        | 26           |              |              |                |
| 112WRD 02247510 | 10/01/1980  |                        | 26.5         |              |              |                |
| 112WRD 02247510 | 12/02/1980  |                        | 15           |              |              |                |
| 112WRD 02247510 | 01/20/1981  |                        | 8.5          |              |              |                |
| 112WRD 02247510 | 03/28/1981  |                        | 19           |              |              |                |
| 112WRD 02247510 | 05/21/1981  |                        | 24           |              |              |                |
| 112WRD 02247510 | 07/10/1981  |                        | 27           |              |              |                |
| 112WRD 02247510 | 10/27/1981  |                        | 24           |              |              |                |
| 112WRD 02247510 | 12/17/1981  |                        | 14.5         |              |              |                |
| 112WRD 02247510 | 02/09/1982  |                        | 18           |              |              |                |
| 112WRD 02247510 | 04/13/1982  |                        | 19.5         |              |              |                |
| 112WRD 02247510 | 06/07/1982  |                        | 28           |              |              |                |
| 112WRD 02247510 | 07/26/1982  |                        | 25.5         |              |              |                |
| 112WRD 02247510 | 10/12/1982  |                        | 22           |              |              |                |
| 112WRD 02247510 | 01/06/1983  |                        | 15           |              |              |                |
| 112WRD 02247510 | 03/09/1983  |                        | 14.5         |              |              |                |
| 112WRD 02247510 | 03/31/1983  |                        | 18           |              |              |                |
| 112WRD 02247510 | 06/16/1983  |                        | 23.5         |              |              |                |
| 112WRD 02247500 | 08/18/1983  |                        |              | 2            | 0.52         |                |
| 112WRD 02247508 | 08/18/1983  |                        | 25.5         | 0.49         | 0.05         |                |
| 112WRD 02247510 | 08/18/1983  |                        |              | 0.49         | 0.05         |                |
| 112WRD 02247500 | 03/09/1984  |                        | 13.5         | 1.2          | 0.26         |                |
| 112WRD 02247510 | 03/09/1984  |                        | 14.5         | 1            | 0.05         |                |

| Station         | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|-----------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 112WRD 02247508 | 03/15/1984  |                        | 19           | 0.8          | 0.05         |                |
| 112WRD 02247500 | 09/28/1984  |                        |              | 1.3          | 0.06         |                |
| 112WRD 02247508 | 09/28/1984  |                        |              | 1.1          | 0.11         |                |
| 112WRD 02247510 | 09/28/1984  |                        |              | 0.8          | 0.08         |                |
| 21FLA 27010573  | 10/22/1985  | 1                      | 25.6         | 1.13         | 0.04         |                |
| 21FLA 27010574  | 10/22/1985  | 1.43                   | 24.3         | 1.15         | 0.03         |                |
| 21FLA 27010578  | 10/22/1985  | 2.57                   | 24           | 1.13         | 0.07         |                |
| 21FLA 27010572  | 10/22/1985  | 4.28                   | 25.5         | 1.14         | 0.04         |                |
| 21FLA 27010579  | 10/22/1985  |                        | 25           | 2.48         | 0.06         |                |
| 21FLA 27010573  | 12/16/1985  | 1                      | 15.7         | 0.85         | 0.02         | 3              |
| 21FLA 27010574  | 12/16/1985  | 1                      | 13.2         | 0.75         | 0.02         | 5              |
| 21FLA 27010578  | 12/16/1985  | 1                      | 12.8         | 0.75         | 0.03         | 3              |
| 21FLA 27010579  | 12/16/1985  | 1                      | 12           | 0.87         | 0.02         | 3              |
| 21FLA 27010572  | 12/16/1985  | 1.18                   | 15.7         | 0.98         | 0.03         | 3              |
| 21FLA 27010578  | 02/11/1986  | 1                      | 19.8         | 0.71         | 0.04         | 3              |
| 21FLA 27010579  | 02/11/1986  | 1                      | 19           | 1.06         | 0.04         | 4              |
| 21FLA 27010573  | 02/11/1986  | 1.28                   | 19.5         | 0.95         | 0.06         | 4              |
| 21FLA 27010574  | 02/11/1986  | 1.28                   | 19.2         | 0.73         | 0.05         | 3              |
| 21FLA 27010572  | 02/11/1986  | 1.71                   | 19.4         | 0.95         | 0.03         | 3              |
| 21FLA 27010573  | 04/28/1986  | 4.28                   | 25.1         | 0.71         | 0.05         | 4              |
| 21FLA 27010574  | 04/28/1986  | 7.91                   | 23.9         | 0.82         | 0.07         | 5              |
| 21FLA 27010572  | 04/28/1986  | 4.49                   | 23.6         | 0.75         | 0.05         | 4              |
| 21FLA 27010578  | 04/28/1986  | 7.7                    | 24           | 0.77         | 0.12         | 4              |
| 21FLA 27010579  | 04/28/1986  | 1.92                   | 23           | 0.67         | 0.02         | 3              |
| 21FLA 27010579  | 06/23/1986  | 1.92                   | 26           | 0.7          | 0.04         | 4              |
| 21FLA 27010573  | 06/23/1986  | 84.3                   | 29.5         | 1.16         | 0.18         | 8              |
| 21FLA 27010578  | 06/23/1986  |                        | 30.3         | 1.07         | 0.09         | 4              |
| 21FLA 27010572  | 06/23/1986  | 22                     | 28.9         | 1.12         | 0.15         | 6              |
| 21FLA 27010574  | 06/23/1986  | 18.9                   | 30.1         | 1.03         | 0.13         | 7              |
| 21FLA 27010579  | 07/28/1986  | 1                      | 25.5         | 1.43         | 0.04         | 3              |
| 21FLA 27010573  | 07/28/1986  | 7.7                    | 28.6         | 1.3          | 0.09         | 8              |
| 21FLA 27010574  | 07/28/1986  | 1                      | 27.5         | 1.33         | 0.11         | 4              |
| 21FLA 27010572  | 07/28/1986  | 7.48                   | 28.9         | 1.12         | 0.18         | 9              |
| 21FLA 27010578  | 07/28/1986  | 1.07                   | 28           | 1.13         | 0.12         | 3              |
| 21FLA 27010579  | 08/25/1986  | 2.85                   | 28           | 0.84         | 0.09         | 15             |
| 21FLA 27010578  | 08/25/1986  | 20                     | 28           | 1.3          | 0.18         | 4              |
| 21FLA 27010573  | 08/25/1986  | 6.42                   | 31.6         | 1.26         | 0.13         | 3              |
| 21FLA 27010572  | 08/25/1986  | 39.9                   | 35           | 1.11         | 0.14         | 2              |
| 21FLA 27010574  | 08/25/1986  | 15                     | 29.3         | 1.61         | 0.23         | 2              |
| 21FLVEMDVC-079  | 01/06/1992  | 37.7                   | 14.5         | 1.24         | 0.11         | 15             |
| 21FLVEMDVC-078  | 01/06/1992  | 1.2                    | 14.3         | 0.82         | 0.05         | 2              |
| 21FLVEMDVC-077  | 01/06/1992  | 1.5                    | 14.1         | 0.87         | 0.05         | 1              |
| 21FLVEMDVC-078  | 02/03/1992  | 1                      | 12.32        | 0.53         | 0.04         | 2.5            |

| Station        | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|----------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLVEMDVC-079 | 02/03/1992  | 2                      | 12.83        | 0.68         | 0.06         | 1              |
| 21FLVEMDVC-077 | 02/03/1992  | 8                      | 13.29        | 0.63         | 0.06         | 5              |
| 21FLVEMDVC-079 | 03/02/1992  | 1                      | 20.08        | 0.89         | 0.05         | 7              |
| 21FLVEMDVC-078 | 03/02/1992  | 1                      | 16.1         | 0.88         | 0.07         | 10             |
| 21FLVEMDVC-077 | 03/02/1992  | 1                      | 18.86        | 0.96         | 0.08         | 11             |
| 21FLVEMDVC-078 | 04/06/1992  | 1.8                    | 17.2         | 0.9          | 0.05         | 2              |
| 21FLVEMDVC-079 | 04/06/1992  | 13.6                   | 16.9         | 1.33         | 0.08         | 6              |
| 21FLVEMDVC-077 | 04/06/1992  | 21.4                   | 20.36        | 1.14         | 0.05         | 10.5           |
| 21FLVEMDVC-078 | 05/04/1992  | 1.1                    | 20.63        | 1.38         | 0.045        | 2.75           |
| 21FLVEMDVC-079 | 05/04/1992  | 118.3                  | 23.1         | 2.68         | 0.25         | 15             |
| 21FLVEMDVC-077 | 05/04/1992  | 6.8                    | 25.37        | 1.07         | 0.12         | 9              |
| 21FLVEMDVC-078 | 06/01/1992  | 1.8                    | 23.3         | 0.66         | 0.04         | 3              |
| 21FLVEMDVC-079 | 06/01/1992  | 11.6                   | 3.5          | 1.23         | 0.1          | 6              |
| 21FLVEMDVC-077 | 06/01/1992  | 3.8                    | 25.2         | 0.98         | 0.11         | 4              |
| 21FLVEMDVC-077 | 07/06/1992  | 1.11                   | 28           | 1.69         | 0.3          | 3              |
| 21FLVEMDVC-078 | 07/06/1992  | 1.6                    | 26.7         | 1.59         | 0.24         | 2              |
| 21FLVEMDVC-079 | 07/06/1992  | 3.15                   | 26.1         | 1.87         | 0.17         | 2.5            |
| 21FLVEMDVC-078 | 08/03/1992  | 1                      | 25.5         | 0.87         | 0.13         | 3              |
| 21FLVEMDVC-077 | 08/03/1992  | 2.79                   | 28.6         | 1.63         | 0.11         | 2              |
| 21FLVEMDVC-079 | 08/03/1992  | 160.7                  |              |              | 1.91         |                |
| 21FLVEMDVC-078 | 09/09/1992  | 1                      | 24           | 1.53         | 0.05         | 4              |
| 21FLVEMDVC-079 | 09/09/1992  | 1                      | 24.1         | 1.62         | 0.22         | 3              |
| 21FLVEMDVC-077 | 09/09/1992  | 3                      | 27           | 1.38         | 0.02         | 1              |
| 21FLA 27010579 | 09/22/1992  | 1                      | 25           | 1.42         | 0.04         | 2              |
| 21FLVEMDVC-079 | 10/05/1992  | 1                      | 23.1         | 1.461        | 0.15         | 4              |
| 21FLVEMDVC-078 | 10/05/1992  | 1                      | 23           | 1.571        | 0.11         | 5              |
| 21FLVEMDVC-077 | 10/05/1992  | 1                      | 23           | 1.311        | 0.11         | 6              |
| 21FLVEMDVC-078 | 11/02/1992  | 1                      | 20.28        | 1.62         | 0.11         | 2              |
| 21FLVEMDVC-079 | 11/02/1992  | 1                      | 20.31        | 1.17         | 0.17         | 6              |
| 21FLVEMDVC-077 | 11/02/1992  | 1                      | 20.43        | 1.36         | 0.07         | 4              |
| 21FLVEMDVC-078 | 12/07/1992  |                        | 15.32        |              |              |                |
| 21FLVEMDVC-079 | 12/07/1992  |                        | 14.59        |              |              |                |
| 21FLVEMDVC-077 | 12/07/1992  |                        | 14.46        |              |              |                |
| 21FLVEMDTR04   | 01/04/1993  | 1                      | 19.85        | 1.36         | 0.05         | 3              |
| 21FLVEMDTR05   | 01/04/1993  | 17.3                   | 19.85        | 2.502        | 0.21         | 6              |
| 21FLVEMDTR03   | 01/04/1993  | 1                      | 18.9         | 0.896        | 0.08         | 4              |
| 21FLVEMDTR05   | 03/01/1993  | 1                      | 12.52        | 1.0715       | 0.06         | 3.5            |
| 21FLVEMDTR04   | 03/01/1993  | 1                      | 11.91        | 0.9015       | 0.07         | 4              |
| 21FLVEMDTR03   | 03/01/1993  | 1                      | 12.59        | 0.9615       | 0.07         | 3              |
| 21FLA 27010579 | 03/16/1993  | 1                      | 13.1         | 0.97         | 0.034        | 2              |
| 21FLVEMDVC-078 | 05/03/1993  | 1                      | 20.6         | 0.827        | 0.04         | 1              |
| 21FLVEMDVC-077 | 05/03/1993  | 16.55                  | 21.6         | 1.273        | 0.05         | 3              |
| 21FLSJWMTR11   | 05/19/1993  |                        | 23.5         | 0.68         |              | 0              |

| Station        | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|----------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLVEMDVC-078 | 06/07/1993  |                        | 32           | 0.802        | 0.05         | 6              |
| 21FLVEMDVC-077 | 06/07/1993  | 9.2                    | 30           | 1.06         | 0.11         | 2              |
| 21FLVEMDTR04   | 06/08/1993  | 1                      | 32           | 0.8015       | 0.05         | 5.5            |
| 21FLVEMDTR03   | 06/08/1993  | 9.2                    | 30           | 1.06         | 0.11         | 2              |
| 21FLSJWMTR11   | 06/16/1993  | 1                      | 25.1         | 0.663        |              | 7              |
| 21FLVEMDVC-077 | 07/07/1993  | 15.15                  | 30.32        | 0.938        | 0.12         | 7              |
| 21FLVEMDVC-078 | 07/07/1993  | 1.38                   | 26.13        | 0.584        | 0.06         | 3              |
| 21FLSJWMTR11   | 07/14/1993  | 4.3                    | 25.6         | 0.714        |              | 22             |
| 21FLVEMDVC-079 | 08/02/1993  | 5.52                   | 27.8         | 2.2315       | 0.33         | 6              |
| 21FLVEMDVC-077 | 08/02/1993  | 11.5                   | 29.2         | 0.917        | 0.11         | 6              |
| 21FLVEMDVC-078 | 08/02/1993  | 1.79                   | 26.7         | 0.875        | 0.13         | 4.5            |
| 21FLA 27010579 | 08/17/1993  | 2.21                   | 25           | 0.995        | 0.15         | 1.98           |
| 21FLSJWMTR11   | 08/25/1993  |                        | 24.8         | 0.906        |              | 2              |
| 21FLVEMDVC-079 | 09/08/1993  | 34.25                  | 26.18        | 0.8915       | 2.8          | 4.8            |
| 21FLVEMDVC-077 | 09/08/1993  | 23.18                  | 29.58        | 1.258        |              | 8.4            |
| 21FLVEMDVC-078 | 09/08/1993  | 2.53                   | 24.35        | 0.519        | 4.2          | 3.6            |
| 21FLVEMDVC-077 | 10/04/1993  | 200.59                 | 27.86        | 1.9815       | 0.33         | 20.4           |
| 21FLVEMDVC-078 | 10/04/1993  | 2.32                   | 23.55        | 0.629        | 0.08         | 2.8            |
| 21FLVEMDVC-077 | 11/01/1993  | 4.49                   | 21.18        | 0.389        | 0.06         | 1.2            |
| 21FLVEMDVC-078 | 11/01/1993  | 1                      | 12.2         | 0.4115       | 0.15         | 1.6            |
| 21FLVEMDVC-079 | 12/06/1993  | 28.58                  | 18.11        | 2.741        | 0.55         | 27.5           |
| 21FLVEMDVC-077 | 12/06/1993  | 4.49                   | 21.56        | 1.703        | 0.23         | 14.8           |
| 21FLVEMDVC-078 | 12/06/1993  | 1                      | 15.92        | 0.5315       | 0.02         | 2.7            |
| 21FLVEMDTR04   | 01/03/1994  | 1.025                  | 16.235       | 0.5965       | 0.04         | 3.2            |
| 21FLVEMDVC-079 | 01/03/1994  |                        | 16.71        |              |              |                |
| 21FLVEMDTR03   | 01/03/1994  | 4.49                   | 16.53        | 0.672        | 0.04         | 1.6            |
| 21FLVEMDTR05   | 02/07/1994  | 3.1                    | 18.3         | 1.7415       | 0.07         | 1.5            |
| 21FLVEMDTR04   | 02/07/1994  | 1.93                   | 17.75        | 0.989        | 0.035        | 2.25           |
| 21FLVEMDTR03   | 02/07/1994  | 1.01                   | 16.3         | 1.075        | 0.04         | 0.5            |
| 21FLSJWMTR11   | 02/10/1994  | 1.871                  | 19.1         | 0.695        | 0.085        | 0              |
| 21FLA 27010579 | 02/15/1994  |                        | 15.9         | 0.86         | 0.038        | 2.3            |
| 21FLVEMDTR04   | 03/07/1994  | 1.485                  | 16.85        | 1.237        | 0.025        | 1.5            |
| 21FLVEMDTR05   | 03/07/1994  | 1.44                   | 17.7         | 2.2415       | 0.08         | 0.5            |
| 21FLVEMDTR03   | 03/07/1994  | 1.35                   | 17.1         | 1.425        | 0.11         | 1.5            |
| 21FLVEMDVC-079 | 04/04/1994  | 84.74                  | 18           | 2.5815       | 0.42         | 10.5           |
| 21FLVEMDVC-078 | 04/04/1994  | 1                      | 18           | 1.119        | 0.19         | 1              |
| 21FLVEMDVC-077 | 04/04/1994  | 4.85                   | 20.6         | 1.416        | 0.13         | 1              |
| 21FLSJWMTR11   | 04/20/1994  | 1                      | 22.1         | 0.804        | 0.108        | 3              |
| 21FLVEMDTR04   | 05/02/1994  | 1.16                   | 23           | 1.221        | 0.085        | 1.75           |
| 21FLVEMDTR05   | 05/02/1994  | 12.02                  | 23           | 1.576        | 0.19         | 8              |
| 21FLVEMDTR03   | 05/02/1994  | 15.07                  | 26           | 1.513        | 0.1          | 2.5            |
| 21FLVEMDTR04   | 06/06/1994  | 1.51                   | 24           | 0.9255       | 0.24         | 5.75           |
| 21FLVEMDTR03   | 06/06/1994  | 36.58                  | 29           | 1.017        | 0.15         | 9              |

| Station          | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLSJWMTR11     | 06/30/1994  | 1                      | 26.7         | 0.834        | 0.065        | 5              |
| 21FLVEMDTR05     | 07/06/1994  | 1.99                   | 25           | 3.383        | 0.19         | 0.5            |
| 21FLVEMDTR04     | 07/06/1994  | 1                      | 25           | 1.5085       | 0.06         | 2              |
| 21FLVEMDTR03     | 07/06/1994  | 3.43                   | 25           | 1.964        | 0.07         | 2              |
| 21FLVEMDTR04     | 08/01/1994  | 2.61                   | 25           | 1.294        | 0.285        | 1.5            |
| 21FLVEMDTR05     | 08/01/1994  | 1.62                   | 24           | 2.137        | 0.57         | 1              |
| 21FLVEMDTR03     | 08/01/1994  | 2.24                   | 26           | 1.182        | 0.28         | 0.5            |
| 21FLA 27010579   | 08/23/1994  |                        | 23.9         | 1.355        | 0.083        | 1.67           |
| 21FLSJWMTR11     | 08/24/1994  | 1.069                  | 24.5         | 1.07         | 0.139        | 4              |
| 21FLVEMDTR05     | 09/07/1994  | 2.85                   | 22           | 1.541        | 0.21         | 3              |
| 21FLVEMDTR04     | 09/07/1994  | 1.44                   | 23           | 1.253        | 0.065        | 13             |
| 21FLVEMDTR03     | 09/07/1994  | 13.65                  | 26           | 1.7          | 0.08         | 1              |
| 21FLSJWMTR11     | 09/28/1994  | 2.138                  | 23.4         | 1.049        | 0.112        | 4              |
| 21FLVEMDTR05     | 10/03/1994  | 8.19                   | 24           | 2.854        | 0.41         | 9              |
| 21FLVEMDTR04     | 10/03/1994  | 1                      | 24           | 1.9105       | 0.16         | 2.3            |
| 21FLVEMDTR03     | 10/03/1994  | 1.03                   | 24           | 1.482        | 0.08         | 2.5            |
| 21FLVEMDTR03     | 11/01/1994  | 1                      | 22           | 0.631        | 0.42         | 0.8            |
| 21FLVEMDTR04     | 11/01/1994  | 1.96                   | 22           | 0.365        | 0.425        | 2              |
| 21FLVEMDTR05     | 11/01/1994  | 4.33                   | 22           | 1.712        | 0.19         | 3.5            |
| 21FLVEMDTR03     | 12/05/1994  | 1                      | 21           | 2.3          | 0.08         | 1.8            |
| 21FLVEMDTR04     | 12/05/1994  | 1                      | 21           | 2.681        | 0.065        | 2.15           |
| 21FLVEMDTR05     | 12/05/1994  | 1.63                   | 21           | 1.182        | 0.16         | 3.5            |
| 21FLSJWMTR11     | 12/05/1994  | 1                      | 21.4         | 3.001        | 0.066        | 1              |
| 21FLVEMDTR04     | 01/09/1995  | 1                      | 10           | 2.404        | 0.035        | 3              |
| 21FLVEMDTR03     | 01/09/1995  | 1                      | 13           | 1.946        | 0.05         | 4.3            |
| 21FLVEMDTR05     | 01/09/1995  | 1                      | 11           | 1.152        | 0.02         | 0.4            |
| 21FLA 27010579   | 01/31/1995  |                        | 11           | 1.87         | 0.039        |                |
| 21FLVEMDTR03     | 02/06/1995  | 1                      | 11           | 1.398        | 0.07         | 4.7            |
| 21FLVEMDTR04     | 02/06/1995  | 1                      | 9.5          | 1.45         | 0.085        | 6.95           |
| 21FLVEMDTR05     | 02/06/1995  | 5.21                   | 9            | 1.102        | 0.03         | 2              |
| 21FLSJWMTR11     | 02/20/1995  | 6.237                  | 16.9         | 1.55         | 0.139        | 55             |
| 21FLVEMDTR04     | 03/06/1995  | 2.35                   | 18           | 1.6005       | 0.115        | 48.2           |
| 21FLVEMDTR05     | 03/06/1995  | 8.06                   | 18           | 1.266        | 0.09         | 8              |
| 21FLVEMDTR03     | 03/06/1995  | 15.07                  | 18           | 1.204        | 0.07         | 6              |
| 21FLVEMDTR04     | 04/03/1995  | 1                      | 15           | 1.244        | 0.06         | 2.9            |
| 21FLVEMDTR05     | 04/03/1995  | 3                      | 13           | 1.193        | 0.09         | 4.21           |
| 21FLVEMDTR03     | 04/03/1995  | 22.02                  | 21           | 1.117        | 0.07         | 4.75           |
| 21FLSJWMTR11     | 04/24/1995  | 1.871                  | 24.6         | 0.868        | 0.038        | 6              |
| 21FLVEMDTR04     | 05/01/1995  | 1.925                  | 22           | 1.1115       | 0.035        | 3.9            |
| 21FLVEMDTR03     | 05/01/1995  | 13.73                  | 26           | 1.012        | 0.07         | 2.5            |
| 21FLVEMDTR04     | 06/05/1995  | 4.2                    | 25           | 1.141        | 0.015        | 15.75          |
| 21FLVEMDTR03     | 06/05/1995  | 6.71                   | 29           | 1.183        | 0.14         | 8.5            |
| 21FLSJWM27010579 | 06/05/1995  | 1                      | 25.7         | 0.951        | 0.093        | 38             |

| Station          | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLVEMDTR03     | 07/10/1995  | 4.87                   | 31           | 0.559        | 0.12         | 2              |
| 21FLVEMDTR04     | 08/07/1995  | 1                      | 25           | 1.29         | 0.04         | 1.54           |
| 21FLVEMDTR05     | 08/07/1995  | 1                      | 25           | 2.102        | 0.18         | 2              |
| 21FLVEMDTR03     | 08/07/1995  | 1.34                   | 27           |              |              | 0.2            |
| 21FLVEMDVC-077   | 08/07/1995  | 1.34                   | 27           | 1.72         | 0.04         | 0.2            |
| 21FLSJWM27010579 | 08/08/1995  | 1                      | 25.9         | 1.067        | 0.067        | 4              |
| 21FLVEMDTR04     | 09/05/1995  | 1                      | 25.6         | 2.1215       | 0.1          | 1              |
| 21FLVEMDTR03     | 09/05/1995  | 1                      | 25.5         | 1.502        | 0.11         | 2.67           |
| 21FLVEMDTR05     | 09/05/1995  | 1                      | 25.9         | 1.862        | 0.1          | 1              |
| 21FLVEMDTR04     | 10/02/1995  |                        | 25           | 1.9935       | 0.05         | 2.65           |
| 21FLVEMDVC-077   | 10/02/1995  |                        | 26           |              |              | 2              |
| 21FLVEMDTR03     | 10/02/1995  |                        | 26           |              |              | 2              |
| 21FLVEMDTR05     | 10/02/1995  |                        | 26           | 1.863        | 0.1          | 2.7            |
| 21FLSJWM27010579 | 10/10/1995  | 2.35                   | 26           | 1.892        | 0.058        | 2              |
| 21FLVEMDTR04     | 11/06/1995  | 1                      | 19           | 1.974        | 0.03         | 2.2            |
| 21FLVEMDTR05     | 11/06/1995  | 3.1                    | 19           | 1.524        | 0.07         | 4.5            |
| 21FLVEMDTR03     | 11/06/1995  | 1                      | 20           | 1.644        | 0.03         | 1.33           |
| 21FLSJWM27010579 | 11/07/1995  | 1                      | 20.7         | 2.472        | 0.033        | 2              |
| 21FLVEMDTR04     | 12/04/1995  | 1                      | 17           | 1.327        | 0.05         | 4.8            |
| 21FLVEMDTR03     | 12/04/1995  | 1                      | 17           | 1.23         | 0.06         | 4              |
| 21FLVEMDTR04     | 01/08/1996  | 1                      | 9            | 1.298        | 0.04         | 2.75           |
| 21FLVEMDTR03     | 01/08/1996  | 1                      | 9            | 1.264        | 0.04         | 4.25           |
| 21FLVEMDTR05     | 01/08/1996  | 1.05                   | 10           | 1.193        | 0.04         | 1              |
| 21FLSJWM27010579 | 02/07/1996  | 5.34                   | 9.8          | 0.8545       | 0.014        | 5              |
| 21FLVEMDTR03     | 02/12/1996  | 1                      | 16           | 1.207        | 0.01         | 1.3            |
| 21FLVEMDTR04     | 02/12/1996  | 1                      | 13           | 1.348        | 0.01         | 2.9            |
| 21FLVEMDTR03     | 03/04/1996  | 1                      | 14           | 0.823        | 0.03         | 2.8            |
| 21FLVEMDTR04     | 03/04/1996  | 1                      | 13           | 0.918        | 0.02         | 3.8            |
| 21FLVEMDTR05     | 03/04/1996  | 1.71                   | 13           | 1.072        | 0.06         | 3.8            |
| 21FLVEMDTR04     | 04/01/1996  | 1.05                   | 19           | 1.106        | 0.04         | 2.4            |
| 21FLVEMDTR05     | 04/01/1996  | 1                      | 20           | 1.134        | 0.06         | 1.4            |
| 21FLVEMDTR03     | 04/01/1996  | 1.05                   | 19           | 0.939        | 0.03         | 2.6            |
| 21FLSJWM27010579 | 04/09/1996  | 1                      | 16.7         | 1.176        | 0.04         | 5              |
| 21FLVEMDTR04     | 05/06/1996  | 1                      | 22           | 1.246        | 0.03         | 3              |
| 21FLVEMDTR03     | 05/06/1996  | 4.7                    | 25           | 1.083        | 0.03         | 3.8            |
| 21FLVEMDTR04     | 06/03/1996  | 1.12                   | 21           | 0.701        | 0.01         | 3              |
| 21FLVEMDTR03     | 06/03/1996  | 12.99                  | 24           | 0.946        | 0.02         | 3.7            |
| 21FLSJWM27010579 | 06/25/1996  | 1.835                  | 26.8         | 0.9555       | 0.035        | 5.5            |
| 21FLVEMDTR03     | 07/08/1996  | 1                      | 24           | 0.874        | 0.02         | 2.2            |
| 21FLVEMDTR05     | 07/08/1996  | 1                      | 24           | 1.188        | 0.07         | 1.8            |
| 21FLVEMDTR04     | 07/08/1996  | 1                      | 24           | 0.916        | 0.02         | 1.2            |
| 21FLVEMDTR04     | 08/05/1996  | 1                      | 25           | 0.621        | 0.01         | 3              |
| 21FLVEMDTR03     | 08/05/1996  | 6.35                   | 29           | 0.935        | 0.03         | 5.2            |

| Station          | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLSJWM27010579 | 08/07/1996  | 1                      | 27.2         | 0.722        | 0.038        | 5              |
| 21FLVEMDTR03     | 09/03/1996  | 15.35                  | 24           | 0.98         | 0.04         | 13             |
| 21FLA 27010579   | 09/09/1996  |                        | 24.09        | 0.678        | 0.043        |                |
| 21FLVEMDTR05     | 10/07/1996  | 1                      | 22           | 0.972        | 0.02         | 0.5            |
| 21FLVEMDTR04     | 10/07/1996  | 1.31                   | 23           | 0.854        | 0.02         | 3              |
| 21FLSJWM27010579 | 10/14/1996  | 1.2                    |              | 1.747        | 0.049        | 0              |
| 21FLVEMDTR03     | 11/04/1996  | 1                      | 20           | 1.189        | 0.03         | 4              |
| 21FLVEMDTR04     | 11/04/1996  | 1                      | 18           | 1.456        | 0.02         | 1.8            |
| 21FLVEMDTR04     | 12/02/1996  | 1                      | 17           | 0.734        | 0.03         | 3              |
| 21FLVEMDTR03     | 12/02/1996  | 1                      | 18           | 0.78         | 0.05         | 5              |
| 21FLSJWM27010579 | 12/18/1996  | 1                      | 16.1         | 0.473        | 0.025        | 18             |
| 21FLVEMDTR03     | 01/06/1997  | 1                      | 19           | 0.581        | 0.08         | 2.5            |
| 21FLVEMDTR03     | 02/03/1997  | 5.07                   | 17           | 0.668        | 0.02         | 3              |
| 21FLSJWM27010579 | 02/04/1997  |                        | 14.6         | 0.541        | 0.024        | 0              |
| 21FLVEMDTR03     | 03/03/1997  | 8.24                   | 22           | 0.58         | 0.12         | 6              |
| 21FLSJWM27010579 | 04/28/1997  | 1                      | 22           | 0.477        | 0.027        | 3              |
| 21FLVEMDTR03     | 05/05/1997  | 2.72                   | 22           | 0.588        | 0.01         | 2              |
| 21FLVEMDTR03     | 06/02/1997  | 1.18                   | 22           | 0.793        | 0.04         | 3.2            |
| 21FLSJWM27010579 | 06/02/1997  | 2.2                    | 24.1         | 0.66         | 0.059        | 1              |
| 21FLVEMDTR04     | 07/07/1997  | 1                      | 24           | 0.773        | 0.03         | 3              |
| 21FLVEMDTR05     | 08/04/1997  | 1.03                   | 25           | 1.898        | 0.06         | 0.4            |
| 21FLVEMDTR04     | 08/04/1997  | 1.22                   | 25           | 1.432        | 0.03         | 2.2            |
| 21FLSJWM27010579 | 08/13/1997  | 3.1                    | 27.3         | 1.139        | 0.046        | 0              |
| 21FLVEMDTR05     | 09/08/1997  | 1                      | 22           | 1.204        | 0.09         | 0.8            |
| 21FLVEMDTR04     | 09/08/1997  | 1                      | 22           | 1.255        | 0.03         | 1.6            |
| 21FLSJWM27010579 | 09/09/1997  | 2                      | 23.5         | 1.543        | 0.04         | 5              |
| 21FLVEMDTR04     | 10/06/1997  | 1                      | 22           | 1.464        | 0.01         | 1.8            |
| 21FLSJWM27010579 | 10/06/1997  | 1                      | 23.1         | 1.4435       | 0.0325       | 5              |
| 21FLVEMDTR04     | 11/03/1997  | 1                      | 18           | 0.874        | 0.03         | 1.6            |
| 21FLVEMDTR05     | 11/03/1997  | 1.29                   | 19           | 0.731        | 0.15         | 3.2            |
| 21FLVEMDTR03     | 12/01/1997  | 1                      | 18.7         | 1.093        | 0.03         | 1.6            |
| 21FLVEMDTR04     | 12/01/1997  | 1                      | 16.9         | 1.091        | 0.03         | 0.8            |
| 21FLSJWM27010579 | 12/01/1997  | 1                      | 17.5         | 1.173        | 0.041        | 16             |
| 21FLVEMDTR03     | 01/05/1998  | 1                      | 16           | 1.152        | 0.02         | 1.2            |
| 21FLVEMDTR04     | 01/05/1998  | 1                      | 16           | 1.091        | 0.03         | 1.4            |
| 21FLVEMDTR05     | 01/05/1998  | 1                      | 17           | 1.347        | 0.06         | 0.4            |
| 21FLSJWM27010579 | 01/12/1998  | 1                      | 13.8         | 1.259        | 0.034        | 5              |
| 21FLVEMDTR03     | 02/02/1998  | 1                      | 14           |              | 0.01         | 2.6            |
| 21FLVEMDTR04     | 02/02/1998  | 1                      | 15           | 1.068        | 0.04         | 2.4            |
| 21FLVEMDTR05     | 02/02/1998  | 1                      | 14           | 1.03         | 0.04         | 1.2            |
| 21FLVEMDTR03     | 03/02/1998  | 1                      | 16.54        | 0.975        | 0.03         | 2.2            |
| 21FLVEMDTR04     | 03/02/1998  | 1                      | 16.43        | 1.138        | 0.03         | 1.8            |
| 21FLVEMDTR05     | 03/02/1998  | 1                      | 17.47        | 1.198        | 0.1          | 1.4            |

| Station          | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLSJWM27010579 | 03/03/1998  | 1                      | 14.8         | 1.244        | 0.0415       | 5              |
| 21FLVEMDTR04     | 04/06/1998  | 1                      | 17.87        | 1.183        | 0.04         | 1.8            |
| 21FLVEMDTR03     | 04/06/1998  | 1                      | 20.67        | 1.103        | 0.04         | 3.4            |
| 21FLVEMDTR05     | 04/06/1998  | 1                      | 17.59        | 1.517        | 0.1          | 1.9            |
| 21FLSJWM27010579 | 04/20/1998  | 1                      | 22.85        | 1.164        | 0.048        | 6              |
| 21FLVEMDTR04     | 05/04/1998  | 1.43                   | 20.2         | 0.752        | 0.02         | 2.3            |
| 21FLVEMDTR03     | 05/04/1998  | 1                      | 23.42        | 0.835        | 0.02         | 1.9            |
| 21FLVEMDTR03     | 06/01/1998  | 13.07                  | 29.74        | 0.757        | 0.05         | 4.5            |
| 21FLSJWM27010579 | 06/10/1998  | 5.605                  | 25.5         | 0.914        | 0.062        | 5              |
| 21FLVEMDTR03     | 07/06/1998  | 8.65                   | 30.61        | 0.849        | 0.17         | 4.9            |
| 21FLVEMDTR04     | 08/03/1998  | 1                      | 25.64        | 1.71         | 0.02         | 2.3            |
| 21FLVEMDTR03     | 08/03/1998  | 2.86                   | 26.84        | 1.561        | 0.03         | 1.9            |
| 21FLA 27010579   | 08/31/1998  |                        | 25.35        | 1.377        | 0.044        |                |
| 21FLVEMDTR04     | 09/08/1998  | 1                      | 25.46        | 1.1234       | 0.07         | 1.9            |
| 21FLVEMDTR03     | 09/08/1998  | 1                      | 26.54        | 0.994        | 0.09         | 1.6            |
| 21FLVEMDTR03     | 10/05/1998  | 1                      | 25.29        | 1.572        | 0.02         | 1.6            |
| 21FLVEMDTR04     | 10/05/1998  | 1                      | 25.36        | 1.706        | 0.02         | 1              |
| 21FLSJWM27010579 | 10/14/1998  | 1                      | 23.6         | 1.846        | 0.041        | 4              |
| 21FLGW 3516      | 10/14/1998  | 1                      | 23.6         | 1.846        | 0.041        | 4              |
| 21FLVEMDTR04     | 11/02/1998  | 1                      | 20.18        |              | 0.05         | 1.8            |
| 21FLVEMDTR03     | 11/02/1998  | 1.55                   | 21.32        | 1.368        | 0.05         | 2.2            |
| 21FLSJWM27010579 | 11/19/1998  |                        | 22.5         | 1.134        | 0.038        | 4              |
| 21FLGW 3516      | 11/19/1998  | 1                      | 22.5         | 1.134        | 0.038        | 4              |
| 21FLVEMDTR04     | 12/02/1998  | 1                      | 19.75        | 0.821        | 0.03         | 1.9            |
| 21FLVEMDTR03     | 12/02/1998  | 23.94                  | 19.72        | 0.804        | 0.04         | 3              |
| 21FLGW 3516      | 12/21/1998  | 1                      | 18.6         | 0.624        | 0.03         | 4              |
| 21FLSJWM27010579 | 12/21/1998  | 1                      | 18.6         | 0.624        | 0.03         | 4              |
| 21FLVEMDVC-078   | 01/04/1999  | 1                      | 12.005       | 0.147        | 0.034        | 0.8            |
| 21FLVEMDVC-077   | 01/04/1999  | 1                      | 15.005       | 0.517        | 0.05         | 1.3            |
| 21FLGW 3516      | 01/05/1999  | 1                      | 9.4          | 0.502        | 0.023        | 4              |
| 21FLVEMDVC-077   | 02/01/1999  | 1.64                   | 18.94        | 0.686        | 0.04         | 1              |
| 21FLVEMDVC-078   | 02/01/1999  | 1.45                   |              | 0.64         | 0.03         | 1              |
| 21FLGW 3516      | 02/04/1999  | 3                      | 20.5         | 0.639        | 0.041        | 5              |
| 21FLVEMDVC-078   | 03/01/1999  | 1.47                   | 14.26        | 0.836        | 0.03         | 2              |
| 21FLVEMDVC-077   | 03/01/1999  | 1.77                   | 16.38        | 0.784        | 0.05         | 2              |
| 21FLVEMDVC-079   | 03/01/1999  | 8.9                    |              | 1.376        | 0.07         | 4.4            |
| 21FLGW 3516      | 03/15/1999  | 1                      | 16.3         | 0.706        | 0.04         | 7              |
| 21FLVEMDVC-077   | 04/05/1999  | 12.44                  | 25.36        | 0.613        | 0.05         | 2.6            |
| 21FLGW 3516      | 04/15/1999  | 1                      | 21.9         | 0.687        | 0.042        | 11             |
| 21FLVEMDVC-077   | 05/03/1999  | 4.95                   | 18.19        | 0.734        | 0.1          | 8.3            |
| 21FLGW 3516      | 05/06/1999  | 1                      | 20.5         | 0.668        | 0.047        | 5              |
| 21FLGW 3516      | 06/02/1999  | 1                      | 23.5         | 0.721        | 0.038        | 10             |
| 21FLVEMDVC-077   | 06/07/1999  | 15.6                   | 28.57        | 0.787        | 0.12         | 4.1            |

| Station          | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLVEMDVC-078   | 06/07/1999  |                        |              |              |              |                |
| 21FLGW 3516      | 07/01/1999  | 2.67                   | 21.1         | 0.737        | 0.049        | 4              |
| 21FLVEMDVC-078   | 07/06/1999  | 1.1                    | 25.33        | 0.947        | 0.03         | 1.9            |
| 21FLVEMDVC-077   | 07/06/1999  | 3.2                    | 25.76        | 0.908        | 0.03         | 1.4            |
| 21FLVEMDVC-079   | 08/02/1999  |                        | 28.16        |              |              |                |
| 21FLVEMDVC-078   | 08/02/1999  | 1                      | 27.14        | 0.702        | 0.04         | 1.8            |
| 21FLVEMDVC-077   | 08/02/1999  | 11.72                  | 31           | 0.795        | 0.09         | 1.6            |
| 21FLGW 3516      | 08/04/1999  | 1                      | 25.7         | 0.619        | 0.036        | 6              |
| 21FLVEMDVC-078   | 09/07/1999  | 1.3                    | 24.49        | 0.766        | 0.04         | 1.2            |
| 21FLGW 3516      | 09/07/1999  | 1.28                   | 24.3         | 0.66         | 0.032        | 5.5            |
| 21FLVEMDVC-077   | 09/07/1999  | 25.2                   | 29.48        | 1.328        | 0.12         | 8.3            |
| 21FLVEMDVC-079   | 09/07/1999  |                        |              |              |              |                |
| 21FLVEMDVC-078   | 10/04/1999  | 1.2                    | 24.86        | 1.029        | 0.04         | 1.6            |
| 21FLVEMDVC-077   | 10/04/1999  | 1                      | 25.07        | 1.624        | 0.04         | 3.2            |
| 21FLVEMDVC-079   | 10/04/1999  |                        | 24.82        |              |              |                |
| 21FLGW 3516      | 10/20/1999  | 1.06                   | 22.9         | 1.509        | 0.056        | 5              |
| 21FLVEMDVC-077   | 11/01/1999  | 1                      | 21.9         | 1.792        | 0.06         | 1              |
| 21FLVEMDVC-078   | 11/01/1999  | 1                      | 22.05        | 1.887        | 0.06         | 0.7            |
| 21FLVEMDVC-079   | 11/01/1999  | 2.6                    | 21.82        | 2.24         | 0.14         | 1              |
| 21FLGW 3516      | 11/15/1999  | 1                      | 18.1         | 1.318        | 0.028        | 5              |
| 21FLVEMDVC-078   | 12/06/1999  | 1                      | 17.12        | 1.285        | 0.03         | 2              |
| 21FLVEMDVC-079   | 12/06/1999  |                        | 16.46        |              |              |                |
| 21FLVEMDVC-077   | 12/06/1999  | 1                      | 17.16        | 1.197        | 0.03         | 1.2            |
| 21FLGW 3516      | 12/16/1999  | 1.12                   | 16.3         | 1.011        | 0.033        | 4              |
| 21FLVEMDVC-078   | 01/03/2000  | 1                      | 14.4         | 1.105        | 0.01         | 3.2            |
| 21FLVEMDVC-077   | 01/03/2000  | 1                      | 15.06        | 0.4975       | 0.465        | 0.7            |
| 21FLCEN 27010579 | 03/06/2000  |                        |              | 0.742        |              |                |
| 21FLCEN 27010596 | 03/06/2000  |                        |              | 1.404        |              |                |
| 21FLVEMDVC-077   | 04/03/2000  | 1.14                   | 21.18        | 0.459        | 0.45         | 1.3            |
| 21FLVEMDVC-079   | 04/03/2000  | 1.4                    | 20.93        | 1.625        | 0.12         | 1.8            |
| 21FLVEMDVC-078   | 04/03/2000  | 2.14                   | 20.65        | 0.872        | 0.09         | 1.7            |
| 21FLVEMDVC-078   | 07/10/2000  | 1                      | 24.4         | 0.714        | 0.02         | 2.6            |
| 21FLVEMDVC-077   | 07/10/2000  | 13.05                  | 31.22        | 0.5075       | 0.495        | 4.4            |
| 21FLVEMDVC-077   | 10/02/2000  | 1                      | 23.32        | 0.5155       | 0.495        | 1.3            |
| 21FLVEMDVC-079   | 10/02/2000  | 1                      | 22.93        | 1.731        | 0.06         | 0.8            |
| 21FLVEMDVC-078   | 10/02/2000  | 1.16                   | 22.93        | 1.054        | 0.04         | 1              |
| 21FLGW 3516      | 01/10/2001  | 1                      | 7.3          | 0.429        | 0.037        | 4              |
| 21FLVEMDVC-078   | 02/05/2001  | 1                      | 13.29        | 0.485        | 0.02         | 1              |
| 21FLVEMDVC-077   | 02/05/2001  | 2.24                   | 17.39        | 0.2935       | 0.28         | 2.8            |
| 21FLGW 3516      | 02/06/2001  | 1                      | 11.2         | 0.539        | 0.024        | 4              |
| 21FLGW 3516      | 03/08/2001  | 1                      | 12.3         | 0.563        | 0.033        | 4              |
| 21FLGW 3516      | 04/03/2001  | 1                      | 15.9         | 0.916        | 0.052        | 4              |
| 21FLGW 3516      | 05/02/2001  | 1                      | 19.8         | 0.803        | 0.049        | 4              |

| Station          | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLVEMDVC-078   | 05/07/2001  | 1                      | 19.52        | 0.556        | 0.02         | 0.8            |
| 21FLVEMDVC-077   | 05/07/2001  | 14.39                  | 23.59        | 0.4285       | 0.415        | 8.4            |
| 21FLGW 3516      | 06/06/2001  | 1                      | 24.9         | 0.647        | 0.048        | 4              |
| 21FLGW 3516      | 07/09/2001  | 1                      | 25.4         | 0.694        | 0.052        | 4              |
| 21FLVEMDVC-079   | 08/06/2001  | 1.65                   | 24.6         | 1.911        | 0.07         | 2.5            |
| 21FLVEMDVC-077   | 08/06/2001  | 1.2                    | 24.61        | 0.5475       | 0.505        | 7.5            |
| 21FLVEMDVC-078   | 08/06/2001  | 1.53                   | 24.67        | 1.262        | 0.03         | 2.5            |
| 21FLGW 3516      | 08/09/2001  | 1.2                    | 26           | 1.359        | 0.097        | 4              |
| 21FLGW 3516      | 09/05/2001  | 1                      | 26.1         | 1.05         | 0.054        | 7              |
| 21FLGW 3516      | 10/02/2001  | 1                      | 19.8         | 1.704        | 0.069        | 4              |
| 21FLVEMDVC-077   | 11/05/2001  | 1                      | 22.08        | 0.7214       | 0.64         | 3.5            |
| 21FLVEMDVC-078   | 11/05/2001  | 1                      | 21.09        | 1.534        | 0.01         | 2.2            |
| 21FLGW 3516      | 11/07/2001  | 1                      | 18.8         | 1.377        | 0.038        | 4              |
| 21FLGW 3516      | 12/04/2001  | 1                      | 19.8         | 1.424        | 0.052        | 4              |
| 21FLGW 3516      | 01/02/2002  | 1.7                    | 12.4         | 1.188        | 0.046        | 4              |
| 21FLGW 3516      | 02/07/2002  | 1                      | 17.4         | 1.058        | 0.045        | 5              |
| 21FLVEMDVC-079   | 03/04/2002  | 3.2                    | 15.8         | 1.0486       | 0.04         | 1.2            |
| 21FLVEMDVC-078   | 03/04/2002  | 1.33                   | 15.5         | 0.7959       | 0.05         | 7.2            |
| 21FLVEMDVC-077   | 03/04/2002  | 1                      | 16.43        | 0.7782       | 0.06         | 11             |
| 21FLGW 3516      | 03/07/2002  | 1                      | 14.3         | 0.909        | 0.035        | 4              |
| 21FLGW 3516      | 04/01/2002  | 1                      | 21.4         | 0.899        | 0.054        | 6              |
| 21FLGW 3516      | 05/02/2002  | 1                      | 22.8         | 0.73         | 0.045        | 4              |
| 21FLVEMDVC-078   | 06/03/2002  | 1.27                   | 24.49        | 0.6775       | 0.02         | 3.8            |
| 21FLVEMDVC-077   | 06/03/2002  | 16.78                  | 30           | 0.7533       | 0.08         | 5.6            |
| 21FLGW 3516      | 06/04/2002  | 1                      | 25.5         | 0.648        | 0.05         | 4              |
| 21FLGW 3516      | 07/08/2002  | 1                      | 25.4         | 1.425        | 0.093        | 4              |
| 21FLGW 3516      | 08/06/2002  | 1.7                    | 26.1         | 1.43         | 0.069        | 4              |
| 21FLGW 3516      | 09/05/2002  | 1                      | 25.5         | 1.556        | 0.05         | 4              |
| 21FLVEMDVC-078   | 09/09/2002  |                        | 25.45        | 1.366        | 0.09         | 1.4            |
| 21FLVEMDVC-077   | 09/09/2002  | 1.59                   | 25.83        | 1.367        | 0.07         | 2.4            |
| 21FLGW 3516      | 10/03/2002  | 1                      | 24.5         | 1.432        | 0.047        | 4              |
| 21FLGW 3516      | 11/14/2002  | 1                      | 17.4         | 0.852        | 0.027        | 4              |
| 21FLVEMDVC-078   | 12/02/2002  |                        | 11.71        | 1.331        |              | 1.4            |
| 21FLVEMDVC-077   | 12/02/2002  | 10.77                  | 17.15        | 1.337        |              | 2.4            |
| 21FLGW 3516      | 12/03/2002  | 1                      | 12.2         | 0.669        | 0.019        | 4              |
| 21FLGW 3516      | 01/02/2003  | 1                      | 15.7         | 1.019        | 0.1          | 4              |
| 21FLVEMDVC-078   | 02/03/2003  | 1                      | 12.38        | 0.932        | 0.01         | 1.3            |
| 21FLGW 3516      | 02/03/2003  | 1                      | 14.8         | 1.028        | 0.031        | 4              |
| 21FLVEMDVC-079   | 02/03/2003  |                        | 11.47        |              |              |                |
| 21FLVEMDVC-077   | 02/03/2003  | 1.31                   | 13.08        | 0.976        | 0.21         | 47             |
| 21FLWPB 20010739 | 03/12/2003  | 1                      | 19.7         | 1.051        | 0.063        |                |
| 21FLWPB 20010740 | 03/12/2003  | 1                      | 19.7         | 0.986        | 0.06         |                |
| 21FLGW 3516      | 03/19/2003  | 1                      | 21.85        | 1.321        | 0.057        | 4              |

| 21FLGW 3516         04/03/2003         1         18.52         1.312         0.049         4           21FLVEMDVC-078         05/05/2003         1         23.57         1.101         0.09         3.5           21FLWB3516         05/07/2003         1         24.5         1.05         0.066         4           21FLWPB 20010739         06/04/2003         1.36         23.7         0.79         0.044           21FLWB 20010740         06/04/2003         1         25.48         0.804         0.053         4           21FLWB 3516         07/02/2003         1         25.35         1         0.044         4           21FLVEMDVC-077         08/04/2003         1         25.56         1.125         0.03         1.8           21FLVEMDVC-078         08/04/2003         1         25.56         1.141         0.03         0           21FLVEMDVC-078         08/06/2003         1         25.56         1.014         0.05         2           21FLVEMDVC-077         08/04/2003         1.96         25.7         1.178         0.066           21FLWPB 20010739         08/13/2003         1.96         25.7         1.178         0.055         4           21FLWPB 20010740                                                                                                                            | Station                    | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C)  | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|------------------------|---------------|--------------|--------------|----------------|
| 21FLVEMDVC-078         05/05/2003         1         23.57         1.101         0.09         3.5           21FLVEMDVC-077         05/05/2003         7.07         26.51         1.071         0.09         5.5           21FLGW 3516         05/07/2003         1         24.5         1.05         0.066         4           21FLWPB 20010739         06/04/2003         5.94         24.9         0.85         0.052           21FLGW 3516         06/10/2003         1         25.3         1         0.044         4           21FLVEMDVC-078         08/04/2003         1         25.56         1.255         0.03         1.8           21FLVEMDVC-078         08/04/2003         1         25.56         1.255         0.03         1.8           21FLVEMDVC-077         08/04/2003         1         25.56         1.114         0.03         0           21FLVEMDVC-077         08/06/2003         1         25.6         1.001         0.05           21FLWPB 20010740         08/13/2003         1.09         25.6         1.001         0.05           21FLWPB 20010739         08/26/2003         1         27         0.969         0.48           21FLWPB 20010740         08/26/2003                                                                                                                            | 21FLGW 3516                | 04/03/2003  | 1                      | 18.52         | 1.312        | 0.049        | 4              |
| 21FLVEMDVC-077         05/05/2003         7.07         26.51         1.071         0.09         5.5           21FLGW 3516         05/07/2003         1         24.5         1.05         0.064           21FLWPB 20010739         06/04/2003         1.36         23.7         0.79         0.044           21FLWPB 20010740         06/04/2003         1.25.48         0.804         0.053         4           21FLWB 20010740         06/04/2003         1         25.48         0.804         0.053         4           21FLVEMDVC-079         08/04/2003         1         25.56         1.255         0.03         1.8           21FLVEMDVC-077         08/04/2003         1         25.56         1.215         0.053         2           21FLWPB 20010740         08/13/2003         1.09         25.6         1.011         0.05         2           21FLWPB 20010739         08/26/2003         1         27.6         1.011         0.056         2           21FLWPB 20010739         08/26/2003         1         26.4         1.259         0.055         4           21FLWPB 20010739         09/15/2003         1         26.4         1.259         0.051         2           21FLWPB 20010739 <td>21FLVEMDVC-078</td> <td>05/05/2003</td> <td>1</td> <td>23.57</td> <td>1.101</td> <td>0.09</td> <td>3.5</td>  | 21FLVEMDVC-078             | 05/05/2003  | 1                      | 23.57         | 1.101        | 0.09         | 3.5            |
| 21FLGW 3516         05/07/2003         1         24.5         1.05         0.066         4           21FLWPB 20010739         06/04/2003         1.36         23.7         0.79         0.044           21FLWPB 20010740         06/04/2003         5.94         24.9         0.85         0.052           21FLGW 3516         07/02/2003         1         25.48         0.804         0.053         4           21FLVEMDVC-079         08/04/2003         1         25.56         1.255         0.03         1.8           21FLVEMDVC-077         08/04/2003         1         25.56         1.215         0.053         -           21FLVEMDVC-077         08/04/2003         1         25.08         1.215         0.053         -           21FLWPB 20010740         08/13/2003         1.96         25.7         1.178         0.066         -           21FLWPB 20010740         08/26/2003         1         27         0.969         0.048         -           21FLWPB 20010740         08/26/2003         1         25.7         1.178         0.066         -           21FLWPB 20010740         09/15/2003         1         25.3         1.031         0.042         -           21FLWPB 200                                                                                                                       | 21FLVEMDVC-077             | 05/05/2003  | 7.07                   | 26.51         | 1.071        | 0.09         | 5.5            |
| 21FLWPB 20010739         06/04/2003         1.36         23.7         0.79         0.044           21FLWPB 20010740         06/04/2003         5.94         24.9         0.85         0.052           21FLGW 3516         06/10/2003         1         25.3         1         0.044         4           21FLGW 3516         07/02/2003         1         25.56         1.255         0.03         1.88           21FLVEMDVC-077         08/04/2003         1         25.56         1.114         0.03         0           21FLCVEMDVC-077         08/04/2003         1         25.65         1.114         0.03         0           21FLCPN 27010579         08/06/2003         25.08         1.215         0.053         2           21FLWPB 20010740         08/13/2003         1.09         25.6         1.001         0.05           21FLWPB 20010739         08/13/2003         1         27         0.969         0.048           21FLWPB 20010739         09/15/2003         1         25.4         1.259         0.055         4           21FLWPB 20010739         09/15/2003         1         22.8         0.665         0.05         4           21FLWPB 20010740         09/15/2003         1                                                                                                                      | 21FLGW 3516                | 05/07/2003  | 1                      | 24.5          | 1.05         | 0.066        | 4              |
| 21FLWPB 20010740         06/04/2003         5.94         24.9         0.85         0.052           21FLGW 3516         06/10/2003         1         25.48         0.804         0.053         4           21FLVEMDVC-079         08/04/2003         1         25.3         1         0.044         4           21FLVEMDVC-078         08/04/2003         1         25.56         1.255         0.03         1.88           21FLVEMDVC-077         08/04/2003         1         25.66         1.114         0.03         0           21FLVEMDVC-077         08/04/2003         1         25.66         1.001         0.05           21FLWPB 20010739         08/05/2003         1.09         25.6         1.001         0.05           21FLWPB 20010739         08/13/2003         1.96         25.7         1.178         0.066           21FLWPB 20010740         08/26/2003         1         25.4         1.055         4           21FLWPB 20010740         09/15/2003         1         22.4         0.655         4           21FLWPB 20010740         09/15/2003         1         23.1         0.031         2.317         0.032           21FLWPB 20010740         09/16/2003         1         23.01 <td>21FLWPB 20010739</td> <td>06/04/2003</td> <td>1.36</td> <td>23.7</td> <td>0.79</td> <td>0.044</td> <td></td> | 21FLWPB 20010739           | 06/04/2003  | 1.36                   | 23.7          | 0.79         | 0.044        |                |
| 21FLGW 3516         06/10/2003         1         25.48         0.804         0.053         4           21FLCW 3516         07/02/2003         1         25.3         1         0.044         4           21FLVEMDVC-079         08/04/2003         1.08         25.47         1.477         0.04           21FLVEMDVC-078         08/04/2003         1         25.56         1.255         0.03         1.8           21FLVEMDVC-077         08/04/2003         1         25.56         1.014         0.03         0           21FLWBD 20010740         08/05/2003         1         25.7         1.178         0.066         21           21FLWPB 20010739         08/05/2003         1.99         25.7         1.178         0.066         21           21FLWPB 20010739         08/26/2003         18.55         26.12         1         0.056         21           21FLWPB 20010739         09/15/2003         1         22.8         0.655         0.05         4           21FLWPB 20010740         09/15/2003         1         23.17         0.032         21           21FLWPB 20010740         10/09/2003         1         23.17         0.032         21           21FLWPB 20010740         1                                                                                                                       | 21FLWPB 20010740           | 06/04/2003  | 5.94                   | 24.9          | 0.85         | 0.052        |                |
| 21FLGW 3516         07/02/2003         1         25.3         1         0.044         4           21FLVEMDVC-079         08/04/2003         1.08         25.47         1.477         0.04           21FLVEMDVC-078         08/04/2003         1         25.56         1.255         0.03         1.8           21FLCW 3516         08/05/2003         1         25.66         1.114         0.03         0           21FLCW 3516         08/05/2003         1         25.7         1.215         0.053           21FLWPB 20010740         08/13/2003         1.96         25.7         1.178         0.066           21FLWPB 20010739         08/26/2003         1         27         0.969         0.048           21FLWPB 20010740         08/26/2003         1         26.4         1.259         0.055         4           21FLWPB 20010740         09/15/2003         1         25.3         1.031         0.042         1           21FLWPB 20010740         09/15/2003         1         23.1         0.051         1         21.8         0.665         0.05         4           21FLWPB 20010740         09/15/2003         1         23.10         0.032         1         21.6         1.03/2003                                                                                                                     | 21FLGW 3516                | 06/10/2003  | 1                      | 25.48         | 0.804        | 0.053        | 4              |
| 21FLVEMDVC-079         08/04/2003         1.08         25.47         1.477         0.04           21FLVEMDVC-078         08/04/2003         1         25.56         1.255         0.03         1.8           21FLVEMDVC-077         08/04/2003         1         25.56         1.215         0.034         4           21FLGW 3516         08/05/2003         1         25.08         1.215         0.053           21FLWPB 20010740         08/06/2003         1.09         25.6         1.001         0.05           21FLWPB 20010739         08/26/2003         1         27         0.969         0.048           21FLWPB 20010740         08/26/2003         1         25.0         1         0.056           21FLWPB 20010740         08/26/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/15/2003         1         25.3         1.031         0.042           21FLWPB 20010739         09/15/2003         1         23.17         0.032         0.21           21FLWPB 20010740         10/09/2003         1         23.01         0.782         0.028           21FLWPB 20010740         10/09/2003         1         23.01         0.782         0.023 </td <td>21FLGW 3516</td> <td>07/02/2003</td> <td>1</td> <td>25.3</td> <td>1</td> <td>0.044</td> <td>4</td>     | 21FLGW 3516                | 07/02/2003  | 1                      | 25.3          | 1            | 0.044        | 4              |
| 21FLVEMDVC-078         08/04/2003         1         25.56         1.255         0.03         1.8           21FLVEMDVC-077         08/04/2003         1         26.56         1.114         0.03         0           21FLWB 3516         08/05/2003         1         25.2         1.21         0.054         4           21FLWPB 20010740         08/06/2003         1.09         25.6         1.001         0.05           21FLWPB 20010739         08/13/2003         1.96         25.7         1.178         0.066           21FLWPB 20010739         08/26/2003         1         27         0.969         0.048           21FLWPB 20010739         08/26/2003         1         26.4         1.259         0.055         4           21FLWPB 20010739         09/15/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/15/2003         1         23.3         0.655         0.051           21FLWPB 20010740         10/02/2003         1         23.8         0.665         0.05           21FLWBB 20010740         10/09/2003         1         23.01         0.782         0.028           21FLWPB 20010740         10/09/2003         1         23.01                                                                                                                       | 21FLVEMDVC-079             | 08/04/2003  | 1.08                   | 25.47         | 1.477        | 0.04         |                |
| 21FLVEMDVC-077         08/04/2003         1         26.56         1.114         0.03         0           21FLGW 3516         08/05/2003         1         25.2         1.21         0.054         4           21FLCEN 27010579         08/06/2003         25.08         1.215         0.053         1           21FLWPB 20010740         08/13/2003         1.09         25.6         1.001         0.05           21FLWPB 20010739         08/26/2003         1         27         0.969         0.048           21FLWPB 20010739         08/26/2003         1         26.4         1.259         0.055         4           21FLWPB 20010739         09/15/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/15/2003         1         22.3         0.655         0.055           21FLWPB 20010740         09/15/2003         1         23.31         0.042         1           21FLWPB 20010740         10/09/2003         1         23.10         0.782         0.028           21FLWPB 20010740         10/09/2003         1         23.01         0.782         0.033         1.9           21FLVEMDVC-078         11/03/2003         3.51         23.51                                                                                                                       | 21FLVEMDVC-078             | 08/04/2003  | 1                      | 25.56         | 1.255        | 0.03         | 1.8            |
| 21FLGW 3516         08/05/2003         1         25.2         1.21         0.054         4           21FLCEN 27010579         08/06/2003         25.08         1.215         0.053           21FLWPB 20010740         08/13/2003         1.09         25.6         1.001         0.05           21FLWPB 20010739         08/26/2003         1.96         25.7         1.178         0.066           21FLWPB 20010740         08/26/2003         1         27         0.969         0.048           21FLWPB 20010740         08/26/2003         1         25.3         1.031         0.042           21FLWPB 20010739         09/15/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/15/2003         1         22.8         0.665         0.05         4           21FLWPB 20010739         10/09/2003         1         23.17         0.032         1           21FLWPB 20010740         10/09/2003         1         23.01         0.782         0.028           21FLWPB 20010740         10/09/2003         1         23.01         0.782         0.028           21FLWB 20010740         10/09/2003         1         23.01         0.03         1.9                                                                                                                            | 21FLVEMDVC-077             | 08/04/2003  | 1                      | 26.56         | 1.114        | 0.03         | 0              |
| 21FLCEN 27010579         08/06/2003         25.08         1.215         0.053           21FLWPB 20010740         08/13/2003         1.09         25.6         1.001         0.05           21FLWPB 20010739         08/26/2003         1         27         0.969         0.048           21FLWPB 20010740         08/26/2003         1         27         0.969         0.048           21FLWPB 20010740         08/26/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/02/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/15/2003         1         22.8         0.665         0.05         4           21FLWPB 20010740         09/15/2003         1         23.17         0.032         1           21FLWPB 20010740         10/09/2003         1         23.01         0.782         0.028           21FLWBDV                                                                                                             | 21FLGW 3516                | 08/05/2003  | 1                      | 25.2          | 1.21         | 0.054        | 4              |
| 21FLWPB 20010740         08/13/2003         1.09         25.6         1.001         0.05           21FLWPB 20010739         08/13/2003         1.96         25.7         1.178         0.066           21FLWPB 20010740         08/26/2003         1         27         0.969         0.048           21FLWPB 20010740         08/26/2003         18.55         26.12         1         0.056           21FLWPB 20010739         09/15/2003         1         26.4         1.259         0.055         4           21FLWPB 20010739         09/15/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/15/2003         1         22.8         0.665         0.05         4           21FLWPB 20010740         10/09/2003         1         23.17         0.032         1           21FLVEMDVC-078         11/03/2003         3.51         23.51         1.02         0.13         3.4           21FLVEMDVC-079         11/03/2003         1         24.81         1.112         0.049         4           21FLGW 3516         12/04/2003         1         24.81         1.112         0.032         4           21FLVEMDVC-079         03/01/2004         1         11.2                                                                                                              | 21FLCEN 27010579           | 08/06/2003  |                        | 25.08         | 1.215        | 0.053        |                |
| 21FLWPB 20010739         08/13/2003         1.96         25.7         1.178         0.066           21FLWPB 20010739         08/26/2003         1         27         0.969         0.048           21FLWPB 20010740         08/26/2003         18.55         26.12         1         0.056           21FLWB 20010739         09/15/2003         1         26.4         1.259         0.055         4           21FLWPB 20010739         09/15/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/15/2003         16.28         25.2         0.857         0.051           21FLWPB 20010739         10/09/2003         1         23.17         0.032         2           21FLWPB 20010740         10/09/2003         1         23.01         0.782         0.028           21FLVEMDVC-078         11/03/2003         3.51         23.51         1.02         0.13         3.4           21FLVEMDVC-079         11/03/2003         1         24.81         1.112         0.049         4           21FLGW 3516         12/04/2003         1         24.81         1.112         0.032         4           21FLGW 3516         02/10/2004         1         17.26                                                                                                                       | 21FLWPB 20010740           | 08/13/2003  | 1.09                   | 25.6          | 1.001        | 0.05         |                |
| 21FLWPB 20010739         08/26/2003         1         27         0.969         0.048           21FLWPB 20010740         08/26/2003         18.55         26.12         1         0.056           21FLGW 3516         09/02/2003         1         26.4         1.259         0.055         4           21FLWPB 20010739         09/15/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/15/2003         1         22.8         0.665         0.05         4           21FLWB 20010740         09/15/2003         1         23.17         0.032         1           21FLWPB 20010740         10/09/2003         1         23.01         0.782         0.028           21FLVEMDVC-078         11/03/2003         1         23.08         0.03         1.9           21FLVEMDVC-079         11/03/2003         1         23.51         1.02         0.13         3.4           21FLGW 3516         11/04/2003         1         24.81         1.112         0.049         4           21FLGW 3516         02/10/2004         1         17.96         1.02         0.032         4           21FLGW 3516         02/10/2004         1         17.2         0.028<                                                                                                                       | 21FLWPB 20010739           | 08/13/2003  | 1.96                   | 25.7          | 1.178        | 0.066        |                |
| 21FLWPB 20010740         08/26/2003         18.55         26.12         1         0.056           21FLGW 3516         09/02/2003         1         26.4         1.259         0.055         4           21FLWPB 20010739         09/15/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/15/2003         16.28         25.2         0.857         0.051           21FLWPB 20010739         10/02/2003         1         23.17         0.032         1           21FLWPB 20010740         10/09/2003         1         23.01         0.782         0.028           21FLVEMDVC-078         11/03/2003         1         23.08         0.03         1.9           21FLVEMDVC-077         11/03/2003         3.51         23.51         1.02         0.13         3.4           21FLQW 3516         11/04/2003         1         24.81         1.112         0.049         4           21FLGW 3516         01/13/2004         1         17.2         0.022         4           21FLGW 3516         02/10/2004         1         17.12         0.028         4           21FLGW 3516         02/10/2004         1         15.12         0.892         1.5                                                                                                                                | 21FLWPB 20010739           | 08/26/2003  | 1                      | 27            | 0.969        | 0.048        |                |
| 21FLGW 3516         09/02/2003         1         26.4         1.259         0.055         4           21FLWPB 20010739         09/15/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/15/2003         16.28         25.2         0.857         0.051           21FLGW 3516         10/02/2003         1         22.8         0.665         0.05         4           21FLWPB 20010739         10/09/2003         1         23.17         0.032         1           21FLVEMDVC-078         11/03/2003         1         23.08         0.03         1.9           21FLVEMDVC-077         11/03/2003         3.51         23.51         1.02         0.13         3.4           21FLGW 3516         11/04/2003         1         24.81         1.112         0.049         4           21FLGW 3516         11/04/2003         1         24.81         1.02         0.032         4           21FLGW 3516         02/10/2004         1         17.96         1.02         0.032         4           21FLGW 3516         02/10/2004         1         15.12         0.892         1.5         1.5           21FLVEMDVC-079         03/01/2004         1                                                                                                                                  | 21FLWPB 20010740           | 08/26/2003  | 18.55                  | 26.12         | 1            | 0.056        |                |
| 21FLWPB 20010739         09/15/2003         1         25.3         1.031         0.042           21FLWPB 20010740         09/15/2003         16.28         25.2         0.857         0.051           21FLGW 3516         10/02/2003         1         22.8         0.665         0.05         4           21FLWPB 20010739         10/09/2003         1         23.17         0.032         1           21FLWPB 20010740         10/09/2003         1         23.01         0.782         0.028           21FLVEMDVC-078         11/03/2003         1         23.08         0.03         1.9           21FLVEMDVC-079         11/03/2003         23.12         0.13         3.4           21FLGW 3516         11/04/2003         1         24.81         1.112         0.049         4           21FLGW 3516         12/04/2003         1         17.96         1.02         0.032         4           21FLGW 3516         02/10/2004         1         11.2         0.806         0.02         4           21FLGW 3516         02/10/2004         1         15.09         1.006         0.05         1.2           21FLGW 3516         03/01/2004         1         15.09         1.006         0.05 <td>21FLGW 3516</td> <td>09/02/2003</td> <td>1</td> <td>26.4</td> <td>1.259</td> <td>0.055</td> <td>4</td>               | 21FLGW 3516                | 09/02/2003  | 1                      | 26.4          | 1.259        | 0.055        | 4              |
| 21FLWPB 20010740         09/15/2003         16.28         25.2         0.857         0.051           21FLGW 3516         10/02/2003         1         22.8         0.665         0.05         4           21FLWPB 20010739         10/09/2003         1         23.17         0.032         1           21FLWPB 20010740         10/09/2003         1         23.01         0.782         0.028           21FLVEMDVC-078         11/03/2003         1         23.08         0.03         1.9           21FLVEMDVC-077         11/03/2003         3.51         23.51         1.02         0.13         3.4           21FLGW 3516         11/04/2003         1         24.81         1.112         0.049         4           21FLGW 3516         12/04/2003         1         17.96         1.02         0.032         4           21FLGW 3516         02/10/2004         1         11.2         0.806         0.02         4           21FLGW 3516         02/10/2004         1         15.12         0.892         1.5           21FLGW 3516         03/01/2004         1         15.09         1.006         0.05         1.2           21FLVEMDVC-079         03/01/2004         1         15.39                                                                                                                              | 21FLWPB 20010739           | 09/15/2003  | 1                      | 25.3          | 1.031        | 0.042        |                |
| 21FLGW 351610/02/2003122.80.6650.05421FLWPB 2001073910/09/2003123.170.03221FLWPB 2001074010/09/2003123.010.7820.02821FLVEMDVC-07811/03/2003123.080.031.921FLVEMDVC-07711/03/20033.5123.511.020.133.421FLVEMDVC-07911/03/200323.1221FLGW 351611/04/2003124.811.1120.049421FLGW 351601/13/2004117.961.020.032421FLGW 351602/10/2004117.120.720.028421FLGW 351602/10/2004115.120.8921.521FLVEMDVC-07803/01/2004115.120.8921.521FLVEMDVC-07903/01/2004114.2850.7511.221FLGW 351603/08/2004118.81.0320.041421FLGW 351604/05/2004115.390.7880.03421FLGW 351605/10/2004125.760.930.042421FLGW 351606/07/20041.6723.340.6230.022.521FLVEMDVC-07706/07/20041.2324.140.5990.044.621FLGW 351607/06/2004125.30.7760.045421FLGW 351607/06/2004125.30.7760.045421FLGW 3516 </td <td>21FLWPB 20010740</td> <td>09/15/2003</td> <td>16.28</td> <td>25.2</td> <td>0.857</td> <td>0.051</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21FLWPB 20010740           | 09/15/2003  | 16.28                  | 25.2          | 0.857        | 0.051        |                |
| 21FLWPB 2001073910/09/2003123.170.03221FLWPB 2001074010/09/2003123.010.7820.02821FLVEMDVC-07811/03/2003123.080.031.921FLVEMDVC-07711/03/20033.5123.511.020.133.421FLVEMDVC-07911/03/200323.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21FLGW 3516                | 10/02/2003  | 1                      | 22.8          | 0.665        | 0.05         | 4              |
| 21FLWPB 2001074010/09/2003123.010.7820.02821FLVEMDVC-07811/03/2003123.080.031.921FLVEMDVC-07711/03/20033.5123.511.020.133.421FLVEMDVC-07911/03/200323.1221FLGW 351611/04/2003124.811.1120.049421FLGW 351612/04/2003117.961.020.032421FLGW 351601/13/2004111.20.8060.02421FLGW 351602/10/2004117.120.720.028421FLVEMDVC-07803/01/2004115.120.8921.521FLVEMDVC-07903/01/2004115.091.0060.051.221FLGW 351603/08/2004118.81.0320.041421FLGW 351605/10/2004115.390.7880.03421FLGW 351606/02/2004125.760.930.042421FLVEMDVC-07706/07/20041.6723.340.6230.022.521FLVEMDVC-07706/07/20041.6723.340.6230.022.521FLVEMDVC-07706/07/20041.2324.140.5990.044.621FLGW 351607/06/2004125.30.7760.045421FLGW 351607/06/2004125.30.7760.0454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21FLWPB 20010739           | 10/09/2003  | 1                      | 23.17         |              | 0.032        |                |
| 21FLVEMDVC-07811/03/2003123.080.031.921FLVEMDVC-07711/03/20033.5123.511.020.133.421FLWMDVC-07911/03/200323.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21FLWPB 20010740           | 10/09/2003  | 1                      | 23.01         | 0.782        | 0.028        |                |
| 21FLVEMDVC-07711/03/20033.5123.511.020.133.421FLGW 351611/03/200323.1221FLGW 351611/04/2003124.811.1120.049421FLGW 351612/04/2003117.961.020.032421FLGW 351601/13/2004111.20.8060.02421FLGW 351602/10/2004117.120.720.028421FLVEMDVC-07803/01/2004115.120.8921.521FLVEMDVC-07903/01/2004115.091.0060.051.221FLGW 351603/08/2004118.81.0320.041421FLGW 351605/10/2004115.390.7880.03421FLGW 351606/02/2004125.760.930.042421FLGW 351606/07/20041.6723.340.6230.022.521FLGW 351607/06/2004125.30.7760.045421FLGW 351607/06/2004125.30.7760.0454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21FLVEMDVC-078             | 11/03/2003  | 1                      | 23.08         |              | 0.03         | 1.9            |
| 21FLVEMDVC-07911/03/200323.1221FLGW 351611/04/2003124.811.1120.049421FLGW 351612/04/2003117.961.020.032421FLGW 351601/13/2004111.20.8060.02421FLGW 351602/10/2004117.120.720.028421FLVEMDVC-07803/01/2004115.120.8921.521FLVEMDVC-07903/01/2004115.091.0060.051.221FLGW 351603/08/2004118.81.0320.041421FLGW 351603/08/2004118.81.0320.041421FLGW 351605/10/2004120.860.6580.038421FLGW 351606/02/2004125.760.930.042421FLGW 351606/07/20041.6723.340.6230.022.521FLVEMDVC-07706/07/20041.2324.140.5990.044.621FLGW 351607/06/2004125.30.7760.045421FLGW 351607/06/2004125.30.7760.0454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21FLVEMDVC-077             | 11/03/2003  | 3.51                   | 23.51         | 1.02         | 0.13         | 3.4            |
| 21FLGW 351611/04/2003124.811.1120.049421FLGW 351612/04/2003117.961.020.032421FLGW 351601/13/2004111.20.8060.02421FLGW 351602/10/2004117.120.720.028421FLVEMDVC-07803/01/2004115.120.8921.521FLVEMDVC-07903/01/2004115.091.0060.051.221FLVEMDVC-07703/01/2004114.2850.7511.221FLGW 351603/08/2004118.81.0320.041421FLGW 351604/05/2004115.390.7880.03421FLGW 351606/02/2004125.760.930.042421FLVEMDVC-07806/07/20041.6723.340.6230.022.521FLVEMDVC-07706/07/20041.2324.140.5990.044.621FLGW 351607/06/2004125.30.7760.045421FLGW 351607/06/2004125.30.7760.0454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21FLVEMDVC-079             | 11/03/2003  |                        | 23.12         |              |              |                |
| 21FLGW 351612/04/2003117.961.020.032421FLGW 351601/13/2004111.20.8060.02421FLGW 351602/10/2004117.120.720.028421FLVEMDVC-07803/01/2004115.120.8921.521FLVEMDVC-07903/01/2004115.091.0060.051.221FLVEMDVC-07703/01/2004114.2850.7511.221FLGW 351603/08/2004118.81.0320.041421FLGW 351604/05/2004115.390.7880.03421FLGW 351605/10/2004120.860.6580.038421FLGW 351606/02/2004125.760.930.042421FLVEMDVC-07806/07/20041.6723.340.6230.022.521FLVEMDVC-07706/07/20041.2324.140.5990.044.621FLGW 351607/06/2004125.30.7760.045421FLGW 351607/06/2004125.30.7760.0454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21FLGW 3516                | 11/04/2003  | 1                      | 24.81         | 1.112        | 0.049        | 4              |
| 21FLGW 351601/13/2004111.20.8060.02421FLGW 351602/10/2004117.120.720.028421FLVEMDVC-07803/01/2004115.120.8921.521FLVEMDVC-07903/01/2004115.091.0060.051.221FLVEMDVC-07703/01/2004114.2850.7511.221FLGW 351603/08/2004118.81.0320.041421FLGW 351604/05/2004115.390.7880.03421FLGW 351605/10/2004120.860.6580.038421FLGW 351606/02/2004125.760.930.042421FLVEMDVC-07806/07/20041.6723.340.6230.022.521FLVEMDVC-07706/07/20041.2324.140.5990.044.621FLGW 351607/06/2004125.30.7760.045421FLGW 351608/09/20047.726.080.9150.0584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21FLGW 3516                | 12/04/2003  | 1                      | 17.96         | 1.02         | 0.032        | 4              |
| 21FLGW351602/10/2004117.120.720.028421FLVEMDVC-07803/01/2004115.120.8921.521FLVEMDVC-07903/01/2004115.091.0060.051.221FLVEMDVC-07703/01/2004114.2850.7511.221FLGW351603/08/2004118.81.0320.041421FLGW351604/05/2004115.390.7880.03421FLGW351605/10/2004120.860.6580.038421FLGW351606/02/2004125.760.930.042421FLVEMDVC-07806/07/20041.6723.340.6230.022.521FLVEMDVC-07706/07/20041.2324.140.5990.044.621FLGW351607/06/2004125.30.7760.045421FLGW351608/09/20047726.080.0150.0584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21FLGW 3516                | 01/13/2004  | 1                      | 11.2          | 0.806        | 0.02         | 4              |
| 21FLVEMDVC-078       03/01/2004       1       15.12       0.892       1.5         21FLVEMDVC-079       03/01/2004       1       15.09       1.006       0.05       1.2         21FLVEMDVC-077       03/01/2004       1       14.285       0.751       1.2         21FLGW 3516       03/08/2004       1       18.8       1.032       0.041       4         21FLGW 3516       04/05/2004       1       15.39       0.788       0.03       4         21FLGW 3516       05/10/2004       1       20.86       0.658       0.038       4         21FLGW 3516       06/02/2004       1       25.76       0.93       0.042       4         21FLVEMDVC-078       06/07/2004       1.67       23.34       0.623       0.02       2.5         21FLVEMDVC-077       06/07/2004       1.23       24.14       0.599       0.04       4.6         21FLGW 3516       07/06/2004       1       25.3       0.776       0.045       4                                                                                                                                                                                                                                                                                                                                                                                                              | 21FLGW 3516                | 02/10/2004  |                        | 17.12         | 0.72         | 0.028        | 4              |
| 21FLVEMDVC-079       03/01/2004       1       15.09       1.006       0.05       1.2         21FLVEMDVC-077       03/01/2004       1       14.285       0.751       1.2         21FLGW 3516       03/08/2004       1       18.8       1.032       0.041       4         21FLGW 3516       04/05/2004       1       15.39       0.788       0.03       4         21FLGW 3516       05/10/2004       1       20.86       0.658       0.038       4         21FLGW 3516       06/02/2004       1       25.76       0.93       0.042       4         21FLVEMDVC-078       06/07/2004       1.67       23.34       0.623       0.02       2.5         21FLWMDVC-077       06/07/2004       1.23       24.14       0.599       0.04       4.6         21FLGW 3516       07/06/2004       1       25.3       0.776       0.045       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21FLVEMDVC-078             | 03/01/2004  | 1                      | 15.12         | 0.892        | 0.05         | 1.5            |
| 21FLVEMDVC-07/7       03/01/2004       1       14.285       0.751       1.2         21FLGW 3516       03/08/2004       1       18.8       1.032       0.041       4         21FLGW 3516       04/05/2004       1       15.39       0.788       0.03       4         21FLGW 3516       05/10/2004       1       20.86       0.658       0.038       4         21FLGW 3516       06/02/2004       1       25.76       0.93       0.042       4         21FLVEMDVC-078       06/07/2004       1.67       23.34       0.623       0.02       2.5         21FLGW 3516       07/06/2004       1.23       24.14       0.599       0.04       4.6         21FLGW 3516       07/06/2004       1       25.3       0.776       0.045       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21FLVEMDVC-079             | 03/01/2004  | 1                      | 15.09         | 1.006        | 0.05         | 1.2            |
| 21FLGW 3516       03/08/2004       1       18.8       1.032       0.041       4         21FLGW 3516       04/05/2004       1       15.39       0.788       0.03       4         21FLGW 3516       05/10/2004       1       20.86       0.658       0.038       4         21FLGW 3516       06/02/2004       1       25.76       0.93       0.042       4         21FLVEMDVC-078       06/07/2004       1.67       23.34       0.623       0.02       2.5         21FLVEMDVC-077       06/07/2004       1.23       24.14       0.599       0.04       4.6         21FLGW 3516       07/06/2004       1       25.3       0.776       0.045       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21FLVEMDVC-077             | 03/01/2004  | 1                      | 14.285        | 0.751        | 0.041        | 1.2            |
| 21FLGW 3516       04/05/2004       1       15.39       0.788       0.03       4         21FLGW 3516       05/10/2004       1       20.86       0.658       0.038       4         21FLGW 3516       06/02/2004       1       25.76       0.93       0.042       4         21FLVEMDVC-078       06/07/2004       1.67       23.34       0.623       0.02       2.5         21FLVEMDVC-077       06/07/2004       1.23       24.14       0.599       0.04       4.6         21FLGW 3516       07/06/2004       1       25.3       0.776       0.045       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21FLGW 3516                | 03/08/2004  | 1                      | 18.8          | 1.032        | 0.041        | 4              |
| 21FLGW 3516       05/10/2004       1       20.86       0.658       0.038       4         21FLGW 3516       06/02/2004       1       25.76       0.93       0.042       4         21FLVEMDVC-078       06/07/2004       1.67       23.34       0.623       0.02       2.5         21FLVEMDVC-077       06/07/2004       1.23       24.14       0.599       0.04       4.6         21FLGW 3516       07/06/2004       1       25.3       0.776       0.045       4         21FLGW 3516       08/09/2004       7.7       26.08       0.915       0.058       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21FLGW 3516                | 04/05/2004  | 1                      | 15.39         | 0.788        | 0.03         | 4              |
| 21FLGW 3516       06/02/2004       1       25.76       0.93       0.042       4         21FLVEMDVC-078       06/07/2004       1.67       23.34       0.623       0.02       2.5         21FLVEMDVC-077       06/07/2004       1.23       24.14       0.599       0.04       4.6         21FLGW 3516       07/06/2004       1       25.3       0.776       0.045       4         21FLGW 3516       08/09/2004       7.7       26.08       0.915       0.058       4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21FLGW 3516                | 05/10/2004  | 1                      | 20.80         | 0.038        | 0.038        | 4              |
| 21FL VEMDVC-078         00/07/2004         1.07         23.34         0.623         0.02         2.5           21FLVEMDVC-077         06/07/2004         1.23         24.14         0.599         0.04         4.6           21FLGW 3516         07/06/2004         1         25.3         0.776         0.045         4           21FLGW 3516         08/09/2004         7.7         26.08         0.015         0.058         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21FLUW 3510                | 06/02/2004  | 1                      | 23.70         | 0.93         | 0.042        | 4              |
| 21FLVEMDVC-0//         00/07/2004         1.25         24.14         0.599         0.04         4.6           21FLGW 3516         07/06/2004         1         25.3         0.776         0.045         4           21FLGW 3516         08/09/2004         7.7         26.08         0.015         0.058         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21FLVEWDVC-078             | 06/07/2004  | 1.0/                   | 23.34         | 0.023        | 0.02         | 2.3            |
| 21FLGW 5510         07/00/2004         1         25.5         0.7/0         0.045         4           21FLGW 3516         08/00/2004         7.7         26.08         0.015         0.059         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21FLVEWIDVC-0//            | 00/07/2004  | 1.23                   | 24.14         | 0.399        | 0.04         | 4.0            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21FLUW 3310<br>21FLCW 2516 | 07/00/2004  |                        | 23.3<br>26.00 | 0.770        | 0.043        | 4              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21FLUW 3310                | 00/09/2004  | 1.1                    | 20.08         | 2 404        | 0.038        | 4              |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21FLOW 3310<br>21FLGW 3516 | 10/05/2004  | 1.1                    | 25.07         | 2.404        | 0.091        | -+<br>         |

| Station          | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLVEMDVC-078   | 10/11/2004  | 1                      | 24.41        | 1.333        | 0.04         | 3              |
| 21FLVEMDVC-079   | 10/11/2004  | 6.82                   | 24.52        | 1.317        | 0.04         | 2              |
| 21FLVEMDVC-077   | 10/11/2004  | 1                      | 24.54        | 1.348        | 0.07         | 3.7            |
| 21FLGW 3516      | 11/08/2004  | 1                      | 19.025       | 1.59         | 0.058        | 12             |
| 21FLGW 3516      | 12/01/2004  | 1                      | 18.51        | 1.1          | 0.04         | 4              |
| 21FLVEMDVC-078   | 12/06/2004  |                        | 15.96        | 1.064        | 0.04         | 1.5            |
| 21FLVEMDVC-077   | 12/06/2004  |                        | 15.17        | 0.834        | 0.04         | 1              |
| 21FLGW 3516      | 01/04/2005  | 1                      | 15.865       | 0.946        | 0.03         | 4              |
| 21FLCEN 27010830 | 01/31/2005  | 1.4                    | 15.7         | 1.029        | 0.062        |                |
| 21FLCEN 27010574 | 01/31/2005  | 1.4                    | 15           | 1.27         | 0.072        |                |
| 21FLCEN 27010579 | 01/31/2005  | 1.4                    | 13.2         | 0.877        | 0.079        |                |
| 21FLCEN 27010075 | 01/31/2005  | 2.4                    | 14.8         | 1.515        | 0.091        |                |
| 21FLCEN 27010596 | 01/31/2005  | 3.175                  | 12.7         | 1.304        | 0.072        |                |
| 21FLGW 3516      | 02/01/2005  | 1                      | 12.23        | 0.882        | 0.028        | 4              |
| 21FLVEMDVC-078   | 02/07/2005  | 1.01                   | 14.99        | 0.86         | 0.06         | 3              |
| 21FLVEMDVC-077   | 02/07/2005  | 21.63                  | 14.35        | 0.759        | 0.07         | 2.3            |
| 21FLGW 3516      | 03/02/2005  | 1                      | 12.98        | 0.694        | 0.028        | 4              |
| 21FLGW 3516      | 04/04/2005  | 1                      | 16.66        | 1.207        | 0.043        | 4              |
| 21FLCEN 27010579 | 04/07/2005  | 1.44                   | 20.76        | 1.32         | 0.072        |                |
| 21FLCEN 27010596 | 04/07/2005  | 2.81                   | 21.67        | 1.62         | 0.075        |                |
| 21FLCEN 27010075 | 04/07/2005  |                        | 21.25        |              |              |                |
| 21FLCEN 27010830 | 04/07/2005  |                        | 20.88        |              |              |                |
| 21FLWQSPVOL358LR | 04/14/2005  |                        | 20.02        |              |              |                |
| 21FLWQSPVOL358LR | 04/19/2005  | 1                      | 18.01        | 0.81         | 0.03         |                |
| 21FLVEMDVC-079   | 05/02/2005  |                        | 20.46        |              |              |                |
| 21FLVEMDVC-078   | 05/02/2005  | 1                      | 20.49        | 0.75         | 0.06         | 2.2            |
| 21FLGW 3516      | 05/02/2005  | 1                      | 20.505       | 0.901        | 0.038        | 4              |
| 21FLVEMDVC-077   | 05/02/2005  | 2.3                    | 21.19        | 0.746        | 0.05         | 2.7            |
| 21FLGW 3516      | 06/02/2005  | 1                      | 23.74        | 0.865        | 0.045        | 4              |
| 21FLCEN 27010579 | 06/02/2005  | 2.92                   | 23.9         | 0.932        | 0.069        |                |
| 21FLCEN 27010596 | 06/02/2005  | 6.17                   | 23.8         | 1.204        | 0.079        |                |
| 21FLCEN 27010075 | 06/02/2005  |                        | 23.3         |              |              |                |
| 21FLCEN 27010830 | 06/02/2005  |                        | 23.8         |              |              |                |
| 21FLGW 3516      | 07/07/2005  | 1.2                    | 27.87        | 1.336        | 0.059        | 4              |
| 21FLCEN 27010579 | 07/27/2005  | 1.52                   | 26.2         |              |              |                |
| 21FLCEN 27010830 | 07/27/2005  | 5.56                   | 25.8         |              |              |                |
| 21FLWQSPVOL358LR | 07/29/2005  |                        | 27.46        |              |              |                |
| 21FLGW 3516      | 08/02/2005  | 1.9                    | 26.435       | 1.66         | 0.05         | 5              |
| 21FLWQSPVOL358LR | 08/02/2005  | 1                      | 26.065       | 1.94         | 0.04         |                |
| 21FLVEMDVC-077   | 08/08/2005  | 1.04                   | 25.5         | 1.023        |              |                |
| 21FLVEMDVC-078   | 08/08/2005  | 1                      | 26           | 1.06         |              |                |
| 21FLVEMDVC-079   | 08/08/2005  | 9.86                   | 25.7         | 1.186        |              |                |
| 21FLGW 3516      | 09/12/2005  | 1.4                    | 25.5         | 1.147        | 0.052        | 4              |

| Station          | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLCEN 27010579 | 09/21/2005  | 1.4                    | 26           | 1.031        | 0.031        |                |
| 21FLCEN 27010830 | 09/21/2005  | 1.4                    | 25.9         | 1.122        | 0.044        |                |
| 21FLCEN 27010075 | 09/21/2005  |                        | 25.7         |              |              |                |
| 21FLCEN 27010596 | 09/21/2005  |                        | 25.81        |              |              |                |
| 21FLGW 3516      | 10/06/2005  | 5.6                    | 25.735       | 0.898        | 0.05         | 4              |
| 21FLSJWMNCBTR05  | 10/26/2005  | 1                      | 16.36        | 0.9274       | 0.0379       | 5              |
| 21FLGW 3516      | 11/02/2005  | 1.2                    | 19.765       | 0.988        | 0.051        | 4              |
| 21FLSJWMNCBTR05  | 11/07/2005  | 1.3083                 | 21           | 1.178        | 0.0751       | 5              |
| 21FLVEMDVC-077   | 11/07/2005  | 1                      | 20.09        |              | 0.03         | 28             |
| 21FLVEMDVC-078   | 11/07/2005  | 1                      | 19.96        |              | 0.02         | 1.8            |
| 21FLVEMDVC-079   | 11/07/2005  | 1.42                   | 20.46        |              | 0.06         | 1              |
| 21FLCEN 27010579 | 11/15/2005  | 1.4                    | 19.7         | 0.992        | 0.0215       |                |
| 21FLCEN 27010830 | 11/15/2005  | 1.4                    | 20.9         | 0.9          | 0.024        |                |
| 21FLCEN 27010596 | 11/15/2005  |                        | 20.1         |              |              |                |
| 21FLSJWMNCBTR05  | 12/05/2005  | 1.2905                 | 15.93        | 1.1608       | 0.0291       | 5              |
| 21FLGW 3516      | 12/06/2005  | 1                      | 17.65        | 0.907        | 0.035        | 4              |
| 21FLWQSPVOL358LR | 12/15/2005  |                        | 14.42        |              |              |                |
| 21FLWQSPVOL358LR | 12/19/2005  | 1.1                    | 15.37        | 0.84         | 0.02         |                |
| 21FLGW 3516      | 01/04/2006  | 1                      | 16.52        | 0.806        | 0.036        | 4              |
| 21FLSJWMNCBTR05  | 01/09/2006  | 1                      | 8.63         | 1.1329       | 0.0279       | 5              |
| 21FLVEMDVC-078   | 01/09/2006  | 1                      | 10.36        |              | 0.02         | 1.3            |
| 21FLVEMDVC-079   | 01/09/2006  |                        | 9.46         |              |              |                |
| 21FLVEMDVC-077   | 01/09/2006  | 1                      | 10.01        | 0.677        | 0.02         | 1.3            |
| 21FLSJWMNCBTR05  | 02/01/2006  | 1.1481                 | 13           | 0.8403       | 0.0386       | 5              |
| 21FLGW 3516      | 02/01/2006  | 1                      | 12.7         | 0.893        | 0.036        | 4              |
| 21FLGW 3516      | 03/07/2006  | 1                      | 16.04        | 0.995        | 0.033        | 4              |
| 21FLCEN 27010579 | 03/29/2006  | 1.4                    | 15.2         | 0.69         | 0.042        |                |
| 21FLVEMDVC-078   | 04/03/2006  | 1                      | 19.51        |              | 0.05         | 2.4            |
| 21FLGW 3516      | 04/03/2006  | 1                      | 20.145       | 0.68         | 0.048        | 4              |
| 21FLVEMDVC-077   | 04/03/2006  | 3.08                   | 21.63        | 0.51         | 0.08         | 7.6            |
| 21FLGW 3516      | 05/01/2006  | 1                      | 19.99        | 0.702        | 0.045        | 4              |
| 21FLGW 3516      | 06/01/2006  | 1                      | 24.97        | 1.066        | 0.08         | 12             |
| 21FLVEMDVC-078   | 07/10/2006  | 1                      | 25.11        |              | 0.05         | 2.8            |
| 21FLGW 3516      | 07/10/2006  | 1                      | 24.675       | 0.726        | 0.05         | 4              |
| 21FLVEMDVC-077   | 07/10/2006  | 28.48                  | 27.37        | 0.688        | 0.09         | 3.2            |
| 21FLGW 3516      | 08/02/2006  | 1                      | 26.27        | 0.667        | 0.05         | 5              |
| 21FLGW 3516      | 09/06/2006  | 1                      | 25.55        | 0.774        | 0.052        | 4              |
| 21FLVEMDVC-078   | 10/02/2006  |                        | 21.94        |              | 0.04         | 2.5            |
| 21FLVEMDVC-077   | 10/02/2006  |                        | 28.97        | 0.71         | 0.1          | 3.9            |
| 21FLGW 3516      | 10/03/2006  | 1                      | 22.62        | 0.62         | 0.024        | 4              |
| 21FLGW 3516      | 11/02/2006  | 1.7                    | 20.655       | 0.584        | 0.034        | 4              |
| 21FLGW 3516      | 12/04/2006  | 1                      | 19.79        | 0.504        | 0.068        | 5              |
| 21FLGW 3516      | 01/03/2007  | 1                      | 18.73        | 0.608        | 0.038        | 4              |

| 21FLGW 3516         02/01/2007         1         14.03         0.541         0.029         4           21FLVEMDVC-078         02/05/2007         1         13.03         0.03         1.1           21FLGW 3516         03/06/2007         1         14.12         0.5         0.044         1.3           21FLGW 3516         03/06/2007         1         13.87         0.611         0.034         4           21FLWMDVC-078         05/07/2007         1.83         19.6         3         3           21FLVEMDVC-078         05/07/2007         1.83         19.6         3         3           21FLVEMDVC-077         05/07/2007         1.2         24.86         0.868         2.3           21FLGW 3516         07/05/2007         1.2         21.95         0.788         0.056         4           21FLVEMDVC-078         08/06/2007         1         26.79         0.774         0.04         1.5           21FLVEMDVC-078         08/06/2007         1         26.31         1.236         0.081         4           21FLWMS 3516         09/05/2007         1         26.31         1.236         0.081         4           21FLWMDVC-078         11/05/2007         1         17                                                                                                                    | Station                      | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLVEMDVC-078         02/05/2007         1         13.03         0.03         1.1           21FLVEMDVC-077         02/05/2007         1         14.12         0.5         0.04         1.3           21FLGW 3516         03/06/2007         1         13.87         0.611         0.033         4           21FLGW 3516         05/07/2007         1.83         19.6         3         3           21FLVEMDVC-078         05/07/2007         2.2         24.86         0.868         2.3           21FLVEMDVC-077         05/07/2007         2.5         25.06         1.017         0.07         4           21FLVEMDVC-078         07/05/2007         2.5         25.06         1.017         0.07         4           21FLVEMDVC-077         08/06/2007         1         26.195         0.788         0.056         4           21FLVEMDVC-077         08/06/2007         1         26.31         1.236         0.081         4           21FLGW 3516         10/04/2007         1         26.31         1.236         0.081         4           21FLGW 3516         11/02/07         1.4         23.43         0.959         0.05         7           21FLGW 3516         10/04/2007         <                                                                                                                | 21FLGW 3516                  | 02/01/2007  | 1                      | 14.03        | 0.541        | 0.029        | 4              |
| 21FLVEMDVC-077         02/05/2007         1         14.12         0.5         0.04         1.3           21FLGW 3516         03/06/2007         1         13.87         0.611         0.033         4           21FLGW 3516         04/02/2007         1.9         19.705         0.682         0.053         4           21FLGW 3516         05/07/2007         1.21.155         0.673         0.051         4           21FLVEMDVC-078         05/07/2007         2.2         24.86         0.868         2.3           21FLGW 3516         06/06/2007         1.1         23.97         0.742         0.043         4           21FLGW 3516         07/30/2007         1         26.195         0.788         0.056         4           21FLVEMDVC-077         08/06/2007         1         26.31         1.236         0.081         4           21FLGW 3516         09/05/2007         1.9         25.35         1.027         0.057         6           21FLGW 3516         11/01/2007         1.4         23.43         0.959         0.05         7           21FLGW 3516         11/05/2007         1         77.6         0.22         0.01         1.6           21FLVEMDVC-078         <                                                                                                                | 21FLVEMDVC-078               | 02/05/2007  | 1                      | 13.03        |              | 0.03         | 1.1            |
| 21FLGW         3516         03/06/2007         1         13.87         0.611         0.034         4           21FLGW         3516         04/02/2007         1.9         19.705         0.682         0.053         4           21FLVEMDVC-078         05/07/2007         1         21.155         0.673         0.051         4           21FLVEMDVC-077         05/07/2007         2.2         24.86         0.868         2.3           21FLGW         3516         06/06/2007         1.1         23.97         0.742         0.043         4           21FLGW         3516         07/05/2007         2.5         25.06         1.017         0.07         4           21FLW         3516         07/30/2007         1         26.195         0.788         0.056         4           21FLVEMDVC-078         08/06/2007         1         26.31         1.236         0.004         1.5           21FLGW         3516         10/04/2007         1         26.31         1.236         0.081         4           21FLW         3516         11/05/2007         1.35         19.65         0.727         0.02         1.7           21FLGW         3516         01/04/2008 <t< td=""><td>21FLVEMDVC-077</td><td>02/05/2007</td><td>1</td><td>14.12</td><td>0.5</td><td>0.04</td><td>1.3</td></t<>              | 21FLVEMDVC-077               | 02/05/2007  | 1                      | 14.12        | 0.5          | 0.04         | 1.3            |
| 21FLGW 3516         04/02/2007         1.9         19.705         0.682         0.053         4           21FLUEM 5516         05/07/2007         1         21.155         0.673         0.051         4           21FLVEMDVC-078         05/07/2007         1.83         19.6         3         3           21FLVEMDVC-077         05/07/2007         2.2         24.86         0.868         2.3           21FLGW 3516         06/06/2007         1.1         23.97         0.742         0.043         4           21FLVEMDVC-078         08/06/2007         1.26.195         0.788         0.056         4           21FLVEMDVC-077         08/06/2007         1.26.79         0.774         0.04         1.5           21FLGW 3516         09/05/2007         1.9         25.36         1.027         0.057         6           21FLGW 3516         11/01/2007         1.4         23.43         0.959         0.05         7           21FLVEMDVC-078         11/05/2007         1.35         19.65         0.727         0.02         1.7           21FLOW 3516         11/05/2007         1.35         19.65         0.727         0.02         1.7           21FLOW 3516         01/02/2008                                                                                                                | 21FLGW 3516                  | 03/06/2007  | 1                      | 13.87        | 0.611        | 0.034        | 4              |
| 21FLGW 3516         05/03/2007         1         21.155         0.673         0.051         4           21FLVEMDVC-078         05/07/2007         1.83         19.6         3           21FLUVEMDVC-077         05/07/2007         2.2         24.86         0.868         2.3           21FLGW 3516         06/06/2007         1.1         23.97         0.742         0.043         4           21FLGW 3516         07/05/2007         2.5         25.06         1.017         0.07         4           21FLGW 3516         07/30/2007         1         26.195         0.788         0.056         4           21FLGW 3516         07/30/2007         1.9         25.36         1.027         0.057         6           21FLGW 3516         10/04/2007         1         26.31         1.236         0.081         4           21FLGW 3516         11/01/2007         1.35         19.65         0.727         0.02         1.7           21FLVEMDVC-078         11/05/2007         1         20.11         0.786         0.045         4           21FLVEMDVC-078         11/05/2007         1         21.1         0.786         0.045         4           21FLSWMNCBTR06         01/12/2008                                                                                                                   | 21FLGW 3516                  | 04/02/2007  | 1.9                    | 19.705       | 0.682        | 0.053        | 4              |
| 21FLVEMDVC-078         05/07/2007         1.83         19.6         3           21FLVEMDVC-077         05/07/2007         2.2         24.86         0.868         2.3           21FLGW 3516         06/06/2007         1.1         23.97         0.742         0.043         4           21FLGW 3516         07/05/2007         2.5         25.06         1.017         0.07         4           21FLWEMDVC-078         08/06/2007         1         26.79         0.774         0.04         1.5           21FLVEMDVC-077         08/06/2007         1.9         25.36         1.027         0.02         0.7           21FLGW 3516         10/04/2007         1.26.31         1.236         0.081         4           21FLGW 3516         11/01/2007         1.4         23.43         0.959         0.05         7           21FLVEMDVC-078         11/05/2007         1         17.76         0.52         0.01         1.6           21FLGW 3516         11/02/2008         1         13.705         0.847         0.061         4           21FLGW 3516         01/02/2008         1         13.705         0.847         0.061         4           21FLSWMNCBTR06         02/04/2008         1 <td>21FLGW 3516</td> <td>05/03/2007</td> <td>1</td> <td>21.155</td> <td>0.673</td> <td>0.051</td> <td>4</td>  | 21FLGW 3516                  | 05/03/2007  | 1                      | 21.155       | 0.673        | 0.051        | 4              |
| 21FLVEMDVC-077         05/07/2007         2.2         24.86         0.868         2.3           21FLGW 3516         06/06/2007         1.1         23.97         0.742         0.043         4           21FLGW 3516         07/05/2007         2.5         25.06         1.017         0.07         4           21FLGW 3516         07/05/2007         1         26.195         0.788         0.056         4           21FLVEMDVC-078         08/06/2007         1         26.79         0.774         0.04         1.5           21FLGW 3516         09/05/2007         1.9         25.36         1.027         0.057         6           21FLGW 3516         11/04/2007         1         26.31         1.236         0.081         4           21FLGW 3516         11/05/2007         1.35         19.65         0.727         0.02         1.7           21FLGW 3516         12/03/2007         1         20.11         0.788         0.045         4           21FLGW 3516         01/02/2008         1         13.705         0.847         0.061         4           21FLGW 3516         02/04/2008         1         18.09         0.483         0.04         2.9           21FLGW 351                                                                                                                    | 21FLVEMDVC-078               | 05/07/2007  | 1.83                   | 19.6         |              |              | 3              |
| 21FLGW         3516         06/06/2007         1.1         23.97         0.742         0.043         4           21FLGW         3516         07/05/2007         2.5         25.06         1.017         0.07         4           21FLGW         3516         07/30/2007         1         26.79         0.774         0.04         1.5           21FLVEMDVC-078         08/06/2007         1         26.79         0.774         0.04         1.5           21FLVEMDVC-077         08/06/2007         1.9         25.36         1.027         0.057         6           21FLGW         3516         10/04/2007         1         26.31         1.236         0.081         4           21FLGW         3516         11/01/2007         1.4         23.43         0.959         0.05         7           21FLVEMDVC-078         11/05/2007         1         17.76         0.52         0.01         1.6           21FLGW         3516         01/02/2008         1         13.705         0.847         0.061         4           21FLGW         3516         01/04/2008         1         13.705         0.446         0.388         5           21FLSWMNCBTR06         01/14/2008                                                                                                                                  | 21FLVEMDVC-077               | 05/07/2007  | 2.2                    | 24.86        | 0.868        |              | 2.3            |
| 21FLGW 3516         07/05/2007         2.5         25.06         1.017         0.07         4           21FLGW 3516         07/30/2007         1         26.195         0.788         0.056         4           21FLVEMDVC-078         08/06/2007         1         26.79         0.774         0.04         1.5           21FLGW 3516         09/05/2007         1.9         25.36         1.027         0.057         6           21FLGW 3516         10/04/2007         1         26.31         1.236         0.081         4           21FLGW 3516         11/01/2007         1.4         23.43         0.959         0.05         7           21FLVEMDVC-078         11/05/2007         1.35         19.65         0.727         0.02         1.7           21FLGW 3516         12/03/2007         1         20.11         0.786         0.045         4           21FLSWMNCBTR06         01/14/2008         1         13.705         0.847         0.061         4           21FLSJWMNCBTR06         02/04/2008         1         13.705         0.848         5           21FLGW 3516         02/04/2008         1         18.945         0.708         0.046         4           21FLSJW                                                                                                                    | 21FLGW 3516                  | 06/06/2007  | 1.1                    | 23.97        | 0.742        | 0.043        | 4              |
| 21FLGW 3516         07/30/2007         1         26.195         0.788         0.056         4           21FLVEMDVC-078         08/06/2007         1         26.79         0.774         0.04         1.5           21FLVEMDVC-077         08/06/2007         28.33         0.02         0.77           21FLGW 3516         09/05/2007         1.9         25.36         1.027         0.057         6           21FLGW 3516         11/01/2007         1.4         23.43         0.959         0.05         7           21FLWMDVC-078         11/05/2007         1         17.76         0.52         0.01         1.6           21FLVSMDVC-077         11/05/2007         1         21.75         0.02         1.7           21FLGW 3516         12/03/2007         1         20.11         0.786         0.045         4           21FLSWMNCBTR06         01/02/2008         1         13.705         0.847         0.061         4           21FLSWMNCBTR06         02/04/2008         1         21.5         0.739         0.0409         5           21FLVEMDVC-078         02/04/2008         1         18.945         0.708         0.046         4           21FLVEMDVC-077         02/04/2008 <td>21FLGW 3516</td> <td>07/05/2007</td> <td>2.5</td> <td>25.06</td> <td>1.017</td> <td>0.07</td> <td>4</td> | 21FLGW 3516                  | 07/05/2007  | 2.5                    | 25.06        | 1.017        | 0.07         | 4              |
| 21FLVEMDVC-078         08/06/2007         1         26.79         0.774         0.04         1.5           21FLVEMDVC-077         08/06/2007         28.33         0.02         0.7           21FLGW 3516         09/05/2007         1.9         25.36         1.027         0.057         6           21FLGW 3516         10/04/2007         1         26.31         1.236         0.081         4           21FLGW 3516         11/01/2007         1.4         23.43         0.959         0.05         7           21FLVEMDVC-078         11/05/2007         1         17.76         0.52         0.01         1.6           21FLGW 3516         12/03/2007         1         20.11         0.786         0.045         4           21FLGW 3516         01/02/2008         1         13.705         0.847         0.061         4           21FLSJWMNCBTR06         01/14/2008         1         16.56         0.6846         0.0388         5           21FLVEMDVC-078         02/04/2008         1         18.09         0.483         0.04         2.9           21FLGW 3516         02/04/2008         1         15.11         0.666         0.042         10           21FLGW 3516         <                                                                                                                | 21FLGW 3516                  | 07/30/2007  | 1                      | 26.195       | 0.788        | 0.056        | 4              |
| 21FLVEMDVC-077         08/06/2007         28.33         0.02         0.7           21FLGW 3516         09/05/2007         1.9         25.36         1.027         0.057         6           21FLGW 3516         10/04/2007         1         26.31         1.236         0.081         4           21FLGW 3516         11/01/2007         1.4         23.43         0.959         0.05         7           21FLVEMDVC-078         11/05/2007         1         17.76         0.52         0.01         1.6           21FLVEMDVC-077         11/05/2007         1         20.11         0.786         0.045         4           21FLGW 3516         12/03/2007         1         20.11         0.786         0.045         4           21FLGW 3516         01/02/2008         1         13.705         0.847         0.061         4           21FLSJWMNCBTR06         01/14/2008         1         11.8.99         0.483         0.04         2.9           21FLVEMDVC-078         02/04/2008         1         18.09         0.483         0.04         2.2           21FLVEMDVC-077         02/04/2008         1         19.31         0.854         0.06         2.2           21FLGW 3516                                                                                                                       | 21FLVEMDVC-078               | 08/06/2007  | 1                      | 26.79        | 0.774        | 0.04         | 1.5            |
| 21FLGW 3516         09/05/2007         1.9         25.36         1.027         0.057         6           21FLGW 3516         10/04/2007         1         26.31         1.236         0.081         4           21FLGW 3516         11/01/2007         1.4         23.43         0.959         0.05         7           21FLVEMDVC-078         11/05/2007         1         17.76         0.52         0.01         1.6           21FLVEMDVC-077         11/05/2007         1         20.11         0.786         0.045         4           21FLGW 3516         12/03/2007         1         20.11         0.786         0.045         4           21FLSWMNCBTR06         01/02/2008         1         13.705         0.844         0.061         4           21FLSWMNCBTR06         01/02/2008         1         18.09         0.483         0.04         2.9           21FLVEMDVC-078         02/04/2008         1         18.99         0.483         0.04         2.9           21FLGW 3516         03/03/2008         1         15.11         0.666         0.042         10           21FLSWMNCBTR06         03/10/2008         1.4685         16.98         0.8582         0.054         5                                                                                                                   | 21FLVEMDVC-077               | 08/06/2007  |                        | 28.33        |              | 0.02         | 0.7            |
| 21FLGW 3516         10/04/2007         1         26.31         1.236         0.081         4           21FLGW 3516         11/01/2007         1.4         23.43         0.959         0.05         7           21FLVEMDVC-078         11/05/2007         1         17.76         0.52         0.01         1.6           21FLVEMDVC-077         11/05/2007         1         35         19.65         0.727         0.02         1.7           21FLGW 3516         12/03/2007         1         20.11         0.786         0.045         4           21FLGW 3516         01/02/2008         1         13.705         0.847         0.061         4           21FLSWMNCBTR06         01/14/2008         1         16.56         0.6846         0.0388         5           21FLVEMDVC-078         02/04/2008         1         18.09         0.483         0.04         2.9           21FLGW 3516         02/04/2008         1         18.945         0.708         0.046         4           21FLVEMDVC-077         02/04/2008         1         15.11         0.666         0.042         10           21FLGW 3516         03/03/2008         1         15.7         0.778         0.0493         5 <td>21FLGW 3516</td> <td>09/05/2007</td> <td>1.9</td> <td>25.36</td> <td>1.027</td> <td>0.057</td> <td>6</td>  | 21FLGW 3516                  | 09/05/2007  | 1.9                    | 25.36        | 1.027        | 0.057        | 6              |
| 21FLGW 3516         11/01/2007         1.4         23.43         0.959         0.05         7           21FLVEMDVC-078         11/05/2007         1         17.76         0.52         0.01         1.6           21FLVEMDVC-077         11/05/2007         1.35         19.65         0.727         0.02         1.7           21FLGW 3516         12/03/2007         1         20.11         0.786         0.045         4           21FLGW 3516         01/02/2008         1         13.705         0.847         0.061         4           21FLSJWMNCBTR06         01/14/2008         1         16.56         0.6846         0.0388         5           21FLSJWMNCBTR06         02/04/2008         1         18.09         0.483         0.044         2.9           21FLVEMDVC-078         02/04/2008         1         18.945         0.708         0.004         4           21FLVEMDVC-077         02/04/2008         1         15.11         0.666         0.042         10           21FLGW 3516         03/03/2008         1         15.11         0.666         0.042         10           21FLGW 3516         04/02/2008         1.5         20.375         0.671         0.056         4     <                                                                                                        | 21FLGW 3516                  | 10/04/2007  | 1                      | 26.31        | 1.236        | 0.081        | 4              |
| 21FLVEMDVC-078         11/05/2007         1         17.76         0.52         0.01         1.6           21FLVEMDVC-077         11/05/2007         1.35         19.65         0.727         0.02         1.7           21FLGW 3516         12/03/2007         1         20.11         0.786         0.045         4           21FLGW 3516         01/02/2008         1         13.705         0.847         0.061         4           21FLSJWMNCBTR06         01/14/2008         1         16.56         0.6846         0.0388         5           21FLSJWMNCBTR06         02/04/2008         1         21.3         0.7539         0.0409         5           21FLVEMDVC-078         02/04/2008         1         18.945         0.708         0.046         4           21FLVEMDVC-077         02/04/2008         1         18.945         0.708         0.046         4           21FLVEMDVC-7R6         02/04/2008         1         15.31         0.666         0.042         10           21FLSWMNCBTR06         03/10/2008         1.4685         16.98         0.8582         0.054         5           21FLGW 3516         04/02/2008         1.5         20.375         0.671         0.056         4<                                                                                                   | 21FLGW 3516                  | 11/01/2007  | 1.4                    | 23.43        | 0.959        | 0.05         | 7              |
| 21FLVEMDVC-077         11/05/2007         1.35         19.65         0.727         0.02         1.7           21FLGW 3516         12/03/2007         1         20.11         0.786         0.045         4           21FLGW 3516         01/02/2008         1         13.705         0.847         0.061         4           21FLSJWMNCBTR06         01/14/2008         1         16.56         0.6846         0.0388         5           21FLSJWMNCBTR06         02/04/2008         1         18.09         0.483         0.04         2.9           21FLGW 3516         02/04/2008         1         18.945         0.708         0.046         4           21FLVEMDVC-077         02/04/2008         1         18.945         0.708         0.046         2.2           21FLVEMDVC-077         02/04/2008         1.61         19.31         0.854         0.06         2.2           21FLGW 3516         03/03/2008         1         15.11         0.666         0.042         10           21FLSJWMNCBTR06         03/10/2008         1.4685         16.98         0.8582         0.054         5           21FLGW 3516         04/02/2008         1.5         20.375         0.671         0.056         4                                                                                                   | 21FLVEMDVC-078               | 11/05/2007  | 1                      | 17.76        | 0.52         | 0.01         | 1.6            |
| 21FLGW 351612/03/2007120.110.7860.045421FLGW 351601/02/2008113.7050.8470.061421FLSJWMNCBTR0601/14/2008116.560.68460.0388521FLSJWMNCBTR0602/04/2008121.30.75390.0409521FLVEMDVC-07802/04/2008118.090.4830.042.921FLGW 351602/04/2008118.9450.7080.046421FLVEMDVC-07702/04/20081.6119.310.8540.062.221FLGW 351603/03/2008115.110.6660.0421021FLSJWMNCBTR0603/10/20081.468516.980.85820.054521FLSWMNCBTR0603/10/20081.520.3750.6710.056421FLSJWMNCBTR0604/02/200813.79524.40.96050.0926521FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLGW 351605/06/2008120.120.6120.047421FLCEN 2701057905/20/20082.423.60.7480.131221FLGW 3494105/27/20081727.881.1160.12221FLGW 3494305/27/20081727.841.0170.12221FLGW 3494005/27/20081827.870.9110.11221FLGW 3494505/27/20081227.390.9740.12 <t< td=""><td>21FLVEMDVC-077</td><td>11/05/2007</td><td>1.35</td><td>19.65</td><td>0.727</td><td>0.02</td><td>1.7</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                      | 21FLVEMDVC-077               | 11/05/2007  | 1.35                   | 19.65        | 0.727        | 0.02         | 1.7            |
| 21FLGW 351601/02/2008113.7050.8470.061421FLSJWMNCBTR0601/14/2008116.560.68460.0388521FLSJWMNCBTR0602/04/2008121.30.75390.0409521FLVEMDVC-07802/04/2008118.090.4830.042.921FLGW 351602/04/2008118.9450.7080.046421FLVEMDVC-07702/04/20081.6119.310.8540.062.221FLGW 351603/03/2008115.110.6660.0421021FLSJWMNCBTR0603/10/20081.468516.980.85820.054521FLGW 351604/02/20081.520.3750.6710.056421FLSJWMNCBTR0604/14/2008115.70.78780.0493521FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLGW 351605/06/2008120.120.6120.047421FLCEN 2701057905/20/20082.423.60.7480.131221FLGW 3494105/27/20081427.630.8660.111121FLGW 3494305/27/20081727.841.0170.1221FLGW 3494005/27/20081827.870.9110.1121FLGW 3494705/27/20081227.390.9740.1221FLGW 3494705/27/20081227.390.9370.1121FLGW 3494705/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21FLGW 3516                  | 12/03/2007  | 1                      | 20.11        | 0.786        | 0.045        | 4              |
| 21FLSJWMNCBTR0601/14/2008116.560.68460.0388521FLSJWMNCBTR0602/04/2008121.30.75390.0409521FLVEMDVC-07802/04/2008118.090.4830.042.921FLGW 351602/04/2008118.9450.7080.046421FLVEMDVC-07702/04/2008119.310.8540.062.221FLGW 351602/04/2008115.110.6660.0421021FLGW 351603/03/2008115.110.6660.0421021FLSJWMNCBTR0603/10/20081.468516.980.85820.054521FLGW 351604/02/20081.520.3750.6710.056421FLSJWMNCBTR0604/14/2008115.70.78780.0493521FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLGW 351605/06/2008120.120.6120.047421FLCEN 2701057905/20/20082.423.60.7480.131221FLGW 3494105/27/20081427.630.8660.111121FLGW 3494005/27/20081727.841.0170.1221FLGW 3494005/27/20081827.870.9110.1121FLGW 3494505/27/20081227.390.9740.1221FLGW 3494705/27/20081227.390.9740.1221FLGW 3494705/27/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21FLGW 3516                  | 01/02/2008  | 1                      | 13.705       | 0.847        | 0.061        | 4              |
| 21FLSJWMNCBTR0602/04/2008121.30.75390.0409521FLVEMDVC-07802/04/2008118.090.4830.042.921FLGW 351602/04/2008118.9450.7080.046421FLVEMDVC-07702/04/20081.6119.310.8540.062.221FLVEMDVC-TR602/04/2008115.110.6660.0421021FLSWMNCBTR0603/10/20081.468516.980.85820.054521FLSWMNCBTR0603/10/20081.520.3750.6710.056421FLSJWMNCBTR0604/02/20081.520.3750.6710.056421FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLCW 351605/06/2008120.120.6120.047421FLCW 351605/06/2008120.120.6120.047421FLCW 351605/06/2008120.120.6120.047421FLGW 351605/06/2008120.120.6120.047421FLGW 3494105/27/20082423.60.7480.131221FLGW 3494305/27/20081427.630.8660.1121FLGW 3494005/27/20081727.841.0170.1221FLGW 3494005/27/20081827.870.9110.1221FLGW 3494505/27/20081227.390.9740.1221FLGW 3494705/27/2008<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21FLSJWMNCBTR06              | 01/14/2008  | 1                      | 16.56        | 0.6846       | 0.0388       | 5              |
| 21FLVEMDVC-07802/04/2008118.090.4830.042.921FLGW 351602/04/2008118.9450.7080.046421FLVEMDVC-07702/04/20081.6119.310.8540.062.221FLVEMDVC-TR602/04/2008115.110.6660.0421021FLGW 351603/03/2008115.110.6660.0421021FLSJWMNCBTR0603/10/20081.468516.980.85820.054521FLGW 351604/02/20081.520.3750.6710.056421FLSJWMNCBTR0604/14/2008115.70.78780.0493521FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLVEMDVC-07705/05/200813.7125.750.7340.146.921FLGW 351605/06/2008120.120.6120.047421FLGW 3494105/27/20082.423.60.7480.131221FLGW 3495005/27/20081727.881.1160.12221FLGW 3493005/27/20081727.841.0170.12221FLGW 3494005/27/20081827.870.9110.11221FLGW 3494505/27/20081227.390.9740.12221FLGW 3494705/27/20081227.390.9740.12221FLGW 3494705/27/20081227.390.9370.112 </td <td>21FLSJWMNCBTR06</td> <td>02/04/2008</td> <td>1</td> <td>21.3</td> <td>0.7539</td> <td>0.0409</td> <td>5</td>                                                                                                                                                                                                                                                                                                                                                                                                                     | 21FLSJWMNCBTR06              | 02/04/2008  | 1                      | 21.3         | 0.7539       | 0.0409       | 5              |
| 21FLGW 351602/04/2008118.9450.7080.046421FLVEMDVC-07702/04/20081.6119.310.8540.062.221FLVEMDVC-TR602/04/2008115.110.6660.0421021FLGW 351603/03/2008115.110.6660.0421021FLSJWMNCBTR0603/10/20081.468516.980.85820.054521FLGW 351604/02/20081.520.3750.6710.056421FLSJWMNCBTR0604/14/2008115.70.78780.0493521FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLGW 351605/06/2008120.120.6120.047421FLCEN 2701057905/20/20082.423.60.7480.131221FLGW 3494105/27/20081427.630.8660.11121FLGW 3494305/27/20081727.841.0170.12121FLGW 3494005/27/20081827.870.9110.12121FLGW 3494005/27/20081227.390.9740.12121FLGW 3494705/27/20081227.390.9740.12121FLGW 3494705/27/20081227.1450.9630.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21FLVEMDVC-078               | 02/04/2008  | 1                      | 18.09        | 0.483        | 0.04         | 2.9            |
| 21FLVEMDVC-07702/04/20081.6119.310.8540.062.221FLVEMDVC-TR602/04/20080.0021.621FLGW 351603/03/2008115.110.6660.0421021FLSJWMNCBTR0603/10/20081.468516.980.85820.054521FLGW 351604/02/20081.520.3750.6710.056421FLSJWMNCBTR0604/14/2008115.70.78780.0493521FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLVEMDVC-07705/05/200813.7125.750.7340.146.921FLGW 351605/06/2008120.120.6120.047421FLGW 351605/02/20082.423.60.7480.131221FLGW 3494105/27/20081427.630.8660.11121FLGW 3494305/27/20081727.841.0170.1221FLGW 3494005/27/20081827.870.9110.1221FLGW 3494005/27/20081227.390.9740.1221FLGW 3494705/27/20081227.390.9740.1221FLGW 3494705/27/20081027.2950.9370.1121FLGW 3494905/27/20081527.1450.9630.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21FLGW 3516                  | 02/04/2008  | 1                      | 18.945       | 0.708        | 0.046        | 4              |
| 21FLVEMDVC-TR602/04/20080.021.621FLGW 351603/03/2008115.110.6660.0421021FLSJWMNCBTR0603/10/20081.468516.980.85820.054521FLGW 351604/02/20081.520.3750.6710.056421FLSJWMNCBTR0604/14/2008115.70.78780.0493521FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLVEMDVC-07705/05/200813.7125.750.7340.146.921FLGW 351605/06/2008120.120.6120.047421FLGW 3494105/27/20082.423.60.7480.131221FLGW 3494305/27/20081427.630.8660.111221FLGW 3494005/27/20081727.841.0170.122121FLGW 3494005/27/20081827.870.9110.122121FLGW 3494705/27/20081227.390.9740.122121FLGW 3494705/27/20081227.390.9740.122121FLGW 3494705/27/20081227.390.9740.122121FLGW 3494705/27/20081027.2950.9370.112121FLGW 3494905/27/20081527.1450.9630.1121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21FLVEMDVC-077               | 02/04/2008  | 1.61                   | 19.31        | 0.854        | 0.06         | 2.2            |
| 21FLGW 351603/03/2008115.110.6660.0421021FLSJWMNCBTR0603/10/20081.468516.980.85820.054521FLGW 351604/02/20081.520.3750.6710.056421FLSJWMNCBTR0604/14/2008115.70.78780.0493521FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLVEMDVC-07705/05/200813.7125.750.7340.146.921FLGW 351605/06/2008120.120.6120.047421FLCEN 2701057905/20/20082.423.60.7480.131221FLGW 3494105/27/20081427.630.8660.111221FLGW 3493005/27/20081727.841.0170.121221FLGW 3494005/27/20081827.870.9110.111121FLGW 3494505/27/20081227.390.9740.121121FLGW 3494705/27/20081227.390.9740.121121FLGW 3494705/27/20081227.390.9740.121121FLGW 3494705/27/20081227.390.9370.111121FLGW 3494705/27/20081527.1450.9630.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21FLVEMDVC-TR6               | 02/04/2008  |                        |              |              | 0.02         | 1.6            |
| 21FLSJWMNCBTR0603/10/20081.468516.980.85820.054521FLGW 351604/02/20081.520.3750.6710.056421FLSJWMNCBTR0604/14/2008115.70.78780.0493521FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLVEMDVC-07705/05/200813.7125.750.7340.146.921FLGW 351605/06/2008120.120.6120.047421FLCEN 2701057905/20/20082.423.60.7480.131221FLGW 3494105/27/20081427.630.8660.111221FLGW 3494305/27/20081727.841.0170.1221FLGW 3494005/27/20081827.870.9110.1221FLGW 3494505/27/20081227.390.9740.1221FLGW 3494705/27/20081227.390.9370.1121FLGW 3494905/27/20081027.2950.9370.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21FLGW 3516                  | 03/03/2008  | 1                      | 15.11        | 0.666        | 0.042        | 10             |
| 21FLGW 351604/02/20081.520.3750.6710.056421FLSJWMNCBTR0604/14/2008115.70.78780.0493521FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLVEMDVC-07705/05/200813.7125.750.7340.146.921FLGW 351605/06/2008120.120.6120.047421FLCEN 2701057905/20/20082.423.60.7480.131221FLGW 3494105/27/20081427.630.8660.111221FLGW 3495005/27/20081727.841.0170.121221FLGW 3493005/27/20081827.870.9110.121121FLGW 3494005/27/20081927.570.9110.111121FLGW 3494705/27/20081227.390.9740.121121FLGW 3494705/27/20081227.390.9370.111121FLGW 3494905/27/20081027.2950.9370.111121FLGW 3494705/27/20081527.1450.9630.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21FLSJWMNCBTR06              | 03/10/2008  | 1.4685                 | 16.98        | 0.8582       | 0.054        | 5              |
| 21FLSJWMNCBTR0604/14/2008115.70.78780.0493521FLSJWMNCBTR0605/05/200813.79524.40.96050.0926521FLVEMDVC-07705/05/200813.7125.750.7340.146.921FLGW 351605/06/2008120.120.6120.047421FLCEN 2701057905/20/20082.423.60.7480.131221FLGW 3494105/27/20081427.630.8660.111221FLGW 3495005/27/20081727.841.0170.121221FLGW 3494305/27/20081827.870.9110.121221FLGW 3494005/27/20081927.570.9110.111121FLGW 3494505/27/20081227.390.9740.121221FLGW 3494705/27/20081227.390.9370.111121FLGW 3494705/27/20081027.2950.9370.1121FLGW 3494905/27/20081527.1450.9630.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21FLGW 3516                  | 04/02/2008  | 1.5                    | 20.375       | 0.671        | 0.056        | 4              |
| 21FLSJWMNCBTR06       05/05/2008       13.795       24.4       0.9605       0.0926       5         21FLVEMDVC-077       05/05/2008       13.71       25.75       0.734       0.14       6.9         21FLGW 3516       05/06/2008       1       20.12       0.612       0.047       4         21FLCEN 27010579       05/20/2008       2.4       23.6       0.748       0.13       12         21FLGW 34941       05/27/2008       14       27.63       0.866       0.11       0.12         21FLGW 34950       05/27/2008       17       27.84       1.017       0.12       0.12         21FLGW 34930       05/27/2008       18       27.87       0.911       0.12       0.12         21FLGW 34940       05/27/2008       19       27.57       0.911       0.12       0.12         21FLGW 34940       05/27/2008       19       27.57       0.911       0.12       0.12         21FLGW 34945       05/27/2008       12       27.39       0.974       0.12       0.12         21FLGW 34947       05/27/2008       10       27.295       0.937       0.11       0.11         21FLGW 34949       05/27/2008       10       27.295       0.937 <td>21FLSJWMNCBTR06</td> <td>04/14/2008</td> <td>12 705</td> <td>15.7</td> <td>0.7878</td> <td>0.0493</td> <td>5</td>                                                       | 21FLSJWMNCBTR06              | 04/14/2008  | 12 705                 | 15.7         | 0.7878       | 0.0493       | 5              |
| 21FLVEMDVC-0/7       05/05/2008       13.71       25.75       0.734       0.14       6.9         21FLGW 3516       05/06/2008       1       20.12       0.612       0.047       4         21FLCEN 27010579       05/20/2008       2.4       23.6       0.748       0.13       12         21FLGW 34941       05/27/2008       14       27.63       0.866       0.11         21FLGW 34950       05/27/2008       22       27.88       1.116       0.12         21FLGW 34943       05/27/2008       17       27.84       1.017       0.12         21FLGW 34930       05/27/2008       18       27.87       0.911       0.12         21FLGW 34940       05/27/2008       19       27.57       0.911       0.12         21FLGW 34945       05/27/2008       12       27.39       0.974       0.12         21FLGW 34947       05/27/2008       12       27.39       0.937       0.11         21FLGW 34947       05/27/2008       10       27.295       0.937       0.11         21FLGW 34949       05/27/2008       15       27.145       0.963       0.11                                                                                                                                                                                                                                                                | 21FLSJWMNCBTR06              | 05/05/2008  | 13.795                 | 24.4         | 0.9605       | 0.0926       | 5              |
| 21FLGW 3516       05/06/2008       1       20.12       0.612       0.047       4         21FLCEN 27010579       05/20/2008       2.4       23.6       0.748       0.13       12         21FLGW 34941       05/27/2008       14       27.63       0.866       0.11         21FLGW 34950       05/27/2008       22       27.88       1.116       0.12         21FLGW 34943       05/27/2008       17       27.84       1.017       0.12         21FLGW 34930       05/27/2008       18       27.87       0.911       0.12         21FLGW 34940       05/27/2008       19       27.57       0.911       0.11         21FLGW 34945       05/27/2008       12       27.39       0.974       0.12         21FLGW 34947       05/27/2008       12       27.39       0.937       0.11         21FLGW 34947       05/27/2008       10       27.295       0.937       0.11         21FLGW 34949       05/27/2008       15       27.145       0.963       0.11                                                                                                                                                                                                                                                                                                                                                                 | 21FLVEMDVC-077               | 05/05/2008  | 13./1                  | 25.75        | 0.734        | 0.14         | 6.9            |
| 21FLCEN 27010579       05/20/2008       2.4       25.6       0.748       0.13       12         21FLGW 34941       05/27/2008       14       27.63       0.866       0.11         21FLGW 34950       05/27/2008       22       27.88       1.116       0.12         21FLGW 34943       05/27/2008       17       27.84       1.017       0.12         21FLGW 34930       05/27/2008       18       27.87       0.911       0.12         21FLGW 34940       05/27/2008       19       27.57       0.911       0.11         21FLGW 34945       05/27/2008       12       27.39       0.974       0.12         21FLGW 34947       05/27/2008       10       27.295       0.937       0.11         21FLGW 34949       05/27/2008       15       27.145       0.963       0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21FLGW 3516                  | 05/06/2008  | 1                      | 20.12        | 0.612        | 0.047        | 4              |
| 21FLGW 34941       05/27/2008       14       27.63       0.866       0.11         21FLGW 34950       05/27/2008       22       27.88       1.116       0.12         21FLGW 34943       05/27/2008       17       27.84       1.017       0.12         21FLGW 34930       05/27/2008       18       27.87       0.911       0.12         21FLGW 34940       05/27/2008       19       27.57       0.911       0.11         21FLGW 34945       05/27/2008       12       27.39       0.974       0.12         21FLGW 34947       05/27/2008       10       27.295       0.937       0.11         21FLGW 34949       05/27/2008       15       27.145       0.963       0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21FLCEN 2/0105/9             | 05/20/2008  | 2.4                    | 23.0         | 0.748        | 0.13         | 12             |
| 21FLGW 34950       05/27/2008       22       27.88       1.116       0.12         21FLGW 34943       05/27/2008       17       27.84       1.017       0.12         21FLGW 34930       05/27/2008       18       27.87       0.911       0.12         21FLGW 34940       05/27/2008       19       27.57       0.911       0.11         21FLGW 34945       05/27/2008       12       27.39       0.974       0.12         21FLGW 34947       05/27/2008       10       27.295       0.937       0.11         21FLGW 34949       05/27/2008       15       27.145       0.963       0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21FLGW 34941                 | 05/27/2008  | 14                     | 27.63        | 0.866        | 0.11         |                |
| 21FLGW 34943       03/27/2008       17       27.84       1.017       0.12         21FLGW 34930       05/27/2008       18       27.87       0.911       0.12         21FLGW 34940       05/27/2008       19       27.57       0.911       0.11         21FLGW 34945       05/27/2008       12       27.39       0.974       0.12         21FLGW 34947       05/27/2008       10       27.295       0.937       0.11         21FLGW 34949       05/27/2008       15       27.145       0.963       0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21FLGW 34950                 | 05/27/2008  | 17                     | 27.88        | 1.110        | 0.12         |                |
| 21FLGW         34950         03/2//2008         18         27.87         0.911         0.12           21FLGW         34940         05/27/2008         19         27.57         0.911         0.11           21FLGW         34945         05/27/2008         12         27.39         0.974         0.12           21FLGW         34947         05/27/2008         10         27.295         0.937         0.11           21FLGW         34949         05/27/2008         15         27.145         0.963         0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21FLGW 34943                 | 05/27/2008  | 17                     | 27.04        | 0.011        | 0.12         |                |
| 21FLGW 34940       03/27/2008       19       27.37       0.911       0.11         21FLGW 34945       05/27/2008       12       27.39       0.974       0.12         21FLGW 34947       05/27/2008       10       27.295       0.937       0.11         21FLGW 34949       05/27/2008       15       27.145       0.963       0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21FLGW 34930                 | 05/27/2008  | 18                     | 27.87        | 0.911        | 0.12         |                |
| 21FLGW         34943         05/27/2008         12         27.39         0.974         0.12           21FLGW         34947         05/27/2008         10         27.295         0.937         0.11           21FLGW         34949         05/27/2008         15         27.145         0.963         0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21FLUW 34940<br>21FLCW 24045 | 05/27/2008  | 19                     | 27.37        | 0.911        | 0.11         |                |
| 21FLGW         34947         05/21/2008         10         27.295         0.957         0.11           21FLGW         34949         05/27/2008         15         27.145         0.963         0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21FLUW 34943                 | 05/27/2008  | 12                     | 21.39        | 0.974        | 0.12         |                |
| $[21\Gamma LUW 34747 ] 03/27/2000 [ 13 [ 27.143 ] 0.703 [ 0.11 ]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21FLUW 34947<br>21FLCW 24040 | 05/27/2008  | 10                     | 27.293       | 0.937        | 0.11         |                |
| 21FLGW 34933 05/27/2008 11 27.055 0.966 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21FLUW 34949<br>21FLGW 34022 | 05/27/2008  | 13                     | 27.145       | 0.905        | 0.11         |                |

| Station          | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLGW 34934     | 05/27/2008  | 7                      | 27.145       | 0.9          | 0.12         |                |
| 21FLGW 34932     | 05/27/2008  | 9.4                    | 27.395       | 0.936        | 0.11         |                |
| 21FLGW 34939     | 05/27/2008  | 10                     | 27.335       | 0.844        | 0.1          |                |
| 21FLGW 34937     | 05/28/2008  | 2.6                    | 27.155       | 1.069        | 0.3          |                |
| 21FLGW 34931     | 05/28/2008  | 2.1                    | 27.055       | 0.942        | 0.29         |                |
| 21FLGW 34946     | 05/28/2008  | 10                     | 28.195       | 0.972        | 0.21         |                |
| 21FLGW 34944     | 05/28/2008  | 4.4                    | 28.37        | 0.97         | 0.22         |                |
| 21FLGW 34942     | 05/28/2008  | 7.3                    | 28.035       | 0.856        | 0.16         |                |
| 21FLGW 34935     | 05/28/2008  | 23                     | 28.33        | 1.149        | 0.23         |                |
| 21FLGW 34929     | 05/28/2008  | 28                     | 28.255       | 1.053        | 0.17         |                |
| 21FLGW 34938     | 05/28/2008  | 22                     | 28.035       | 0.899        | 0.13         |                |
| 21FLGW 34936     | 05/28/2008  | 19                     | 27.875       | 0.968        | 0.12         |                |
| 21FLGW 3516      | 06/03/2008  | 1.4                    | 23.825       | 0.644        | 0.05         | 4              |
| 21FLGW 34948     | 06/16/2008  | 1                      | 24.29        | 0.826        | 0.082        |                |
| 21FLGW 34951     | 06/17/2008  | 4.5                    | 29.47        | 1.329        | 0.26         |                |
| 21FLGW 34957     | 06/17/2008  | 49                     | 29.695       | 1.418        | 0.3          |                |
| 21FLGW 34955     | 06/17/2008  | 65                     | 30.685       | 1.508        | 0.27         |                |
| 21FLGW 34954     | 06/19/2008  | 98                     | 30.12        | 1.608        | 0.29         |                |
| 21FLGW 34952     | 06/19/2008  | 120                    | 31.14        | 1.614        | 0.28         |                |
| 21FLGW 34953     | 06/19/2008  | 450                    | 30.1         | 4.308        | 0.97         |                |
| 21FLGW 34958     | 06/19/2008  | 210                    | 30.22        | 1.808        | 0.37         |                |
| 21FLGW 34956     | 06/19/2008  | 48                     | 30.71        | 1.316        | 0.22         |                |
| 21FLGW 3516      | 07/01/2008  | 2                      | 24.01        |              |              |                |
| 21FLSJWMNCBTR06  | 07/15/2008  | 5.8073                 | 27.24        | 1.0223       | 0.0714       | 5.5            |
| 21FLGW 3516      | 08/04/2008  | 1                      | 25.92        | 1.352        | 0.071        | 4              |
| 21FLSJWMNCBTR06  | 08/04/2008  | 1                      | 27.6         |              |              | 5              |
| 21FLVEMDVC-078   | 08/04/2008  | 1                      | 25.53        | 1.782        | 0.05         | 14             |
| 21FLVEMDVC-077   | 08/04/2008  | 2.47                   | 26.08        | 1.716        | 0.06         | 1              |
| 21FLGW 3516      | 09/03/2008  | 1                      | 26.78        | 3.53         | 0.13         | 4              |
| 21FLSJWMNCBTR06  | 09/09/2008  | 1                      | 27.55        | 3.6308       | 0.1313       | 5              |
| 21FLGW 34921     | 09/15/2008  | 1                      | 26.21        | 4.52         | 0.3          |                |
| 21FLGW 3516      | 09/30/2008  | 1                      | 24.29        | 4.05         | 0.09         | 5              |
| 21FLSJWMNCBTR06  | 10/15/2008  | 1                      | 24.8         | 3.7495       | 0.0696       | 5              |
| 21FLSJWMNCBTR06  | 11/03/2008  | 1                      | 20.2         | 3.8434       | 0.0623       | 5              |
| 21FLGW 3516      | 11/03/2008  | 1                      | 19.11        | 2.51         | 0.039        | 4              |
| 21FLVEMDVC-078   | 11/04/2008  | 1                      | 19.41        |              | 0.04         | 2.2            |
| 21FLVEMDVC-077   | 11/04/2008  |                        | 19.84        | 2.6.1        | 0.05         | 2.5            |
| 21FLCEN 27010579 | 11/06/2008  | 1                      | 18.6         | 3.04         | 0.14         | 4              |
| 21FLGW 3516      | 12/02/2008  |                        | 13.76        | 1.66         | 0.027        | 4              |
| 21FLSJWMNCBTR06  | 12/10/2008  |                        | 19.18        | 3.3076       | 0.0415       | 6.5            |
| 21FLGW 3516      | 12/30/2008  |                        | 16.06        | 1.047        | 0.041        | 4              |
| 21FLSJWMNCBTR06  | 01/07/2009  |                        | 18.27        | 1.1551       | 0.0335       | 5              |
| 21FLA 27010924   | 01/13/2009  | 1.6                    | 15.8         |              |              |                |
| Station           | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|-------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLA 27010578    | 01/13/2009  | 2                      | 17.8         |              |              |                |
| 21FLA 27010429FLA | 01/13/2009  | 7.5                    | 18.4         |              |              |                |
| 21FLA 27010923    | 01/13/2009  | 13                     | 18.2         |              |              |                |
| 21FLVEMDVC-078    | 02/02/2009  | 2.25                   | 13.77        |              | 0.03         | 1.8            |
| 21FLSJWMNCBTR06   | 02/02/2009  | 4.2275                 | 14.3         | 0.8188       | 0.037        | 3              |
| 21FLVEMDVC-077    | 02/02/2009  | 17.92                  | 13.43        |              | 0.04         | 6.8            |
| 21FLGW 3516       | 02/03/2009  | 2.8                    | 13.395       | 0.92         | 0.035        | 4              |
| 21FLA 27010924    | 02/11/2009  | 1.8                    | 14.3         |              |              |                |
| 21FLA 27010578    | 02/11/2009  | 4.1                    | 17.1         |              |              |                |
| 21FLA 27010923    | 02/11/2009  | 8                      | 17.3         |              |              |                |
| 21FLA 27010429FLA | 02/11/2009  | 7.7                    | 17.8         |              |              |                |
| 21FLSJWMNCBTR06   | 03/04/2009  | 1                      | 18.9         | 0.7857       | 0.0341       | 5              |
| 21FLGW 3516       | 03/04/2009  | 1.6                    | 12.445       | 0.698        | 0.09         | 4              |
| 21FLGW 3516       | 04/01/2009  | 1.1                    | 19.72        | 0.92         | 0.12         | 4              |
| 21FLA 27010924    | 04/14/2009  | 3.9                    | 19.33        |              |              |                |
| 21FLA 27010578    | 04/14/2009  | 3.7                    | 24.01        |              |              |                |
| 21FLA 27010923    | 04/14/2009  | 8.5                    | 23.5         |              |              |                |
| 21FLA 27010429FLA | 04/14/2009  | 9.2                    | 23.93        |              |              |                |
| 21FLSJWMNCBTR06   | 04/15/2009  | 2.5899                 | 21.1         | 0.7986       | 0.0472       | 5              |
| 21FLVEMDVC-077    | 05/04/2009  | 10.46                  | 27           |              | 0.26         | 11.7           |
| 21FLGW 3516       | 05/05/2009  | 1.1                    | 22.225       | 0.998        | 0.54         | 4              |
| 21FLGW 3516       | 06/02/2009  | 1                      | 24.935       | 2.108        | 0.089        | 4              |
| 21FLSJWMNCBTR06   | 06/16/2009  | 1.2015                 | 26.39        | 2.3077       | 0.0472       | 5              |
| 21FLGW 3516       | 07/07/2009  | 3.3                    | 26.385       | 1.66         | 0.071        | 5              |
| 21FLA 27010429FLA | 07/15/2009  | 3.3                    | 26.29        |              |              |                |
| 21FLA 27010923    | 07/15/2009  | 20                     | 28.62        |              |              |                |
| 21FLA 27010578    | 07/15/2009  | 1.4                    | 25.76        |              |              |                |
| 21FLA 27010924    | 07/15/2009  | 2.7                    | 25.37        |              |              |                |
| 21FLSJWMNCBTR06   | 07/20/2009  | 1.7889                 | 25.05        | 2.2476       | 0.1066       | 5              |
| 21FLSJWMNCBTR06   | 08/03/2009  | 1                      | 27.8         |              | 0.0442       | 5              |
| 21FLVEMDVC-078    | 08/03/2009  | 1.65                   | 27.76        |              | 0.05         | 2.6            |
| 21FLVEMDVC-077    | 08/03/2009  | 3.27                   | 26.96        |              | 0.05         | 2.8            |
| 21FLGW 3516       | 08/04/2009  | 1                      | 26.035       | 2.19         | 0.066        | 5              |
| 21FLGW 3516       | 09/03/2009  | 1.7                    | 24.74        | 1.143        | 0.051        | 6              |
| 21FLSJWMNCBTR06   | 09/08/2009  | 16.688                 | 26.4         | 1.5032       | 0.1615       | 5              |
| 21FLSJWMNCBTR06   | 09/09/2009  |                        |              |              |              |                |
| 21FLA 27010923    | 09/16/2009  |                        | 29.5         |              |              |                |
| 21FLGW 3516       | 10/06/2009  | 1                      | 24.3         | 1.51         | 0.042        | 5              |
| 21FLSJWMNCBTR06   | 10/07/2009  | 3.5817                 | 25.5         | 2.1026       | 0.0727       | 4              |
| 21FLA 27010924    | 10/08/2009  | 1                      | 25.4         |              |              |                |
| 21FLA 27010578    | 10/08/2009  | 1                      | 25.2         |              |              |                |
| 21FLA 27010429FLA | 10/08/2009  | 2.8                    | 26.9         |              |              |                |
| 21FLA 27010923    | 10/08/2009  | 26                     | 28.5         |              |              |                |

| Station           | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|-------------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLSJWMNCBTR06   | 11/02/2009  | 356.85                 | 23.4         | 3.4203       | 0.2731       | 22             |
| 21FLVEMDVC-078    | 11/02/2009  | 1                      | 22.16        |              | 0.04         | 1.3            |
| 21FLVEMDVC-077    | 11/02/2009  | 7.52                   | 23.03        |              | 0.05         | 1.4            |
| 21FLGW 3516       | 11/04/2009  | 1                      | 21.045       | 0.793        | 0.028        | 4              |
| 21FLGW 3516       | 12/02/2009  | 1                      | 17.265       | 0.697        | 0.03         | 4              |
| 21FLA 27010924    | 12/09/2009  |                        | 21.2         |              |              |                |
| 21FLA 27010923    | 12/09/2009  |                        | 21.83        |              |              |                |
| 21FLA 27010429FLA | 12/09/2009  |                        | 20.2         |              |              |                |
| 21FLCEN 27010579  | 12/09/2009  | 1.1                    | 20.6         | 0.69         | 0.03         | 4              |
| 21FLSJWMNCBTR06   | 12/28/2009  | 3.204                  | 13.91        |              | 0.0519       | 2.5            |
| 21FLGW 3516       | 01/07/2010  | 1                      | 5.9          | 0.679        | 0.025        | 4              |
| 21FLSJWMNCBTR06   | 01/11/2010  | 1                      | 6.24         | 0.837        | 0.0319       | 1.45           |
| 21FLSJWMNCBTR06   | 02/01/2010  | 3.0371                 | 15.26        | 0.986        | 0.0248       | 1.45           |
| 21FLGW 3516       | 02/10/2010  | 3.8                    | 12.39        | 0.971        | 0.033        | 4              |
| 21FLSJWMNCBTR06   | 03/01/2010  | 2.1761                 | 14.9         | 1.381        | 0.0189       | 1.45           |
| 21FLVEMDVC-078    | 03/01/2010  | 1.34                   | 12.27        |              | 0.02         | 0.8            |
| 21FLVEMDVC-077    | 03/01/2010  | 1                      | 11.53        |              | 0.01         | 1.2            |
| 21FLGW 3516       | 03/04/2010  | 1.7                    | 10.655       | 1.004        | 0.019        | 4              |
| 21FLSJWMNCBTR06   | 04/05/2010  | 1                      | 20.9         | 1.5966       | 0.0425       | 1.45           |
| 21FLVEMDVC-077    | 04/05/2010  | 1                      | 19.54        |              | 0.03         | 1.58           |
| 21FLVEMDVC-078    | 04/05/2010  | 1.6                    | 19.36        |              | 0.03         | 1.89           |
| 21FLGW 3516       | 04/07/2010  | 1.3                    | 19.58        | 1.453        | 0.053        | 4              |
| 21FLSJWMNCBTR06   | 05/03/2010  | 1                      | 26.2         | 1.6284       | 0.0529       | 2.9            |
| 21FLGW 3516       | 05/04/2010  | 1                      | 24.6         | 1.05         | 0.052        | 4              |
| 21FLGW 3516       | 06/02/2010  | 3.3                    | 24.71        | 0.791        | 0.048        | 4              |
| 21FLSJWMNCBTR06   | 06/08/2010  | 2.4297                 | 27.76        | 0.8234       | 0.0363       | 2.9            |
| 21FLGW 3516       | 07/06/2010  | 1                      | 24.83        | 0.791        | 0.042        | 4              |
| 21FLSJWMNCBTR06   | 07/12/2010  | 75.962                 | 27.4         | 1.5276       | 0.0923       | 6.5            |
| 21FLVEMDVC-078    | 07/12/2010  | 2.44                   | 26.15        | 1.32         | 0.07         | 5.3            |
| 21FLVEMDVC-077    | 07/12/2010  | 12.15                  | 29.87        | 2.254        | 0.26         | 5.1            |
| 21FLGW 3516       | 08/02/2010  | 1                      | 26.08        | 1            | 0.16         | 4              |
| 21FLSJWMNCBTR06   | 08/02/2010  | 1.869                  | 28.4         | 1.465        | 0.0581       | 2.9            |
| 21FLCEN 27010579  | 08/09/2010  | 1                      | 26.9         | 0.86         | 0.093        |                |
| 21FLGW 3516       | 09/02/2010  | 1.8                    | 24.59        | 2.02         | 0.068        | 20             |
| 21FLSJWMNCBTR06   | 09/13/2010  | 1                      | 27.6         | 2.0339       | 0.046        | 3.5            |
| 21FLSJWMNCBTR06   | 10/04/2010  | 1                      | 21.05        | 0.9308       | 0.0448       | 2.9            |
| 21FLVEMDVC-078    | 10/04/2010  | 1                      | 20.46        |              | 0.25         | 1.3            |
| 21FLVEMDVC-077    | 10/04/2010  | 51.34                  | 28.2         |              | 0.1          | 3.3            |
| 21FLGW 3516       | 10/06/2010  | 1                      | 19.16        | 0.849        | 0.12         | 23             |
| 21FLGW 3516       | 11/02/2010  | 1                      | 20.03        | 0.738        | 0.28         | 4              |
| 21FLSJWMNCBTR06   | 11/03/2010  | 29.682                 | 23.2         | 1.0616       | 0.0826       | 5              |
| 21FLGW 3516       | 12/02/2010  | 2.2                    | 12.755       | 0.78         | 0.47         | 4              |
| 21FLSJWMNCBTR06   | 12/15/2010  | 1.4377                 | 8.8          | 0.6599       | 0.0291       | 4.5            |

| Station         | Sample Date | Corr<br>Chla<br>(µg/L) | Temp<br>(°C) | TN<br>(mg/l) | TP<br>(mg/L) | TSS<br>(mg/Ll) |
|-----------------|-------------|------------------------|--------------|--------------|--------------|----------------|
| 21FLGW 3516     | 01/04/2011  | 1                      | 12.15        | 0.659        | 0.12         | 4              |
| 21FLSJWMNCBTR06 | 01/10/2011  | 1                      | 15.5         | 0.6882       | 0.0362       | 3.5            |
| 21FLVEMDVC-078  | 01/10/2011  | 1                      | 13.39        | 1.276        | 0.18         | 0.5            |
| 21FLVEMDVC-077  | 01/10/2011  | 18.06                  | 15.52        | 3.819        | 0.16         | 2.6            |
| 21FLGW 3516     | 02/02/2011  | 1.1                    | 16.92        | 0.564        | 0.032        | 4              |
| 21FLSJWMNCBTR06 | 02/09/2011  | 1.068                  | 15.6         | 0.6331       | 0.05         | 2.9            |
| 21FLGW 3516     | 03/02/2011  | 1.1                    | 18.02        | 0.654        | 0.06         | 4              |
| 21FLSJWMNCBTR06 | 03/16/2011  | 1                      | 17.7         | 0.6023       | 0.031        | 2.9            |
| 21FLGW 3516     | 04/05/2011  | 3.4                    | 20.48        | 0.76         | 0.057        | 4              |
| 21FLSJWMNCBTR06 | 04/06/2011  | 1.1748                 | 18.1         | 0.958        | 0.0323       | 2.9            |
| 21FLVEMDVC-078  | 04/11/2011  | 1                      | 21.88        |              |              |                |
| 21FLVEMDVC-077  | 04/11/2011  | 17.86                  | 24.97        |              |              |                |
| 21FLGW 3516     | 05/03/2011  | 1.5                    | 21.68        | 0.848        | 0.079        | 4              |
| 21FLSJWMNCBTR06 | 05/11/2011  | 21.467                 | 26.7         | 1.2494       | 0.0814       | 5              |
| 21FLGW 3516     | 06/06/2011  | 1.7                    | 23.92        | 0.831        | 0.074        | 6              |
| 21FLGW 3516     | 07/05/2011  | 1.2                    | 26.065       | 0.832        | 0.057        | 4              |
| 21FLVEMDVC-078  | 07/11/2011  | 3.67                   | 26.09        | 0.762        | 0.05         | 1.6            |
| 21FLSJWMNCBTR06 | 07/11/2011  | 3.7647                 | 27.8         | 0.9147       | 0.0669       | 2.9            |
| 21FLVEMDVC-077  | 07/11/2011  | 16.92                  | 26.3         | 4.357        | 0.09         | 2.2            |
| 21FLSJWMNCBTR06 | 08/03/2011  | 2.3763                 | 28.6         | 0.8417       | 0.0504       | 5.8            |
| 21FLGW 3516     | 08/03/2011  | 1.4                    | 25.685       | 0.864        | 0.053        | 5              |
| 21FLSJWMNCBTR06 | 09/07/2011  | 1                      | 26.8         | 0.7362       | 0.0571       | 2.9            |
| 21FLVEMDVC-078  | 10/03/2011  | 1                      | 20           | 0.742        | 0.02         | 0.7            |
| 21FLVEMDVC-077  | 10/03/2011  | 17.1                   | 26.04        | 2.058        | 0.02         | 1.2            |

## Appendix C: LSPC Modeling Methodology, Daytona Watershed

An LSPC model was utilized to estimate the nutrient loads within and discharge from the Daytona watershed, which included loads from Guana, Pellicer, and Tomoka Rivers. The Loading Simulation Program in C++ (LSPC) is a watershed modeling system that includes streamlined Hydrologic Simulation Program Fortran (HSPF) algorithms for simulating hydrology, sediment, and general water quality as well as a simplified stream fate and transport model. LSPC is derived from the Mining Data Analysis System (MDAS), which was originally developed by USEPA Region 3 (under contract with Tetra Tech) and has been widely used for TMDLs. In 2003, the USEPA Region 4 contracted with Tetra Tech to refine, streamline, and produce user documentation for the model for public distribution. LSPC was developed to serve as the primary watershed model for the USEPA TMDL Modeling Toolbox. LSPC was used to simulate runoff (flow, biological oxygen demand, total nitrogen, total phosphorus and dissolved oxygen) from the land surface using a daily timestep for current and natural conditions. LSPC provided tributary flows and temperature to the EFDC estuary models and tributary water quality concentrations to WASP7 estuary models.

In order to evaluate the contributing sources to a waterbody and to represent the spatial variability of these sources within the watershed model, the contributing drainage area was represented by a series of sub-watersheds for each of the models. The sub-watersheds for the Daytona Watershed model were developed using the 12-digit hydrologic unit code (HUC12) watershed data layer and the Geological Survey (USGS) National Hydrograph Dataset (NHD) (Figure 1.1).

The LSPC model has a representative reach defined for each sub-watershed, and the main channel stem within each sub-watershed was used as the representative reach. The characteristics for each reach included the length and slope of the reach, the channel geometry and the connectivity between the sub-watersheds. Length and slope data for each reach were obtained using the USGS DEM and NHD data.

The attributes supplied for each reach were used to develop a function table (FTABLE) that describes the hydrology of the stream reach by defining the functional relationship between water depth, surface area, water volume, and outflow in the segment. The assumption of a fixed depth, area, volume, outflow relationship rules out cases where the flow reverses direction or where one reach influences another upstream of it in a time-dependent way.

The watershed model uses land use data as the basis for representing hydrology and nonpoint source loadings. The FDEP Level III Florida Land Use, specifically the St. Johns River Water Management District (SJRWMD) 2004 dataset, was used to determine the land use representation. The National Landuse Coverage Dataset (NLCD) was used to develop the impervious land use representations.



Figure 1.1 LSPC sub-watershed boundaries for the Daytona Watershed

The SJRWMD coverage utilized a variety of land use classes which were grouped and reclassified into 18 land use categories: beaches/dune/mud, open water, utility swaths, developed open space, developed low intensity, developed medium intensity, developed high intensity, clear-cut/sparse, guarries/strip mines, deciduous forest, evergreen forest, mixed forest, golf courses, pasture, row crop, forested wetland, non-forested wetland (salt/brackish), and nonforested wetland (freshwater). The LSPC model requires division of land uses in each subwatershed into separate pervious and impervious land units. The NLCD 2006 percent impervious coverage was used to determine the percent impervious area associated with each land use category. Any impervious areas associated with utility swaths, developed open space, and developed low intensity, were grouped together and placed into a new land use category named low intensity development impervious. Impervious areas associated with medium intensity development and high intensity development were kept separate and placed into two new categories for medium intensity development impervious and high intensity development impervious, respectively. Finally, any impervious area not already accounted for in the three developed impervious categories, were grouped together into a fourth new category for all remaining impervious land use (Figure 1.2).

Soil data for the Florida watersheds was obtained from the Soil Survey Geographic Database (SSURGO). The database was produced and distributed by the Natural Resources Conservation Service (NRCS). The SSURGO data was used to determine the total area that each hydrologic soil group covered within each sub-watershed. The sub-watersheds were represented by the hydrologic soil group that had the highest percentage of coverage within the boundaries of the sub-watershed. There dominant soil groups in Daytona are D and D-type soils (B/D), which have a high water table due to characteristics such as slow infiltration rates or shallow soils over an impervious layer (Figure 1.3).

Facilities permitted under the National Pollutant Discharge Elimination System (NPDES) are, by definition, considered point sources. The NPDES geographic information system (GIS) coverages, provided by FDEP were adopted as the starting point for the evaluation of point sources for the Florida watershed models and reflected discharges as of December 2009. In areas where data was incomplete, data from EPA-PCS was used. Following data collection, any remaining gaps in the data that were three months or less were filled by averaging data from before and after gap months. If the gaps in the data were larger than three months the long term average was supplied. Stormwater discharges, such as MS4s, were not input directly into the model but were assumed to be included in the urban land use loading. Point sources that were designated as reuse facilities were not input directly into the model, but were accounted for in the adjustment of the hydrologic calibration parameters. Point sources directly discharging to the Daytona Watershed that were included in the watershed model are shown in Figure 1.4.

In the watershed models, nonpoint source loadings and hydrological conditions are dependent on weather conditions. Hourly data from weather stations within the boundaries of, or in close proximity to, the sub-watersheds were applied to the watershed model. A weather data forcing file was generated in ASCII format (\*.air) for each meteorological station used in the hydrological evaluations in LSPC. Each meteorological station file contained atmospheric data used in modeling the hydrological processes. These data included precipitation, air temperature, dew point temperature, wind speed, cloud cover, evaporation, and solar radiation. These data are used directly, or calculated from the observed data. The Daytona Watershed model weather stations contained data from 1996 through 2009.



Figure 1.2 Re-classified SJRWMD 2004 land use coverage of the Daytona watershed.



Figure 1.3 Hydrologic soils group for the Daytona Watershed

72



Figure 1.4 Point Sources included in the Daytona Watershed Model

73

| Station | LSPC |                            | -         |              |          |           |
|---------|------|----------------------------|-----------|--------------|----------|-----------|
| ID      | ID   | Station Name               | Elevation | County       | Latitude | Longitude |
| 082150  | 1    | Daytona Beach              | 29        | Volusia, FL  | 29.1903  | -81.0636  |
| 082158  | 2    | Daytona Beach Intl Airport | 31        | Volusia, FL  | 29.1828  | -81.0483  |
| 084366  | 3    | Jacksonville Beach         | 10        | Duval, FL    | 30.2900  | -81.3922  |
| 086767  | 4    | Palm Coast 6 NE            | 5         | Flagler, FL  | 29.6347  | -81.2061  |
| 087826  | 5    | St. Augustine Lighthouse   | 12        | St. Johns FL | 29.8875  | -81.2917  |

 Table 1.1
 Meteorological stations used in the Daytona watershed model.

The calibration of the LSPC watershed hydrology model involved comparing simulated stream flows to the USGS flow stations. The calibration of the hydrologic parameters was performed from January 1, 1997 through December 31, 2009. The best available gages were used as hydrology calibration stations.

LSPC's algorithms are identical to those in the Hydrologic Simulation Program FORTRAN (HSPF). The LSPC/HSPF modules used to represent watershed hydrology include PWATER (water budget simulation for pervious land units) and IWATER (water budget simulation for impervious land units). A detailed description of relevant hydrological algorithms is presented in the HSPF (v12) User's Manual (Bicknell et al. 2004).

Calibration parameters were adjusted within the BASINS Technical Note 6 typical minimum and maximum ranges for both hydrologic soil group and land use. Parameters were not adjusted outside the possible minimum and maximum ranges. To calibrate, information on the watersheds' topography, geology, climate, land use, and anthropogenic influences was researched. Parameters were adjusted within reasonable constraints until an acceptable agreement was achieved between simulated and observed stream flow. Model parameters adjusted included: evapo-transpiration, infiltration, upper and lower zone storage, ground water storage, losses to the deep ground water system, and Manning's roughness coefficient "n."

A rating system was applied to the calibration and validations stations to determine the overall calibration success. A weighted score was assigned to simulated verse observed errors, with total flow, storm flow, and low flow volumes having the greatest weight. The summation of the weighted scores was assigned a qualitative descriptor of Very Good (VG), Good (G), Fair (F), or Poor (P). The highest possible score was 80 and the lowest possible score was 20. Scores from 80-76 were rated as VG, 75-56 G, 55-36 F, and 35-20 P.

Hydrologic calibration results are presented in Figure 1.5 through 1.10 and Tables 1.2 and 1.3.





Tomoka River near Holly Hill, FL.





Tomoka River near Holly Hill, FL.



Tomoka River near Holly Hill, FL.

Table 1.3Summary statistics: Model Outlet 120015 vs. USGS 02247510 Tomoka River<br/>near Holly Hill, FL.

| LSPC Simulated Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                            | Observed Flow Gage                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                |                                                                     |  |              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--------------|
| REACH OUTFLOW FROM SUBBASIN 120015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                            | USGS 02247510 TOMOKA RIVER NEAR HOLLY HILL, FL                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                |                                                                     |  |              |
| 13-Year Analysis Period: 1/1/1997 - 12/31/2009<br>Flow volumes are (inches/year) for upstream drainage area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a                                                                                                                                                                          | Hydrologic Unit Code: 3080201<br>Latitude: 29.21748099<br>Longitude: -81.1086687<br>Drainage Area (sq-mi): 76.8                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                     |  |              |
| Total Simulated In-stream Flow:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.09                                                                                                                                                                      | Total Observed In-stream Flo                                                                                                                                                                                                                                                                                                                                                                     | w:                                                                                                                                                                                                             | 10.20                                                               |  |              |
| Total of simulated highest 10% flows:<br>Total of Simulated lowest 50% flows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.16<br>0.45                                                                                                                                                               | Total of Observed highest 109<br>Total of Observed Lowest 509                                                                                                                                                                                                                                                                                                                                    | % flows:<br>% flows:                                                                                                                                                                                           | 6.14<br>0.50                                                        |  |              |
| Simulated Summer Flow Volume (months 7-9):<br>Simulated Fall Flow Volume (months 10-12):<br>Simulated Winter Flow Volume (months 1-3):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.15<br>2.11<br>1.86                                                                                                                                                       | Observed Summer Flow Volume (7-9):<br>Observed Fall Flow Volume (10-12):<br>Observed Winter Flow Volume (1-3):                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                | 4.56<br>2.51<br>1.76                                                |  |              |
| Simulated Spring Flow Volume (months 4-6):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.97                                                                                                                                                                       | Observed Spring Flow Volume (4-6):                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                | 1.38                                                                |  |              |
| Total Simulated Storm Volume:<br>Simulated Summer Storm Volume (7-9):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.22<br>1.76                                                                                                                                                               | Total Observed Storm Volume:<br>Observed Summer Storm Volume (7-9):                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                | Total Observed Storm Volume:<br>Observed Summer Storm Volume (7-9): |  | 2.95<br>1.44 |
| Errors (Simulated-Observed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Error Statistics                                                                                                                                                           | Recommended Criteria                                                                                                                                                                                                                                                                                                                                                                             | Score                                                                                                                                                                                                          |                                                                     |  |              |
| Error in total volume:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.07                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                             |                                                                     |  |              |
| Error in 50% lowest flows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -10.09                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                                                                              |                                                                     |  |              |
| Error in 10% highest flows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                                                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                                                                                                             |                                                                     |  |              |
| Seasonal volume error - Summer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -8.89                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                                                                                                                                                                                              |                                                                     |  |              |
| Seasonal volume error - Fall:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -15.90                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                              |                                                                     |  |              |
| Seasonal volume error - Winter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.81                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                               | 8                                                                                                                                                                                                              |                                                                     |  |              |
| Seasonal volume error - Spring:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 42.90                                                                                                                                                                      | 30 4                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                     |  |              |
| Error in storm volumes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.01                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                |                                                                     |  |              |
| Error in summer storm volumes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.56                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                              |                                                                     |  |              |
| Nash-Sutcliffe Coefficient of Efficiency, E:<br>Baseline adjusted coefficient (Garrick), E':                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.250                                                                                                                                                                      | Total Score<br>Rating                                                                                                                                                                                                                                                                                                                                                                            | 70<br>G                                                                                                                                                                                                        |                                                                     |  |              |
| Simulated Summer Flow Volume (months 1-9):<br>Simulated Fall Flow Volume (months 10-12):<br>Simulated Winter Flow Volume (months 1-3):<br>Simulated Spring Flow Volume (months 4-6):<br>Total Simulated Storm Volume:<br>Simulated Summer Storm Volume (7-9):<br><i>Errors (Simulated-Observed)</i><br>Error in total volume:<br>Error in 50% lowest flows:<br>Seasonal volume error - Summer:<br>Seasonal volume error - Fall:<br>Seasonal volume error - Spring:<br>Error in storm volumes:<br>Error in summer storm volumes:<br>Nash-Sutcliffe Coefficient of Efficiency, E:<br>Baseline adjusted coefficient (Garrick), E': | 4.15<br>2.11<br>1.86<br>1.97<br>4.22<br>1.76<br><i>Error Statistics</i><br>-1.07<br>-10.09<br>0.20<br>-8.89<br>-15.90<br>5.81<br>42.90<br>43.01<br>22.56<br>0.250<br>0.362 | Observed Summer Flow Volume ('         Observed Fall Flow Volume ('         Observed Spring Flow Volume         Total Observed Storm Volume         Observed Summer Storm Volume         Observed Summer Storm Volume         Observed Summer Storm Volume         10         10         15         30         30         30         30         20         50         Total Score         Rating | me (7-9):         10-12):         e (1-3):         e (4-6):         a:         ume (7-9):         Score         16         9         12         8         8         4         1         4         70         G | 4.36<br>2.51<br>1.76<br>1.38<br>2.95<br>1.44                        |  |              |



Figure 1.8 Mean daily flow: Model Outlet 120007 vs. USGS 02248000

Spruce Creek near Samsula, FL.



Figure 1.9 Mean monthly flow: Model Outlet 120007 vs. USGS 02248000





Spruce Creek near Samsula, FL.

78 Florida Department of Environmental Protection

| Table 1.4 | Summary statistics: Model Outlet 120007 vs. USGS 02248000 |
|-----------|-----------------------------------------------------------|
|           | Spruce Creek near Samsula, FL.                            |

| LSPC Simulated Flow                                                                                                                    |                      | Observed Flow Gage                                                                                              |                      |                                                                     |  |      |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------|--|------|
| REACH OUTFLOW FROM SUBBASIN 120007                                                                                                     |                      | USGS 02248000 SPRUCE CREEK NEAR SAMSULA, FL                                                                     |                      |                                                                     |  |      |
| 13-Year Analysis Period: 1/1/1997 - 12/31/2009<br>Flow volumes are (inches/year) for upstream drainage area                            |                      | Hydrologic Unit Code: 3080201<br>Latitude: 29.05081845<br>Longitude: -81.0464455<br>Drainage Area (sq-mi): 33.4 |                      |                                                                     |  |      |
| Total Simulated In-stream Flow:                                                                                                        | 12.29                | Total Observed In-stream Flo                                                                                    | w:                   | 12.73                                                               |  |      |
| Total of simulated highest 10% flows:<br>Total of Simulated lowest 50% flows:                                                          | 7.88<br>0.48         | Total of Observed highest 10 <sup>o</sup><br>Total of Observed Lowest 50 <sup>o</sup>                           | % flows:<br>% flows: | 8.83<br>0.42                                                        |  |      |
| Simulated Summer Flow Volume (months 7-9):<br>Simulated Fall Flow Volume (months 10-12):<br>Simulated Winter Flow Volume (months 1-3): | 4.75<br>2.89<br>2.23 | Observed Summer Flow Volume (7-9):<br>Observed Fall Flow Volume (10-12):<br>Observed Winter Flow Volume (1-3):  |                      | 5.91<br>3.48<br>2.09                                                |  |      |
| Total Simulated Spring Flow Volume (Indititis 4-6).<br>Simulated Storm Volume:<br>Simulated Summer Storm Volume (7-9):                 | <u>4.12</u><br>1.71  | Total Observed Storm Volume (4-6):                                                                              |                      | Total Observed Storm Volume:<br>Observed Summer Storm Volume (7-9): |  | 4.58 |
| Errors (Simulated-Observed)                                                                                                            | Error Statistics     | Recommended Criteria                                                                                            | S core               |                                                                     |  |      |
| Error in total volume:                                                                                                                 | -3.47                | 10                                                                                                              | 16                   |                                                                     |  |      |
| Error in 50% lowest flows:                                                                                                             | 15.18                | 10                                                                                                              | 6                    |                                                                     |  |      |
| Error in 10% highest flows:                                                                                                            | -10.82               | 15                                                                                                              | 12                   |                                                                     |  |      |
| Seasonal volume error - Summer:                                                                                                        | -19.67               | 30                                                                                                              | 8                    |                                                                     |  |      |
| Seasonal volume error - Minter:                                                                                                        | -17.12               | 30                                                                                                              | 0                    |                                                                     |  |      |
| Seasonal volume error - Spring:                                                                                                        | 0.04                 |                                                                                                                 |                      |                                                                     |  |      |
| Error in storm volumes:                                                                                                                | -10.05               |                                                                                                                 |                      |                                                                     |  |      |
| Error in summer storm volumes:                                                                                                         | -18.54               |                                                                                                                 |                      |                                                                     |  |      |
| Nash-Sutcliffe Coefficient of Efficiency, F:                                                                                           | 0.227                | Total Score                                                                                                     | 68                   |                                                                     |  |      |
| Baseline adjusted coefficient (Garrick), E':                                                                                           | 0.404                | Rating                                                                                                          | G                    | 1                                                                   |  |      |
|                                                                                                                                        |                      | Ŭ                                                                                                               |                      |                                                                     |  |      |

The calibration of the LSPC water quality model involved comparing simulated water quality concentration and loads to the measured water quality concentrations and loads. The calibration of the water quality parameters was performed from January 1, 1997 through December 31, 2009. Water quality stations used for model calibration were co-located with hydrology stations used for model calibration.

LSPC models water quality parameters by using algorithms identical to those in the Hydrologic Simulation Program FORTRAN (HSPF). The LSPC/HSPF modules used to represent water temperature include PSTEMP (soil temperature) and HTRCH (heat exchange and water temperature). The LSPC/HSPF modules used to represent dissolved oxygen include PWTGAS (pervious water temperature and dissolved gas concentrations), IWTGAS (impervious water temperature and dissolved gas concentrations), IWTGAS (impervious water temperature and dissolved gas concentrations), IWTGAS (impervious water temperature and dissolved gas concentrations), and OXRX (primary DO and BOD balances). The LSPC/HSPF modules used to represent sediment include SEDMNT (pervious production and removal of sediment), SOLIDS (accumulation and removal of solids), and SEDTRN (behavior of inorganic sediment). The LSPC/HSPF module used to represent nutrients was GQUAL. A detailed description of relevant temperature algorithms is presented in the HSPF (v12) User's Manual (Bicknell et al. 2004).

Initial water quality parameters were based on previous modeling efforts in the Chattahoochee and Flint River Basins along with information in BASINS Technical Notes 8 and Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling (USEPA 2006 and USEPA 1985). Information on TN and TP loading and application rates for specific land uses was used to determine initial TN and TP accumulation rates and interflow and ground water concentrations. Water quality parameters were adjusted within accepted minimum and maximum ranges for each hydrologic soil group, land use, and reach group.

Temperature, DO, and BOD were calibrated simultaneously because the DO algorithms require water temperature, and the DO and BOD algorithms are interrelated. Temperature was calibrated by adjusting surface and interflow temperature slopes and intercepts, ground water temperature, and radiation coefficients until the simulated data closely matched observed. Following temperature calibration, dissolved oxygen and biological oxygen demand were calibrated by adjusting reaeration, DO interflow and ground water concentration, BOD decay rate, BOD settling rate, and benthic oxygen demand. Sediment was calibrated by adjusting detachment, scour, and build-up/wash-off coefficients. The nutrient constituents were modeled by build-up/wash-off and assigning land use associated concentrations in ground water and interflow. Adjustments were made to monthly accumulation rate, monthly storage limit, interflow concentration, and ground water concentration for TN and TP until the simulated data was in range with the observed field data.

Both visual and statistical metrics were utilized during calibration. Visual calibration was accomplished by matching the trends in the measured water quality concentration data. Loading metrics, including annual loading percent error, were utilized for statistical calibration. Annual loading was only analyzed when two or more water quality samples were taken in a given year, and measured flow data was collected that year. If no measured flow data was collected but the contributing area of the water quality station had similar land uses and soil types as the contributing area of a neighboring hydrology station, weighted measured flow was used to calculate the loadings. A rating system was applied to the percent error of the average annual loading percent error was assigned a qualitative descriptor of Very Good (VG), Good (G), Fair (F), or Poor (P). Scores from  $\pm 0-40\%$  were rated as VG,  $\pm 40-90\%$  G,  $\pm 90-150\%$  F, and  $\pm 150-500\%$  P.

Nutrient concentration and loading calibration results are presented in Figures 1.11 through 1.22 and Tables 1.4 through 1.7.



Figure 1.11 Modeled vs. observed total nitrogen (mg/L)





Figure 1.12 Modeled vs. observed total phosphorus (mg/L)

at 21FLGW 3516 and 21FLCEN 27010579.

81



Figure 1.13 Modeled vs. observed total nitrogen (mg/L) at 21FLCEN 27010539 and 21FLSJWM02248000.



Figure 1.14 Modeled vs. observed total phosphorus (mg/L) at 21FLCEN 27010539 and 21FLSJWM02248000.

82

. \_ . .



Figure 1.15 Total nitrogen (mg/l) load scatter plot at 21FLGW 3516 and 21FLCEN 27010579.



Figure 1.16 Total phosphorus (mg/l) load scatter plot at 21FLGW 3516 and 21FLCEN 27010579.



Figure 1.17 Total nitrogen (mg/L) load duration curve at 21FLGW 3516 and 21FLCEN 27010579.



Figure 1.18 Total phosphorus (mg/L) load duration curve at 21FLGW 3516 and 21FLCEN 27010579.

Table 1.4Total nitrogen (lb/year) percent error for measured and modeled loading by year<br/>at 21FLGW 3516 and 21FLCEN 27010579.

| Year    | Measured TN<br>(Ib/year) | Modeled TN<br>(Ib/year) | % Error |
|---------|--------------------------|-------------------------|---------|
| 1999    | 65,823                   | 57,694                  | -12.4   |
| 2000    | 20,510                   | 54,931                  | 167.8   |
| 2001    | 217,319                  | 209,770                 | -3.5    |
| 2002    | 170,835                  | 126,810                 | -25.8   |
| 2003    | 200,075                  | 179,481                 | -10.3   |
| 2004    | 447,592                  | 222,788                 | -50.2   |
| 2005    | 250,005                  | 334,621                 | 33.9    |
| 2006    | 14,820                   | 66,834                  | 351.0   |
| 2007    | 26,375                   | 57,432                  | 117.8   |
| 2008    | 209,614                  | 142,172                 | -32.2   |
| 2009    | 103,072                  | 124,330                 | 20.6    |
| Average | 156,913                  | 143,351                 | -8.6    |

Rating of % Error was Very Good

Table 1.5Total phosphorus (lb/year) percent error for measured and modeled loading by<br/>year at 21FLGW 3516 and 21FLCEN 27010579.<br/>Rating of % Error was Very Good

| Year    | Measured TP<br>(lb/year) | Modeled TP<br>(lb/year) | % Error |
|---------|--------------------------|-------------------------|---------|
| 1999    | 2,428                    | 5,353                   | 120.5   |
| 2000    | 1,113                    | 4,459                   | 300.7   |
| 2001    | 9,510                    | 11,052                  | 16.2    |
| 2002    | 8,501                    | 7,084                   | -16.7   |
| 2003    | 9,399                    | 8,837                   | -6.0    |
| 2004    | 18,250                   | 12,059                  | -33.9   |
| 2005    | 11,603                   | 16,828                  | 45.0    |
| 2006    | 720                      | 4,169                   | 478.8   |
| 2007    | 1,637                    | 4,454                   | 172.0   |
| 2008    | 7,209                    | 7,792                   | 8.1     |
| 2009    | 3,922                    | 7,281                   | 85.7    |
| Average | 6,754                    | 8,124                   | 20.3    |



Figure 1.19 Total nitrogen (mg/L) load scatter plot at 21FLCEN 27010539 and 21FLSJWM02248000.



Figure 1.20 Total phosphorus (mg/l) load scatter plot at 21FLCEN 27010539 and 21FLSJWM02248000.

86



Figure 1.21 Total nitrogen (mg/L) load duration curve at 21FLCEN 27010539 and 21FLSJWM02248000.



Figure 1.22 Total phosphorus (mg/L) load duration curve at 21FLCEN 27010539 and 21FLSJWM02248000.

87

Table 1.6Total nitrogen (lb/year) percent error for measured and modeled loading by year<br/>at 21FLCEN 27010539 and 21FLSJWM02248000.

| Year    | Measured TN<br>(Ib/year) | Modeled TN<br>(Ib/year) | % Error |
|---------|--------------------------|-------------------------|---------|
| 1999    | 119,768                  | 26,204                  | -78.1   |
| 2000    | 9,961                    | 42,424                  | 325.9   |
| 2001    | 242,469                  | 94,435                  | -61.1   |
| 2002    | 60,424                   | 74,404                  | 23.1    |
| 2003    | 118,289                  | 108,736                 | -8.1    |
| 2004    | 151,387                  | 145,047                 | -4.2    |
| 2005    | 123,844                  | 124,677                 | 0.7     |
| 2006    |                          |                         |         |
| 2007    |                          |                         |         |
| 2008    |                          |                         |         |
| 2009    |                          |                         |         |
| Average | 118,020                  | 87,989                  | -25.4   |

Rating of % Error was Very Good

Table 1.7Total phosphorus (lb/year) percent error for measured and modeled loading by<br/>year at 21FLCEN 27010539 and 21FLSJWM02248000.<br/>Rating of % Error was Good

| Year    | Measured<br>TP (lb/year) | Modeled TP<br>(lb/year) | % Error |
|---------|--------------------------|-------------------------|---------|
| 1999    | 11,010                   | 2,371                   | -78.5   |
| 2000    | 1,149                    | 3,265                   | 184.2   |
| 2001    | 45,523                   | 7,424                   | -83.7   |
| 2002    | 5,675                    | 5,882                   | 3.7     |
| 2003    | 15,842                   | 7,964                   | -49.7   |
| 2004    | 27,323                   | 11,279                  | -58.7   |
| 2005    | 52,024                   | 9,700                   | -81.4   |
| 2006    |                          |                         |         |
| 2007    |                          |                         |         |
| 2008    |                          |                         |         |
| 2009    |                          |                         |         |
| Average | 22,649                   | 6,841                   | -69.8   |

## References

- Bicknell, Brian R., J.C. Imhoff, J.L. Kittle, Jr., T.H. Jobes, A.S. Donigian, Jr., 2004. HSPF Version 12 User's Manual. Aqua Terra Consultants, Mountain View, California.
- United States Environmental Protection Agency (USEPA). 1985. Rates, Constants, and Kinetics. Formulations in Surface Water Quality Modeling (Second Edition). Environmental Research Laboratory. Athens, GA. EPA/600/3-85/040.
- United States Environmental Protection Agency (USEPA). 2000. BASINS Technical Note 6. Estimating Hydrology and Hydraulic Parameters for HSPF. Office of Water. EPA-823-R00-012.
- United States Environmental Protection Agency (USEPA). 2006. BASINS Technical Note 8. Sediment Parameter and Calibration Guidance for HSPF. Office of Water.

## Appendix D: Kruskal–Wallis Analysis of Corrected Chla, INORGN, TN, INORGP, TP, COND, Color, and TSS, Observations versus Season in Tomoka River

Kruskal-Wallis One-Way Analysis of Variance for 653 cases Dependent variable is CHLAC Grouping variable is SEASON\$

Group Count Rank Sum

| FALL   | 152 | 39067.000 |
|--------|-----|-----------|
| SPRING | 177 | 71389.500 |
| SUMMER | 163 | 57242.000 |
| WINTER | 161 | 45832.500 |
|        |     |           |

Kruskal-Wallis Test Statistic = 67.338 Probability is 0.000 assuming Chi-square distribution with 3 df

Kruskal-Wallis One-Way Analysis of Variance for 304 cases Dependent variable is INORGN Grouping variable is SEASON\$

| Group  | Count | Rank Sum  |
|--------|-------|-----------|
| FALL   | 61    | 9441.500  |
| SPRING | 97    | 14949.000 |
| SUMMER | 74    | 13161.000 |
| WINTER | 72    | 8808.500  |

Kruskal-Wallis Test Statistic = 14.706 Probability is 0.002 assuming Chi-square distribution with 3 df

Kruskal-Wallis One-Way Analysis of Variance for 628 cases Dependent variable is TN Grouping variable is SEASON\$

| Group  | Count | Rank Sum  |
|--------|-------|-----------|
| FALL   | 143   | 52120.500 |
| SPRING | 169   | 46003.500 |
| SUMMER | 161   | 59771.500 |
| WINTER | 155   | 39610.500 |

Kruskal-Wallis Test Statistic = 52.148 Probability is 0.000 assuming Chi-square distribution with 3 df

Florida Department of Environmental Protection

90

Kruskal-Wallis One-Way Analysis of Variance for 516 cases Dependent variable is INORGP Grouping variable is SEASON\$

| Group  | Count | Rank Sum  |
|--------|-------|-----------|
| FALL   | 126   | 31418.000 |
| SPRING | 122   | 32279.500 |
| SUMMER | 133   | 44591.500 |
| WINTER | 135   | 25097.000 |

Kruskal-Wallis Test Statistic = 67.983 Probability is 0.000 assuming Chi-square distribution with 3 df

Kruskal-Wallis One-Way Analysis of Variance for 649 cases Dependent variable is TP Grouping variable is SEASON\$

| Group  | Count | Rank Sum  |
|--------|-------|-----------|
| FALL   | 155   | 42957.500 |
| SPRING | 174   | 66618.000 |
| SUMMER | 161   | 61525.000 |
| WINTER | 159   | 39824.500 |

Kruskal-Wallis Test Statistic = 66.861 Probability is 0.000 assuming Chi-square distribution with 3 df

Kruskal-Wallis One-Way Analysis of Variance for 690 cases Dependent variable is COND Grouping variable is SEASON\$

Group Count Rank Sum

| 72 49848.000 |
|--------------|
| 88 83505.000 |
| 67 48929.500 |
| 63 56112.500 |
|              |

Kruskal-Wallis Test Statistic = 71.091 Probability is 0.000 assuming Chi-square distribution with 3 df

Kruskal-Wallis One-Way Analysis of Variance for 670 cases Dependent variable is COLOR Grouping variable is SEASON\$

| Group  | Count | Rank Sum  |
|--------|-------|-----------|
| FALL   | 163   | 70276.000 |
| SPRING | 180   | 38738.000 |
| SUMMER | 168   | 67110.500 |
| WINTER | 159   | 48660.500 |

Kruskal-Wallis Test Statistic = 131.497 Probability is 0.000 assuming Chi-square distribution with 3 df

Kruskal-Wallis One-Way Analysis of Variance for 579 cases Dependent variable is TSS Grouping variable is SEASON\$

| Group  | Count | Rank Sum  |
|--------|-------|-----------|
| FALL   | 149   | 40442.500 |
| SPRING | 137   | 46416.000 |
| SUMMER | 144   | 41185.500 |
| WINTER | 149   | 39866.000 |

Kruskal-Wallis Test Statistic = 16.512 Probability is 0.001 assuming Chi-square distribution with 3 df

## Appendix E: Kruskal–Wallis Analysis of Corrected Chla, INORGN, TN, INORGP, TP, COND, Color, and TSS Observations versus Year in Tomoka River

Kruskal-Wallis One-Way Analysis of Variance for 653 cases Dependent variable is CHLAC Grouping variable is YEAR

Kruskal-Wallis Test Statistic = 95.752 Probability is 0.000 assuming Chi-square distribution with 21 df Kruskal-Wallis One-Way Analysis of Variance for 304 cases Dependent variable is INORGN Grouping variable is YEAR

| Group | Count | Rank Sum |
|-------|-------|----------|
| 1983  | 3     | 352.000  |
| 1984  | 6 1   | 1508.000 |
| 1993  | 4     | 553.000  |
| 1994  | 8 1   | 1235.000 |
| 1995  | 7 1   | 1658.500 |
| 1996  | 7 1   | 1294.000 |
| 1997  | 7     | 868.500  |
| 1998  | 11 1  | 1530.000 |
| 1999  | 12 1  | 1417.500 |
| 2000  | 2     | 240.500  |
| 2001  | 12 1  | 1426.500 |
| 2002  | 15 2  | 2497.000 |
| 2003  | 26 3  | 3292.000 |
| 2004  | 12 2  | 2462.000 |
| 2005  | 30 3  | 3037.000 |
| 2006  | 15 2  | 2149.500 |
| 2007  | 12 1  | 1489.000 |
| 2008  | 54 8  | 3426.000 |
| 2009  | 21 4  | 4039.000 |
| 2010  | 24 4  | 4900.000 |
| 2011  | 16 1  | 1985.000 |

Kruskal-Wallis Test Statistic = 53.362 Probability is 0.000 assuming Chi-square distribution with 20 df Kruskal-Wallis One-Way Analysis of Variance for 628 cases Dependent variable is TN Grouping variable is YEAR

| Group | Cou | nt Rank Sum |
|-------|-----|-------------|
| 1975  | 1   | 104.000     |
| 1983  | 3   | 614.000     |
| 1984  | 6   | 1890.000    |
| 1985  | 10  | 3151.000    |
| 1986  | 25  | 7528.000    |
| 1992  | 33  | 12528.500   |
| 1993  | 33  | 8902.500    |
| 1994  | 42  | 17531.000   |
| 1995  | 37  | 17252.500   |
| 1996  | 34  | 10081.000   |
| 1997  | 22  | 5956.500    |
| 1998  | 35  | 12746.000   |
| 1999  | 35  | 8208.500    |
| 2000  | 12  | 2842.500    |
| 2001  | 21  | 4762.500    |
| 2002  | 21  | 6530.000    |
| 2003  | 32  | 10392.000   |
| 2004  | 22  | 6281.500    |
| 2005  | 38  | 12344.000   |
| 2006  | 19  | 2666.000    |
| 2007  | 17  | 2601.500    |
| 2008  | 60  | 20622.000   |
| 2009  | 21  | 7765.000    |
| 2010  | 27  | 9068.500    |
| 2011  | 22  | 5137.000    |

Kruskal-Wallis Test Statistic = 106.426 Probability is 0.000 assuming Chi-square distribution with 24 df Kruskal-Wallis One-Way Analysis of Variance for 516 cases Dependent variable is INORGP Grouping variable is YEAR

| Group | Count | Rank Sum |
|-------|-------|----------|
| 1966  | 2     | 608.000  |
| 1967  | 1     | 516.000  |
| 1970  | 1     | 457.000  |
| 1971  | 1     | 499.000  |
| 1975  | 1     | 207.500  |
| 1983  | 3     | 619.000  |
| 1984  | 6     | 2005.000 |
| 1992  | 33    | 7515.500 |
| 1993  | 31    | 7822.500 |
| 1994  | 40 1  | 2090.500 |
| 1995  | 39 1  | 0058.000 |
| 1996  | 34    | 5681.500 |
| 1997  | 22    | 6642.500 |
| 1998  | 35    | 9796.500 |
| 1999  | 34    | 7843.500 |
| 2000  | 12    | 4450.500 |
| 2001  | 21    | 6481.000 |
| 2002  | 21    | 6453.500 |
| 2003  | 19    | 6035.500 |
| 2004  | 22    | 5338.000 |
| 2005  | 23    | 5158.000 |
| 2006  | 19    | 4010.500 |
| 2007  | 16    | 4655.500 |
| 2008  | 26    | 6625.500 |
| 2009  | 18    | 3257.500 |
| 2010  | 20    | 3740.500 |
| 2011  | 16    | 4818.000 |

Kruskal-Wallis Test Statistic = 60.416 Probability is 0.000 assuming Chi-square distribution with 26 df Kruskal-Wallis One-Way Analysis of Variance for 649 cases Dependent variable is TP Grouping variable is YEAR

| Group | Cou  | nt Rank Sum |
|-------|------|-------------|
| 1968  | 1    | 562.000     |
| 1969  | 1    | 531.000     |
| 1970  | 1    | 410.000     |
| 1971  | 1    | 533.000     |
| 1975  | 1    | 481.000     |
| 1983  | 3    | 1249.000    |
| 1984  | 6    | 2577.500    |
| 1985  | 10   | 1620.000    |
| 1986  | 25   | 10336.000   |
| 1992  | 34   | 14803.500   |
| 1993  | 28   | 12709.500   |
| 1994  | 42   | 19962.000   |
| 1995  | 37   | 12863.000   |
| 1996  | 34   | 4596.000    |
| 1997  | 22   | 4609.000    |
| 1998  | 37   | 7812.500    |
| 1999  | 35   | 8774.500    |
| 2000  | 10   | 4196.000    |
| 2001  | 21   | 6481.000    |
| 2002  | 19   | 5422.000    |
| 2003  | 34   | 10115.500   |
| 2004  | 20   | 4702.000    |
| 2005  | 38   | 10194.000   |
| 2006  | 23   | 5788.500    |
| 2007  | 18   | 4051.000    |
| 2008  | 63   | 28568.000   |
| 2009  | 30   | 9717.000    |
| 2010  | 33   | 9944.500    |
| 2011  | - 22 | 7316.000    |

Kruskal-Wallis Test Statistic = 186.964 Probability is 0.000 assuming Chi-square distribution with 28 df Kruskal-Wallis One-Way Analysis of Variance for 690 cases Dependent variable is COND Grouping variable is YEAR

| Group | Count | Rank Sum  |
|-------|-------|-----------|
| 1964  | 2     | 178.500   |
| 1965  | 9     | 2729.500  |
| 1966  | 5     | 550.000   |
| 1967  | 1     | 478.000   |
| 1968  | 1     | 515.000   |
| 1969  | 1     | 387.000   |
| 1970  | 1     | 324.500   |
| 1971  | 1     | 330.000   |
| 1975  | 1     | 594.000   |
| 1981  | 1     | 406.000   |
| 1983  | 2     | 451.000   |
| 1984  | 2     | 539.000   |
| 1985  | 10    | 2327.000  |
| 1986  | 24 1  | 2134.000  |
| 1992  | 36 1  | 5226.500  |
| 1993  | 33 1  | 1937.500  |
| 1994  | 43 1  | 6386.000  |
| 1995  | 40 1  | 1949.500  |
| 1996  | 32    | 7627.000  |
| 1997  | 22    | 6288.500  |
| 1998  | 37    | 9391.000  |
| 1999  | 36 1  | 2912.500  |
| 2000  | 10    | 3108.500  |
| 2001  | 21    | 6869.500  |
| 2002  | 21    | 6245.500  |
| 2003  | 35    | 6384.000  |
| 2004  | 19    | 7252.500  |
| 2005  | 31    | 6370.000  |
| 2006  | 22    | 8193.500  |
| 2007  | 20    | 8418.000  |
| 2008  | 63 3  | 31352.000 |
| 2009  | 52 1  | 9724.000  |
| 2010  | 33 1  | 0821.000  |
| 2011  | 23    | 9994.500  |

Kruskal-Wallis Test Statistic = 149.061 Probability is 0.000 assuming Chi-square distribution with 33 df Kruskal-Wallis One-Way Analysis of Variance for 670 cases Dependent variable is COLOR Grouping variable is YEAR

| Group | Count    | Rank Sum |
|-------|----------|----------|
| 1964  | 2        | 786.000  |
| 1965  | 9        | 2880.000 |
| 1966  | 5        | 2273.500 |
| 1967  | 1        | 221.000  |
| 1968  | 1        | 140.000  |
| 1969  | 1        | 333.500  |
| 1970  | 1        | 221.000  |
| 1975  | 1        | 50.000   |
| 1983  | 6        | 1604.000 |
| 1984  | 6        | 2237.500 |
| 1985  | 10       | 4566.500 |
| 1986  | 25       | 6635.000 |
| 1992  | 34 1     | 1656.000 |
| 1993  | 33       | 7968.000 |
| 1994  | 42 1     | 3857.000 |
| 1995  | 40 1     | 6902.000 |
| 1996  | 32 1     | 3075.000 |
| 1997  | 22       | 8408.500 |
| 1998  | 3/ 1     | 8618.000 |
| 1999  | 35 1     | 1459.500 |
| 2000  | 12       | 4466.500 |
| 2001  | 21       | 6323.000 |
| 2002  | 19       | 6695.500 |
| 2003  | 34 1     | 6091.000 |
| 2004  | 22       | 7399.000 |
| 2005  | 20 1     | 2693.300 |
| 2000  | 10       | 4030.000 |
| 2007  | 19       | 2064 500 |
| 2000  | 20 1     | 2904.500 |
| 2009  | 30 1     | 1008 500 |
| 2011  | 24       | 4020 500 |
|       | <u> </u> |          |

Kruskal-Wallis Test Statistic = 159.824 Probability is 0.000 assuming Chi-square distribution with 31 df Kruskal-Wallis One-Way Analysis of Variance for 579 cases Dependent variable is TSS Grouping variable is YEAR

| Group | Cour | nt Rank Sum |
|-------|------|-------------|
| 1975  | 1    | 353.500     |
| 1985  | 5    | 1428.500    |
| 1986  | 25   | 8839.000    |
| 1992  | 33   | 10766.500   |
| 1993  | 33   | 10816.000   |
| 1994  | 42   | 8253.000    |
| 1995  | 39   | 11201.500   |
| 1996  | 33   | 8738.500    |
| 1997  | 22   | 4273.500    |
| 1998  | 36   | 7961.000    |
| 1999  | 35   | 9285.000    |
| 2000  | 10   | 1333.000    |
| 2001  | 21   | 6572.500    |
| 2002  | 21   | 6942.500    |
| 2003  | 20   | 6167.000    |
| 2004  | 22   | 6063.500    |
| 2005  | 22   | 7260.000    |
| 2006  | 22   | 7386.000    |
| 2007  | 20   | 5424.000    |
| 2008  | 33   | 12610.500   |
| 2009  | 30   | 11080.500   |
| 2010  | 32   | 9183.000    |
| 2011  | 22   | 5971.500    |

Kruskal-Wallis Test Statistic = 66.967 Probability is 0.000 assuming Chi-square distribution with 22 df
#### Appendix F: Chart of Corrected Chla, INORGN TN, INORGP, TP, Cond, Color, and TSS Observations by Year, Season, and Station, in Tomoka River





101 Florida Department of Environmental Protection



102 Florida Department of Environmental Protection





103 Florida Department of Environmental Protection



104 Florida Department of Environmental Protection

## SEASONAL CHLAC



SEASONAL INORGN



105 Florida Department of Environmental Protection





### SEASONAL INORGP



106 Florida Department of Environmental Protection



SEASONAL TP

SEASONAL COND



107 Florida Department of Environmental Protection



### SEASONAL COLOR

## SEASONAL TSS



108 Florida Department of Environmental Protection



109 Florida Department of Environmental Protection



Florida Department of Environmental Protection



Florida Department of Environmental Protection



Florida Department of Environmental Protection

# CUMULATIVE FREQUENCY PLOT CHLAC



## CUMULATIVE FREQUENCY PLOT TN



113 Florida Department of Environmental Protection



# CUMULATIVE FREQUENCY PLOT COLOR



Florida Department of Environmental Protection

## CUMULATIVE FREQUENCY PLOT TSS



## CUMULATIVE FREQUENCY PLOT TN/TP RATIO



Florida Department of Environmental Protection

## CUMULATIVE FREQUENCY PLOT INORGN/INORGP RATIO



|      | _    |      |      |      |       | _     |       | _     |       |       |       |      | Annual |
|------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|------|--------|
| Year | Jan  | Feb  | Mar  | Apr  | May   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec  | Total  |
| 1937 | 2.22 | 4.73 | 4.14 | 2.69 | 2.59  | 2.96  | 5.64  | 7.72  | 7.96  | 5.69  | 7.43  | 1.52 | 55.29  |
| 1938 | 0.73 | 3.18 | 1.69 | 1.04 | 1.96  | 2.84  | 8.36  | 2.82  | 8.14  | 3.23  | 3.93  | 1.37 | 39.29  |
| 1939 | 1.09 | 0.45 | 1.48 | 5.29 | 2.4   | 6.96  | 9.53  | 5.78  | 7.67  | 2.83  | 0.45  | 1.16 | 45.09  |
| 1940 | 1.65 | 2.24 | 1.98 | 2.45 | 0.97  | 5.21  | 8.53  | 4.44  | 8.59  | 0.04  | 0.16  | 4.3  | 40.56  |
| 1941 | 3.42 | 4.4  | 2.01 | 3.11 | 1.32  | 7.29  | 11.46 | 6.56  | 2.86  | 13.68 | 7.47  | 3.72 | 67.3   |
| 1942 | 2.15 | 2.52 | 5.68 | 0.98 | 2.35  | 10.12 | 2.38  | 3.73  | 6.54  | 2.67  | 1.06  | 2.22 | 42.4   |
| 1943 | 1.51 | 0.18 | 6.57 | 2.86 | 3.09  | 4.35  | 11.01 | 10.47 | 11.71 | 7.14  | 0.55  | 0.67 | 60.11  |
| 1944 | 1.28 | 0.29 | 7.21 | 2.87 | 0.45  | 8.27  | 14.58 | 9.33  | 6.46  | 4.4   | 0.55  | 0.12 | 55.81  |
| 1945 | 3.62 | 0.88 | 0.41 | 1.53 | 1.56  | 7     | 7.45  | 6.83  | 9.65  | 5.14  | 0.79  | 4.5  | 49.36  |
| 1946 | 1.62 | 2.98 | 1.76 | 0.49 | 2.8   | 4.23  | 8.17  | 10.21 | 10.75 | 3.87  | 2.81  | 0.61 | 50.3   |
| 1947 | 0.78 | 6.04 | 5.29 | 5.31 | 4.82  | 13.43 | 8.65  | 6.97  | 5.75  | 5.72  | 1.98  | 0.9  | 65.64  |
| 1948 | 4.52 | 1.22 | 5.13 | 2.37 | 0.49  | 2.4   | 10.43 | 7.33  | 9.82  | 8.29  | 1.07  | 1.93 | 55     |
| 1949 | 0.37 | 1.95 | 2.01 | 7.12 | 1.4   | 4.24  | 5.97  | 11.46 | 6.26  | 3.65  | 1.86  | 3.93 | 50.22  |
| 1950 | 0.15 | 0.59 | 3.53 | 2.79 | 2.13  | 6.45  | 5.56  | 3.88  | 5.86  | 13    | 0.74  | 2.54 | 47.22  |
| 1951 | 0.77 | 2.46 | 1.18 | 3.28 | 2.53  | 2.66  | 3.8   | 4.19  | 14.02 | 8.54  | 3.15  | 2.88 | 49.46  |
| 1952 | 0.66 | 6.76 | 3.01 | 1.66 | 4.39  | 1.35  | 1.25  | 9.02  | 11.92 | 5.41  | 1.96  | 0.71 | 48.1   |
| 1953 | 1.75 | 3.35 | 7.75 | 4.97 | 1.46  | 1.37  | 8.67  | 19.89 | 10    | 12.93 | 2.3   | 4.85 | 79.29  |
| 1954 | 0.37 | 0.86 | 2.33 | 6.29 | 3.21  | 2.35  | 3.5   | 3.04  | 1.88  | 4.91  | 3.98  | 1.24 | 33.96  |
| 1955 | 2.47 | 1.43 | 1.84 | 1.78 | 1.55  | 7.76  | 5.67  | 2.64  | 6.66  | 3.17  | 2.61  | 1.22 | 38.8   |
| 1956 | 2.55 | 0.9  | 0.25 | 2.42 | 2.48  | 7.41  | 3.01  | 4.06  | 1.94  | 5.82  | 0.46  | 0.06 | 31.36  |
| 1957 | 0.97 | 1.62 | 3.13 | 1.73 | 5.65  | 4.23  | 10.53 | 4.01  | 10.65 | 1.8   | 0.82  | 1.34 | 46.48  |
| 1958 | 3.94 | 4.73 | 5.52 | 2.24 | 2.27  | 6.06  | 1.96  | 4     | 2.19  | 8.52  | 1.77  | 1.95 | 45.15  |
| 1959 | 4.53 | 2.13 | 7.7  | 3.17 | 2.4   | 8.13  | 5.68  | 3.6   | 5.26  | 7.12  | 4.26  | 2.26 | 56.24  |
| 1960 | 1.16 | 9.13 | 7.52 | 0.76 | 0.62  | 10.75 | 8.7   | 6.84  | 10.96 | 0.97  | 0.53  | 1.24 | 59.18  |
| 1961 | 1.96 | 3.7  | 1.17 | 2.16 | 2.39  | 6.81  | 5.16  | 7.68  | 3.2   | 2.25  | 2.85  | 0.73 | 40.06  |
| 1962 | 0.9  | 0.82 | 1.82 | 0.78 | 0.16  | 7.96  | 10.04 | 8.5   | 8.84  | 3.57  | 2.49  | 0.71 | 46.59  |
| 1963 | 2.91 | 5.83 | 1.46 | 1.4  | 6.82  | 7.42  | 6.89  | 2.01  | 5.43  | 2.71  | 7.98  | 2.17 | 53.03  |
| 1964 | 5.29 | 2.65 | 4.84 | 3.61 | 2.58  | 4.73  | 7.67  | 10.81 | 11.39 | 3.54  | 3.13  | 2.52 | 62.76  |
| 1965 | 2.22 | 3    | 3.05 | 1    | 0.08  | 9     | 3.72  | 2.97  | 4.33  | 3.65  | 0.97  | 2.14 | 36.13  |
| 1966 | 2.89 | 5.58 | 0.36 | 2.56 | 6.77  | 15.19 | 7.09  | 7.93  | 4.49  | 4.6   | 1.19  | 1.6  | 60.25  |
| 1967 | 1.26 | 3.98 | 0.31 | 0    | 0.73  | 7.51  | 9.04  | 3.02  | 5.56  | 0.19  | 0     | 2.98 | 34.58  |
| 1968 | 0.42 | 1.73 | 1.79 | 0.4  | 4.79  | 14.38 | 6.25  | 11.09 | 6.07  | 7.44  | 2.43  | 1.38 | 58.17  |
| 1969 | 1.53 | 2.03 | 2.74 | 0.12 | 6.47  | 2.47  | 2.61  | 9.4   | 8.89  | 6.97  | 1.96  | 5.03 | 50.22  |
| 1970 | 3.94 | 3.79 | 3.59 | 2.08 | 1.68  | 2.62  | 3.65  | 3.61  | 3.54  | 3.87  | 0.31  | 0.72 | 33.4   |
| 1971 | 0.61 | 5.48 | 2    | 2.57 | 3.12  | 4.73  | 3.2   | 3.97  | 7.2   | 9.53  | 1.33  | 2.49 | 46.23  |
| 1972 | 2.37 | 3.97 | 6.66 | 1.41 | 4.02  | 7.06  | 3.22  | 8.29  | 0.42  | 3.08  | 10.96 | 2.48 | 53.94  |
| 1973 | 4.66 | 2.02 | 2.63 | 3.09 | 2.41  | 4.32  | 4.69  | 7.58  | 5.14  | 4.4   | 0.75  | 2.54 | 44.23  |
| 1974 | 0.3  | 1.1  | 3.19 | 0.44 | 2.66  | 8.65  | 6.31  | 9.96  | 10.5  | 1.42  | 0.48  | 2.2  | 47.21  |
| 1975 | 1.66 | 2.27 | 1.52 | 2.96 | 2.99  | 9     | 6.89  | 3.16  | 6.61  | 5.84  | 1.46  | 0.83 | 45.19  |
| 1976 | 0.6  | 0.7  | 2.03 | 4.27 | 12.33 | 11.14 | 1.07  | 3.8   | 5.1   | 1.9   | 3.38  | 6    | 52.32  |

### Appendix G: Monthly and Annual Precipitation at Daytona International Airport, 1937–2011

Florida Department of Environmental Protection

117

|      |      |      |       |      |       |       |       |       |       |       |       |       | Annual |
|------|------|------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Year | Jan  | Feb  | Mar   | Apr  | Мау   | Jun   | Jul   | Aug   | Sep   | Oct   | Nov   | Dec   | Total  |
| 1977 | 4.69 | 2.45 | 1.43  | 0.41 | 4.61  | 1.15  | 2.23  | 7.91  | 6.55  | 1.46  | 3.04  | 4.74  | 40.67  |
| 1978 | 2.89 | 5.98 | 2.31  | 3.3  | 0.56  | 7.48  | 5.53  | 7.99  | 4.63  | 8.31  | 0.07  | 4.89  | 53.94  |
| 1979 | 7.1  | 1.94 | 4.08  | 3.96 | 6.13  | 3.03  | 11.69 | 5.24  | 15.2  | 2.13  | 7.96  | 0.56  | 69.02  |
| 1980 | 3.75 | 0.76 | 2.41  | 2.54 | 3.62  | 5.57  | 5.82  | 4.13  | 1.83  | 2.42  | 3.12  | 1.39  | 37.36  |
| 1981 | 0.32 | 5.54 | 3     | 0.29 | 1.74  | 1.03  | 4.69  | 7.19  | 7.59  | 1.08  | 2.57  | 4.64  | 39.68  |
| 1982 | 2.46 | 2.08 | 5.81  | 6.04 | 4.68  | 8.29  | 5.31  | 3.21  | 4.96  | 3.23  | 1.58  | 2.53  | 50.18  |
| 1983 | 2.51 | 5.96 | 7.71  | 6.17 | 3.86  | 6.37  | 1.92  | 6.82  | 8.57  | 10.11 | 2.01  | 11.98 | 73.99  |
| 1984 | 1.46 | 3.44 | 1.31  | 5.29 | 6.04  | 2.84  | 6.77  | 4.02  | 10.73 | 1.09  | 3.52  | 0.2   | 46.71  |
| 1985 | 0.79 | 0.58 | 1.49  | 3.14 | 3.42  | 6.81  | 2.16  | 9.83  | 10.62 | 4.08  | 0.41  | 2.05  | 45.38  |
| 1986 | 7.16 | 1.28 | 1.85  | 0.44 | 0.99  | 3.5   | 14.43 | 3.47  | 3.58  | 3.47  | 5.08  | 2.76  | 48.01  |
| 1987 | 2.21 | 6.64 | 7.94  | 0.28 | 2.65  | 3.81  | 2.78  | 4.89  | 5.63  | 2.77  | 5.87  | 0.25  | 45.72  |
| 1988 | 5.36 | 1.72 | 4.57  | 1.68 | 1.78  | 2.39  | 2.94  | 4.79  | 6.81  | 1.24  | 6.7   | 0.93  | 40.91  |
| 1989 | 6.82 | 0.64 | 2.01  | 2.92 | 2.02  | 1.84  | 2.44  | 4.47  | 5.04  | 11.64 | 0.88  | 3.93  | 44.65  |
| 1990 | 1.42 | 5.61 | 1.94  | 1.48 | 1.45  | 2.71  | 5.85  | 7     | 1.61  | 5.88  | 0.83  | 0.34  | 36.12  |
| 1991 | 2.25 | 1.65 | 8.11  | 5.57 | 6.79  | 12.67 | 11.97 | 7.6   | 5.52  | 2.94  | 0.61  | 1.51  | 67.19  |
| 1992 | 2.42 | 1.71 | 2.28  | 2.81 | 3.13  | 10.64 | 0.16  | 8.86  | 6.57  | 5.21  | 2.15  | 0.47  | 46.41  |
| 1993 | 4.29 | 3.02 | 5.56  | 0.33 | 0.65  | 2.19  | 5.05  | 2.66  | 2.74  | 5.53  | 1.83  | 1.86  | 35.71  |
| 1994 | 5.6  | 2.66 | 3.44  | 5.05 | 3.09  | 6.54  | 6.91  | 7.08  | 5.93  | 4.72  | 12.91 | 2.71  | 66.64  |
| 1995 | 1.53 | 1.39 | 2.01  | 1.34 | 1.26  | 6.61  | 6.59  | 10.71 | 14.13 | 3.99  | 1.44  | 3.44  | 54.44  |
| 1996 | 5.53 | 1.32 | 12.15 | 2.22 | 2.28  | 11.35 | 1.9   | 5.7   | 3.92  | 11.15 | 0.96  | 2.01  | 60.49  |
| 1997 | 2.03 | 0.46 | 2.3   | 3.3  | 3.77  | 6.38  | 7.69  | 7.91  | 4.78  | 5.29  | 3.02  | 7.76  | 54.69  |
| 1998 | 4.33 | 7.25 | 3.97  | 0.14 | 0.16  | 0.83  | 5.63  | 7.56  | 5.79  | 1.84  | 1.66  | 1.35  | 40.51  |
| 1999 | 4.88 | 1.81 | 1.01  | 1.48 | 1.47  | 8.54  | 4.03  | 3.58  | 7.05  | 7.84  | 3.12  | 1.56  | 46.37  |
| 2000 | 1.8  | 0.65 | 8.48  | 1.15 | 0.32  | 3.08  | 5.09  | 3.17  | 13.55 | 0.93  | 1.14  | 0.8   | 40.16  |
| 2001 | 0.88 | 0.38 | 9.98  | 0.28 | 1.77  | 5.26  | 9.55  | 3.57  | 16.11 | 3.22  | 6.92  | 0.35  | 58.27  |
| 2002 | 2.01 | 2.76 | 1.51  | 2.53 | 1.66  | 12.3  | 7.35  | 11.56 | 3.86  | 2.94  | 1.85  | 9.61  | 59.94  |
| 2003 | 0.51 | 5.17 | 10.57 | 0.81 | 0.96  | 7.05  | 7.3   | 6.55  | 4.15  | 7.95  | 4.75  | 1.53  | 57.3   |
| 2004 | 1.25 | 4.47 | 1.1   | 1.19 | 0.49  | 5.2   | 10.34 | 17.96 | 16.46 | 1.34  | 0.93  | 2.24  | 62.97  |
| 2005 | 2.6  | 1.25 | 5.51  | 3.17 | 7.97  | 13.67 | 2.73  | 4.29  | 7.35  | 13.51 | 1.87  | 1.85  | 65.77  |
| 2006 | 0.24 | 4.33 | 0.08  | 1.11 | 0.78  | 5.72  | 4.48  | 4.81  | 2.97  | 2.53  | 1.1   | 3.21  | 31.36  |
| 2007 | 1.53 | 2.64 | 0.7   | 1.34 | 0.91  | 5.78  | 10.23 | 2.88  | 11.36 | 3.49  | 2.32  | 1.84  | 45.02  |
| 2008 | 1.3  | 2.12 | 3.2   | 1.34 | 0.63  | 3.64  | 9.48  | 10.33 | 4.29  | 4.45  | 0.96  | 0.93  | 42.67  |
| 2009 | 0.82 | 0.8  | 1.39  | 1.47 | 22.33 | 5.03  | 5.19  | 3.77  | 3.65  | 1.44  | 0.6   | 3.81  | 50.3   |
| 2010 | 5.92 | 3.92 | 6.2   | 1.04 | 4.74  | 2.86  | 3.88  | 5.83  | 3.49  | 0.18  | 0.95  | 0.38  | 39.39  |
| 2011 | 4.37 | 1.2  | 5.55  | 0.46 | 0.65  | 12.29 | 3.15  | 5.75  | 6.23  | 5.88  | 0.1   | 3.08  | 48.71  |
| AVG  | 2.44 | 2.79 | 3.62  | 2.32 | 2.99  | 6.20  | 6.15  | 6.48  | 6.98  | 4.78  | 2.52  | 2.36  | 49.63  |

Rainfall is in inches, and represents data from DIA.

### Appendix H: Spearman Correlation Matrix Analysis for Water Quality Parameters in Tomoka River

#### Spearman correlation matrix

|          | CHLAC  | CHLORIDE | COLOR  | COND   | NH4    |
|----------|--------|----------|--------|--------|--------|
| CHLAC    | 1.000  |          |        |        |        |
| CHLORIDE | -0.012 | 1.000    |        |        |        |
| COLOR    | -0.326 | -0.707   | 1.000  |        |        |
| COND     | 0.407  | 0.895    | -0.682 | 1.000  |        |
| NH4      | 0.078  | -0.194   | 0.212  | -0.183 | 1.000  |
| NO3O2    | -0.174 | 0.142    | 0.093  | 0.006  | 0.324  |
| SALINITY | 0.446  | 0.920    | -0.688 | 0.841  | -0.203 |
| SO4      | 0.007  | 0.483    | -0.601 | 0.573  | -0.188 |
| TEMPC    | 0.381  | -0.164   | -0.024 | 0.135  | 0.174  |
| TKN      | 0.110  | -0.603   | 0.613  | -0.344 | 0.386  |
| TN       | 0.088  | -0.582   | 0.615  | -0.333 | 0.401  |
| TOC      | -0.022 | -0.654   | 0.887  | -0.756 | 0.373  |
| TP       | 0.434  | -0.046   | -0.133 | 0.275  | 0.283  |
| TSS      | 0.161  | 0.038    | -0.210 | 0.124  | -0.058 |
| TURB     | 0.117  | 0.038    | 0.072  | -0.025 | 0.032  |
| INORGP   | 0.156  | -0.224   | 0.093  | 0.021  | 0.049  |
| INORGN   | -0.062 | -0.011   | 0.226  | -0.115 | 0.745  |
| PRECP    | 0.047  | -0.053   | 0.068  | 0.006  | -0.004 |
| V3DAY    | 0.034  | -0.254   | 0.104  | -0.113 | -0.066 |
| V7DAY    | 0.059  | -0.338   | 0.132  | -0.181 | -0.004 |
| V14DAY   | -0.028 | -0.521   | 0.300  | -0.344 | 0.013  |
| V21DAY   | -0.099 | -0.611   | 0.430  | -0.419 | 0.023  |

|          | NO3O2  | SALINITY | SO4    | TEMPC | TKN    |
|----------|--------|----------|--------|-------|--------|
| NO3O2    | 1.000  |          |        |       |        |
| SALINITY | 0.005  | 1.000    |        |       |        |
| SO4      | 0.067  | 0.604    | 1.000  |       |        |
| TEMPC    | 0.112  | 0.152    | -0.143 | 1.000 |        |
| TKN      | -0.040 | -0.328   | -0.568 | 0.200 | 1.000  |
| TN       | 0.043  | -0.327   | -0.564 | 0.208 | 0.994  |
| TOC      | -0.044 | -0.736   | -0.570 | 0.108 | 0.837  |
| TP       | -0.084 | 0.275    | -0.037 | 0.426 | 0.255  |
| TSS      | -0.022 | 0.062    | -0.053 | 0.123 | -0.023 |
| TURB     | 0.101  | -0.063   | 0.016  | 0.001 | 0.137  |
| INORGP   | 0.000  | 0.023    | -0.199 | 0.418 | 0.240  |
| INORGN   | 0.796  | -0.149   | -0.075 | 0.169 | 0.246  |
| PRECP    | 0.062  | -0.039   | 0.112  | 0.147 | 0.086  |
| V3DAY    | -0.024 | -0.132   | 0.085  | 0.128 | 0.072  |
| V7DAY    | -0.054 | -0.165   | 0.106  | 0.192 | 0.074  |
| V14DAY   | -0.093 | -0.319   | -0.063 | 0.218 | 0.182  |
| V21DAY   | -0.082 | -0.386   | -0.127 | 0.204 | 0.274  |

#### Spearman correlation matrix (cont.)

|        | TN     | TOC    | TP    | TSS    | TURB   |
|--------|--------|--------|-------|--------|--------|
| TN     | 1.000  |        |       |        |        |
| TOC    | 0.826  | 1.000  |       |        |        |
| TP     | 0.266  | 0.046  | 1.000 |        |        |
| TSS    | -0.025 | -0.018 | 0.235 | 1.000  |        |
| TURB   | 0.152  | -0.124 | 0.155 | 0.366  | 1.000  |
| INORGP | 0.281  | 0.197  | 0.445 | 0.013  | -0.022 |
| INORGN | 0.325  | 0.188  | 0.237 | 0.043  | 0.119  |
| PRECP  | 0.099  | 0.021  | 0.063 | -0.015 | 0.017  |
| V3DAY  | 0.071  | 0.012  | 0.015 | -0.048 | 0.087  |
| V7DAY  | 0.068  | 0.009  | 0.077 | -0.094 | 0.085  |
| V14DAY | 0.173  | 0.207  | 0.031 | -0.158 | 0.052  |
| V21DAY | 0.273  | 0.340  | 0.001 | -0.223 | 0.019  |
|        |        |        |       |        |        |

|        | INORGP | INORGN | PRECP | V3DAY | V7DAY |
|--------|--------|--------|-------|-------|-------|
| INORGP | 1.000  |        |       |       |       |
| INORGN | 0.176  | 1.000  |       |       |       |
| PRECP  | 0.091  | 0.059  | 1.000 |       |       |
| V3DAY  | 0.085  | -0.015 | 0.565 | 1.000 |       |
| V7DAY  | 0.125  | -0.088 | 0.307 | 0.615 | 1.000 |
| V14DAY | 0.226  | -0.053 | 0.210 | 0.468 | 0.728 |
| V21DAY | 0.286  | -0.055 | 0.188 | 0.423 | 0.633 |

|        | V14DAY | V21DAY |
|--------|--------|--------|
| V14DAY | 1.000  |        |
| V21DAY | 0.860  | 1.000  |

#### Pairwise frequency table

|          | CHLAC       | CHLORIDE | COLOR | COND | NH4 |
|----------|-------------|----------|-------|------|-----|
| CHLAC    | 653         |          |       |      |     |
| CHLORIDE | 180         | 224      |       |      |     |
| COLOR    | 612         | 222      | 670   |      |     |
| COND     | 622         | 211      | 644   | 690  |     |
| NH4      | 291         | 197      | 298   | 286  | 312 |
| NO3O2    | 616         | 199      | 630   | 612  | 308 |
| SALINITY | 558         | 141      | 544   | 573  | 227 |
| SO4      | 178         | 221      | 221   | 208  | 197 |
| TEMPC    | 649         | 198      | 641   | 675  | 304 |
| TKN      | 620         | 199      | 634   | 617  | 311 |
| TN       | 596         | 199      | 609   | 596  | 309 |
| TOC      | 178         | 177      | 182   | 180  | 180 |
| TP       | 615         | 197      | 630   | 613  | 308 |
| TSS      | 558         | 183      | 572   | 563  | 237 |
| TURB     | 611         | 188      | 624   | 620  | 285 |
| INORGP   | 484         | 158      | 510   | 494  | 206 |
| INORGN   | 284         | 197      | 290   | 278  | 304 |
| PRECP    | 653         | 224      | 670   | 690  | 312 |
| V3DAY    | 653         | 224      | 670   | 690  | 312 |
| V7DAY    | 653         | 224      | 670   | 690  | 312 |
| V14DAY   | 653         | 224      | 670   | 690  | 312 |
| V21DAY   | <u>65</u> 3 | 224      | 670   | 690  | 312 |

|          | NO3O2 | SALINITY | SO4 | TEMPC | TKN |
|----------|-------|----------|-----|-------|-----|
| NO3O2    | 649   |          |     |       |     |
| SALINITY | 537   | 587      |     |       |     |
| SO4      | 199   | 140      | 222 |       |     |
| TEMPC    | 638   | 587      | 196 | 738   |     |
| TKN      | 640   | 542      | 199 | 643   | 654 |
| TN       | 623   | 517      | 199 | 618   | 626 |
| TOC      | 182   | 138      | 176 | 181   | 182 |
| TP       | 629   | 537      | 197 | 639   | 640 |
| TSS      | 562   | 507      | 182 | 575   | 569 |
| TURB     | 617   | 549      | 188 | 636   | 624 |
| INORGP   | 505   | 438      | 156 | 504   | 501 |
| INORGN   | 304   | 224      | 197 | 296   | 304 |
| PRECP    | 649   | 587      | 222 | 738   | 654 |
| V3DAY    | 649   | 587      | 222 | 738   | 654 |
| V7DAY    | 649   | 587      | 222 | 738   | 654 |
| V14DAY   | 649   | 587      | 222 | 738   | 654 |
| V21DAY   | 649   | 587      | 222 | 738   | 654 |

#### Pairwise frequency table (cont.)

|        | TN  | TOC | TP  | TSS | TURB |
|--------|-----|-----|-----|-----|------|
| TN     | 628 |     |     |     |      |
| TOC    | 182 | 182 |     |     |      |
| TP     | 613 | 178 | 649 |     |      |
| TSS    | 544 | 179 | 564 | 579 |      |
| TURB   | 597 | 177 | 617 | 574 | 642  |
| INORGP | 480 | 139 | 493 | 492 | 493  |
| INORGN | 304 | 180 | 300 | 234 | 278  |
| PRECP  | 628 | 182 | 649 | 579 | 642  |
| V3DAY  | 628 | 182 | 649 | 579 | 642  |
| V7DAY  | 628 | 182 | 649 | 579 | 642  |
| V14DAY | 628 | 182 | 649 | 579 | 642  |
| V21DAY | 628 | 182 | 649 | 579 | 642  |

|        | INORGP | INORGN | PRECP | V3DAY | V7DAY |
|--------|--------|--------|-------|-------|-------|
| INORGP | 516    |        |       |       |       |
| INORGN | 203    | 304    |       |       |       |
| PRECP  | 516    | 304    | 771   |       |       |
| V3DAY  | 516    | 304    | 771   | 771   |       |
| V7DAY  | 516    | 304    | 771   | 771   | 771   |
| V14DAY | 516    | 304    | 771   | 771   | 771   |
| V21DAY | 516    | 304    | 771   | 771   | 771   |

|        | V14DAY | V21DAY |
|--------|--------|--------|
| V14DAY | 771    |        |
| V21DAY | 771    | 771    |

#### Appendix I: Linear Regression Analysis of CHLAC Observations versus COND, SALINITY, TEMPC, Nutrients, TSS, TURBIDITY, V14DAY, V21DAY, and FLOW in Tomoka River

Dep Var: CHLAC N: 622 Multiple R: 0.269 Squared multiple R: 0.073

Adjusted squared multiple R: 0.071 Standard error of estimate: 26.902

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 3.600       | 1.172     | 0.000    |           | 3.072 | 0.002     |
| COND     | 0.001       | 0.000     | 0.269    | 1.000     | 6.967 | 0.000     |

Analysis of Variance

| Sour       | ce     | Sum-of-Squar    | res df          | Mean-S    | Square  | F-ratio | Р     |
|------------|--------|-----------------|-----------------|-----------|---------|---------|-------|
| Regressi   | on     | 35134.003       | 1               | 35134     | .003    | 48.546  | 0.000 |
| Residu     | ual    | 448711.787      | 620             | 723       | 8.729   |         |       |
| *** WARN   | IING ' | ***             |                 |           |         |         |       |
| Case       | 97     | is an outlier   | (Studentized Re | esidual = | 15.456) |         |       |
| Case       | 410    | is an outlier   | (Studentized R  | esidual = | 4.316)  |         |       |
| Case       | 451    | has large lever | age (Leverage   | = 0.041)  | )       |         |       |
| Case       | 487    | has large lever | age (Leverage   | = 0.076)  | )       |         |       |
| Case       | 497    | has large lever | age (Leverage   | = 0.057)  | )       |         |       |
| Case       | 499    | has large lever | age (Leverage   | = 0.073)  | )       |         |       |
| Case       | 525    | is an outlier   | (Studentized R  | esidual = | 7.140)  |         |       |
| Case       | 574    | is an outlier   | (Studentized R  | esidual = | 20.389) |         |       |
| Case       | 577    | is an outlier   | (Studentized R  | esidual = | 7.040)  |         |       |
|            |        |                 |                 |           |         |         |       |
| Durbin-Wa  | atson  | D Statistic     | 2.040           |           |         |         |       |
| First Orde | r Auto | ocorrelation    | -0.020          |           |         |         |       |

Dep Var: CHLAC N: 558 Multiple R: 0.309 Squared multiple R: 0.095

Adjusted squared multiple R: 0.094 Standard error of estimate: 28.004

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 3.562       | 1.287     | 0.000    |           | 2.767 | 0.006     |
| SALINITY | 1.540       | 0.201     | 0.309    | 1.000     | 7.651 | 0.000     |

Analysis of Variance

| Sour       | ce      | Sum-of-Square | es df        | Mean-So      | quare   | F-ratio | Р     |
|------------|---------|---------------|--------------|--------------|---------|---------|-------|
| Regressi   | ion     | 45910.254     | 1            | 45910.2      | 54      | 58.544  | 0.000 |
| Residu     | ual     | 436019.270    | 556          | 784.2        | 07      |         |       |
| *** WARN   | IING *' | **            |              |              |         |         |       |
| Case       | 97 is   | s an outlier  | (Studentized | Residual =   | 14.936) |         |       |
| Case       | 410 i   | is an outlier | (Studentized | l Residual = | 4.150)  |         |       |
| Case       | 525 i   | is an outlier | (Studentized | l Residual = | 6.751)  |         |       |
| Case       | 574 i   | is an outlier | (Studentized | l Residual = | 19.195) |         |       |
| Case       | 577 i   | is an outlier | (Studentized | Residual =   | 6.433)  |         |       |
| Durbin-Wa  | atson I | O Statistic   | 2.066        |              |         |         |       |
| First Orde | r Auto  | correlation   | -0.035       |              |         |         |       |

Dep Var: CHLAC N: 649 Multiple R: 0.191 Squared multiple R: 0.036

Adjusted squared multiple R: 0.035 Standard error of estimate: 26.869

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | -14.559     | 4.420     | 0.000    |           | -3.294 | 0.001     |
| TEMPC    | 0.989       | 0.200     | 0.191    | 1.000     | 4.944  | 0.000     |

Analysis of Variance

| So        | urce      | Sum-of-Squar | es df             | M       | ean-Square | F-ratio | Р     |
|-----------|-----------|--------------|-------------------|---------|------------|---------|-------|
| Regres    | ssion     | 17644.051    | 1                 | 1       | 7644.051   | 24.439  | 0.000 |
| Res       | idual     | 467110.255   | 647               |         | 721.963    |         |       |
| *** WARI  | NING ***  |              |                   |         |            |         |       |
| Case      | 97 is a   | an outlier   | (Studentized Resi | dual =  | 15.070)    |         |       |
| Case      | 410 is    | an outlier   | (Studentized Res  | idual = | 4.149)     |         |       |
| Case      | 525 is    | an outlier   | (Studentized Res  | idual = | 7.270)     |         |       |
| Case      | 574 is    | an outlier   | (Studentized Res  | idual = | 21.058)    |         |       |
| Case      | 577 is    | an outlier   | (Studentized Res  | idual = | 7.577)     |         |       |
|           |           | <b>-</b>     |                   |         |            |         |       |
| Durbin-W  | /atson D  | Statistic    | 1.923             |         |            |         |       |
| First Ord | er Autoco | orrelation   | 0.038             |         |            |         |       |

Dep Var: CHLAC N: 616 Multiple R: 0.095 Squared multiple R: 0.009

Adjusted squared multiple R: 0.007 Standard error of estimate: 28.610

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | 9.213       | 1.473     | 0.000    |           | 6.256  | 0.000     |
| NO3O2    | -43.746     | 18.414    | -0.095   | 1.000     | -2.376 | 0.018     |

Analysis of Variance

| Sour      | ce Sum-of-Squa     | res df        | Mean-Square      | F-ratio | Р     |
|-----------|--------------------|---------------|------------------|---------|-------|
| Regressio | on 4619.881        | 1             | 4619.881         | 5.644   | 0.018 |
| Residu    | al 502582.416      | 614           | 818.538          |         |       |
| *** WARN  | ING ***            |               |                  |         |       |
| Case      | 76 has large lever | age (Leverage | e = 0.031)       |         |       |
| Case      | 97 is an outlier   | (Studentized  | Residual = 14.00 | )9)     |       |
| Case      | 115 has large leve | rage (Leverag | e = 0.138)       |         |       |
| Case      | 251 has large leve | rage (Leverag | e = 0.132)       |         |       |
| Case      | 267 has large leve | rage (Leverag | e = 0.039)       |         |       |
| Case      | 275 has large leve | rage (Leverag | e = 0.048)       |         |       |
| Case      | 525 is an outlier  | (Studentized  | Residual = 6.95  | 54)     |       |
| Case      | 574 is an outlier  | (Studentized  | Residual = 19.7  | 19)     |       |
| Case      | 577 is an outlier  | (Studentized  | Residual = 7.33  | 35)     |       |
| Case      | 652 is an outlier  | (Studentized  | Residual = 5.43  | 39)     |       |
| Case      | 660 has large leve | rage (Leverag | e = 0.146)       |         |       |
| Case      | 666 has large leve | rage (Leverag | e = 0.086)       |         |       |
|           |                    |               |                  |         |       |
| Durbin-Wa | atson D Statistic  | 1.883         |                  |         |       |

First Order Autocorrelation 0.058

Florida Department of Environmental Protection

124

Dep Var: CHLAC N: 596 Multiple R: 0.307 Squared multiple R: 0.095

Adjusted squared multiple R: 0.093 Standard error of estimate: 27.073

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | -10.302     | 2.438     | 0.000    |           | -4.225 | 0.000     |
| TN       | 14.861      | 1.887     | 0.307    | 1.000     | 7.876  | 0.000     |

Analysis of Variance

| Sour       | ce Sum      | of-Squares    | df            | Mean-Squ | iare    | F-ratio | Р     |
|------------|-------------|---------------|---------------|----------|---------|---------|-------|
| Regressi   | on 4        | 5464.141      | 1             | 45464.14 | 11      | 62.027  | 0.000 |
| Residu     | ial 43      | 5384.499      | 594           | 732.97   | 71      |         |       |
| *** WARN   | ING ***     |               |               |          |         |         |       |
| Case       | 61 has la   | rge leverage  | (Leverage =   | 0.032)   |         |         |       |
| Case       | 66 has la   | rge leverage  | (Leverage =   | 0.057)   |         |         |       |
| Case       | 76 has la   | rge leverage  | (Leverage =   | 0.034)   |         |         |       |
| Case       | 91 has la   | rge leverage  | (Leverage =   | 0.043)   |         |         |       |
| Case       | 97 is an o  | outlier (St   | udentized Res | sidual = | 13.539) |         |       |
| Case       | 115 has la  | arge leverage | (Leverage =   | 0.037)   |         |         |       |
| Case       | 486 has la  | arge leverage | (Leverage =   | 0.052)   |         |         |       |
| Case       | 525 is an   | outlier (S    | tudentized Re | sidual = | 6.984)  |         |       |
| Case       | 552 has la  | arge leverage | (Leverage =   | 0.036)   |         |         |       |
| Case       | 574 has la  | arge leverage | (Leverage =   | 0.050)   |         |         |       |
| Case       | 574 is an   | outlier (S    | tudentized Re | sidual = | 19.053) |         |       |
| Case       | 577 is an   | outlier (S    | tudentized Re | sidual = | 7.482)  |         |       |
| Durbin-Wa  | atson D Sta | tistic 1.7    | '87           |          |         |         |       |
| First Orde | r Autocorre | lation 0.1    | 06            |          |         |         |       |

Dep Var: CHLAC N: 615 Multiple R: 0.269 Squared multiple R: 0.072

Adjusted squared multiple R: 0.071 Standard error of estimate: 27.698

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 3.713       | 1.211     | 0.000    |           | 3.065 | 0.002     |
| TP       | 33.296      | 4.820     | 0.269    | 1.000     | 6.908 | 0.000     |

Analysis of Variance

| Sourc     | ce Sum-of-Squa              | res df            | Mean-Square      | F-ratio | Р     |
|-----------|-----------------------------|-------------------|------------------|---------|-------|
| Regressio | on 36610.857                | 1                 | 36610.857        | 47.722  | 0.000 |
| Residu    | dual 470271.200 613 767.163 |                   | 767.163          |         |       |
| *** WARN  | NG ***                      |                   |                  |         |       |
| Case      | 97 is an outlier            | (Studentized Res  | sidual = 14.372) |         |       |
| Case      | 245 has large leve          | rage (Leverage =  | 0.223)           |         |       |
| Case      | 525 is an outlier           | (Studentized Re   | sidual = 6.979)  |         |       |
| Case      | 574 is an outlier           | (Studentized Re   | sidual = 19.108) |         |       |
| Case      | 577 is an outlier           | (Studentized Re   | sidual = 7.311)  |         |       |
| Case      | 636 has large leve          | rage (Leverage =  | 0.511)           |         |       |
| Case      | 636 is an outlier           | (Studentized Re   | sidual = -7.614) |         |       |
| Case      | 636 has large influ         | ence (Cook distan | ice = 27.751)    |         |       |
| Case      | 652 has large leve          | rage (Leverage =  | 0.101)           |         |       |
| Durbin-Wa | tson D Statistic            | 1.908             |                  |         |       |

First Order Autocorrelation 0.046

125

Dep Var: CHLAC N: 558 Multiple R: 0.254 Squared multiple R: 0.065

Adjusted squared multiple R: 0.063 Standard error of estimate: 18.926

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 0.572       | 1.064     | 0.000    |           | 0.537 | 0.591     |
| TSS      | 1.000       | 0.161     | 0.254    | 1.000     | 6.194 | 0.000     |

Analysis of Variance

| Sourc      | e Sum-of-Squares      | df               | Mean-Square     | F-ratio | Р     |
|------------|-----------------------|------------------|-----------------|---------|-------|
| Regressio  | n 13742.446           | 1                | 13742.446       | 38.368  | 0.000 |
| Residua    | al 199146.513         | 556              | 358.177         |         |       |
| *** WARNII | NG ***                |                  |                 |         |       |
| Case       | 72 has large leverage | e (Leverage =    | 0.043)          |         |       |
| Case       | 97 is an outlier (    | Studentized Resi | dual = 27.413)  |         |       |
| Case       | 244 has large leverag | e (Leverage =    | 0.041)          |         |       |
| Case       | 289 has large leverag | e (Leverage =    | 0.134)          |         |       |
| Case       | 376 has large leverag | e (Leverage =    | 0.142)          |         |       |
| Case       | 410 is an outlier     | Studentized Res  | idual = 5.603)  |         |       |
| Case       | 525 is an outlier     | Studentized Res  | idual = 10.488) |         |       |
| Case       | 535 is an outlier     | Studentized Res  | idual = 4.063)  |         |       |
| Case       | 626 has large leverag | e (Leverage =    | 0.084)          |         |       |
| Case       | 644 has large leverag | e (Leverage =    | 0.188)          |         |       |
| Durbin Wot | haan D. Statistia 1   | 011              |                 |         |       |

First Order Autocorrelation 0.043

Dep Var: CHLAC N: 611 Multiple R: 0.190 Squared multiple R: 0.036

Adjusted squared multiple R: 0.035 Standard error of estimate: 28.324

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 3.664       | 1.348     | 0.000    |           | 2.718 | 0.007     |
| TURB     | 0.893       | 0.187     | 0.190    | 1.000     | 4.785 | 0.000     |

Analysis of Variance

| Sour       | ce     | Sum-of-Squa    | res  | df             | Mean-S  | quare   | F-ratio | Р     |
|------------|--------|----------------|------|----------------|---------|---------|---------|-------|
| Regressi   | on     | 18368.33       | 0    | 1              | 18368   | 3.330   | 22.896  | 0.000 |
| Residu     | Jal    | 488568.56      | 8    | 609            | 802     | .247    |         |       |
| *** WARN   | IING * | **             |      |                |         |         |         |       |
| Case       | 97     | is an outlier  | (St  | udentized Resi | dual =  | 13.880) |         |       |
| Case       | 246    | has large leve | rage | (Leverage =    | 0.062)  | )       |         |       |
| Case       | 289    | has large leve | rage | (Leverage =    | 0.281)  | )       |         |       |
| Case       | 376    | has large leve | rage | (Leverage =    | 0.154)  |         |         |       |
| Case       | 525    | is an outlier  | (S   | tudentized Res | idual = | 6.704)  |         |       |
| Case       | 547    | has large leve | rage | (Leverage =    | 0.072)  | )       |         |       |
| Case       | 574    | is an outlier  | (S   | tudentized Res | idual = | 19.517) |         |       |
| Case       | 577    | is an outlier  | (S   | tudentized Res | idual = | 7.313)  |         |       |
| Case       | 644    | has large leve | rage | (Leverage =    | 0.215)  |         |         |       |
| Case       | 652    | is an outlier  | (S   | tudentized Res | idual = | 4.897)  |         |       |
|            |        |                |      |                |         |         |         |       |
| Durbin-Wa  | atson  | D Statistic    | 1.8  | 370            |         |         |         |       |
| First Orde | r Auto | ocorrelation   | 0.0  | 65             |         |         |         |       |

Dep Var: CHLAC N: 653 Multiple R: 0.090 Squared multiple R: 0.008

Adjusted squared multiple R: 0.007 Standard error of estimate: 27.834

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | 9.335       | 1.520     | 0.000    |           | 6.143  | 0.000     |
| V14DAY   | -1.263      | 0.546     | -0.090   | 1.000     | -2.315 | 0.021     |

Analysis of Variance

| Sou        | urce    | Sum-of-Square      | es df           | Mean-Square       | F-ratio | Р     |
|------------|---------|--------------------|-----------------|-------------------|---------|-------|
| Regres     | sion    | 4150.933           | 1               | 4150.933          | 5.358   | 0.021 |
| Resi       | dual    | 504361.304         | 651             | 774.749           |         |       |
| *** WARN   | IING ** | *                  |                 |                   |         |       |
| Case       | 16 h    | as large leverag   | e (Leverage =   | 0.039)            |         |       |
| Case       | 77 h    | as large leverag   | e (Leverage =   | 0.039)            |         |       |
| Case       | 97 is   | s an outlier       | Studentized Re  | sidual = 14.374)  |         |       |
| Case       | 525 i   | s an outlier       | (Studentized Re | esidual = 7.155)  |         |       |
| Case       | 574 i   | s an outlier       | (Studentized Re | esidual = 20.281) |         |       |
| Case       | 577 i   | s an outlier       | (Studentized Re | esidual = 7.559)  |         |       |
| Case       | 594 l   | has large levera   | ge (Leverage =  | = 0.039)          |         |       |
| Case       | 595 l   | has large leverage | ge (Leverage =  | = 0.039)          |         |       |
| Case       | 652 i   | s an outlier       | (Studentized Re | esidual = 5.581)  |         |       |
|            |         |                    |                 |                   |         |       |
| Durbin-W   | atson [ | D Statistic        | 1.875           |                   |         |       |
| First Orde | er Auto | correlation (      | ).062           |                   |         |       |

#### Dep Var: CHLAC N: 653 Multiple R: 0.105 Squared multiple R: 0.011

Adjusted squared multiple R: 0.009 Standard error of estimate: 27.795

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | 10.004      | 1.591     | 0.000    |           | 6.288  | 0.000     |
| V21DAY   | -1.076      | 0.400     | -0.105   | 1.000     | -2.688 | 0.007     |

Analysis of Variance

| Sour       | ce     | Sum-of-Squar     | es df           | Mean-S    | Square  | F-ratio | P     |
|------------|--------|------------------|-----------------|-----------|---------|---------|-------|
| Regressi   | on     | 5582.036         | 1               | 5582      | .036    | 7.225   | 0.007 |
| Residu     | ual    | 502930.202       | 651             | 772       | .550    |         |       |
| *** WARN   | IING * | **               |                 |           |         |         |       |
| Case       | 77     | has large levera | ge (Leverage =  | = 0.074   | )       |         |       |
| Case       | 97     | is an outlier    | (Studentized Re | esidual = | 14.370) |         |       |
| Case       | 525    | is an outlier    | (Studentized R  | esidual = | 7.191)  |         |       |
| Case       | 574    | is an outlier    | (Studentized R  | esidual = | 20.303) |         |       |
| Case       | 577    | is an outlier    | (Studentized R  | esidual = | 7.557)  |         |       |
| Case       | 652    | is an outlier    | (Studentized R  | esidual = | 5.563)  |         |       |
|            |        |                  |                 |           |         |         |       |
| Durbin-Wa  | atson  | D Statistic      | 1.884           |           |         |         |       |
| First Orde | r Auto | ocorrelation     | 0.058           |           |         |         |       |

Dep Var: CHLAC N: 653 Multiple R: 0.099 Squared multiple R: 0.010

Adjusted squared multiple R: 0.008 Standard error of estimate: 27.811

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | 8.491       | 1.260     | 0.000    |           | 6.741  | 0.000     |
| FLOW     | -0.032      | 0.013     | -0.099   | 1.000     | -2.537 | 0.011     |

Analysis of Variance

| Source     | e Sum-of-Squares       | df        | Mean-Square    | e F-ratio | Р     |
|------------|------------------------|-----------|----------------|-----------|-------|
| Regression | n 4977.252             | 1         | 4977.252       | 6.435     | 0.011 |
| Residua    | l 503534.985           | 651       | 773.479        |           |       |
| *** WARNIN | NG ***                 |           |                |           |       |
| Case       | 56 has large leverage  | (Lever    | age = 0.121)   |           |       |
| Case       | 57 has large leverage  | (Lever    | age = 0.121)   |           |       |
| Case       | 61 has large leverage  | (Lever    | age = 0.075)   |           |       |
| Case       | 62 has large leverage  | (Lever    | age = 0.075)   |           |       |
| Case       | 63 has large leverage  | (Lever    | age = 0.075)   |           |       |
| Case       | 122 is an outlier (S   | Studentiz | zed Residual = | 5.609)    |       |
| Case       | 127 has large leverage | e (Leve   | rage = 0.038)  |           |       |
| Case       | 128 has large leverage | e (Leve   | rage = 0.038)  |           |       |
| Case       | 129 has large leverage | e (Leve   | rage = 0.038)  |           |       |
| Case       | 162 is an outlier (S   | Studentiz | zed Residual = | 7.178)    |       |
| Case       | 278 has large leverage | e (Leve   | rage = 0.080)  |           |       |
| Case       | 279 has large leverage | e (Leve   | rage = 0.080)  |           |       |
| Case       | 444 has large leverage | e (Leve   | rage = 0.029)  |           |       |
| Case       | 445 has large leverage | e (Leve   | rage = 0.029)  |           |       |
| Case       | 538 has large leverage | e (Leve   | rage = 0.032)  |           |       |
| Case       | 638 is an outlier (S   | Studentiz | ed Residual =  | 20.299)   |       |
| Case       | 639 is an outlier (S   | Studentiz | zed Residual = | 7.561)    |       |
| Case       | 647 has large leverage | e (Leve   | rage = 0.029)  |           |       |
| Case       | 705 is an outlier (S   | Studentiz | ed Residual =  | 14.396)   |       |
| Durbin-Wat | son D Statistic 1.3    | 322       |                |           |       |

|                             | 1.022 |
|-----------------------------|-------|
| First Order Autocorrelation | 0.339 |

#### Appendix J: Linear Regression Analysis of Annual Average CHLAC Observations versus COND, SALINITY, TEMPC, Nutrients, Rainfall, Rainfall Deficits, and Annual Stream Flow in Tomoka River

Dep Var: CHLAC N: 20 Multiple R: 0.562 Squared multiple R: 0.315

Adjusted squared multiple R: 0.277 Standard error of estimate: 3.219

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 1.422       | 1.376     | 0.000    |           | 1.033 | 0.315     |
| COND     | 0.001       | 0.000     | 0.562    | 1.000     | 2.880 | 0.010     |

Analysis of Variance

| Source         | Sum-of-Squares  | df           | Mean-Square   | F-ratio | Р     |
|----------------|-----------------|--------------|---------------|---------|-------|
| Regression     | 85.926          | 1            | 85.926        | 8.292   | 0.010 |
| Residual       | 186.523         | 18           | 10.362        |         |       |
| *** WARNING    | <b>}</b> ***    |              |               |         |       |
| Case 2         | 2 is an outlier | (Studentized | Residual = 2. | .754)   |       |
|                |                 |              |               |         |       |
| Durbin-Watso   | on D Statistic  | 0.965        |               |         |       |
| First Order Au | utocorrelation  | 0.466        |               |         |       |

Dep Var: CHLAC N: 16 Multiple R: 0.680 Squared multiple R: 0.462

Adjusted squared multiple R: 0.423 Standard error of estimate: 2.286

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 1.172       | 0.977     | 0.000    |           | 1.200 | 0.250     |
| INORGN   | 23.144      | 6.677     | 0.680    | 1.000     | 3.466 | 0.004     |

Analysis of Variance

| Source                       | Sum-of-Squares      | df             | Mean-Square    | F-ratio | F    |
|------------------------------|---------------------|----------------|----------------|---------|------|
| Regression                   | 62.759              | 1              | 62.759         | 12.014  | 0.00 |
| Residual                     | 73.135              | 14             | 5.224          |         |      |
| *** WARNIN                   | G ***               |                |                |         |      |
| Case                         | 17 has large levera | ge (Leverag    | ge = 0.746)    |         |      |
| Case                         | 18 is an outlier    | (Studentized   | Residual = 6.3 | 78)     |      |
| Durbin-Wats<br>First Order A | on D Statistic      | 1.291<br>0.304 |                |         |      |

129

Dep Var: CHLAC N: 16 Multiple R: 0.692 Squared multiple R: 0.479

Adjusted squared multiple R: 0.441 Standard error of estimate: 2.249

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 2.059       | 0.765     | 0.000    |           | 2.691 | 0.018     |
| NH4      | 31.313      | 8.733     | 0.692    | 1.000     | 3.586 | 0.003     |

Analysis of Variance

| Source                          | Sum-of-Squares        | df          | Mean-Square  | F-ratio | Р     |
|---------------------------------|-----------------------|-------------|--------------|---------|-------|
| Regression                      | 65.056                | 1           | 65.056       | 12.857  | 0.003 |
| Residual                        | 70.839                | 14          | 5.060        |         |       |
| *** WARNIN                      | IG ***                |             |              |         |       |
| Case                            | 17 has large leverage | ge (Levera  | ge = 0.751)  |         |       |
| Case                            | 18 is an outlier      | (Studentize | d Residual = | 5.860)  |       |
| Durbin-Watson D Statistic 1.238 |                       |             |              |         |       |
| First Order #                   | Autocorrelation       | 0.311       |              |         |       |

Dep Var: CHLAC N: 20 Multiple R: 0.177 Squared multiple R: 0.031

Adjusted squared multiple R: 0.000 Standard error of estimate: 3.829

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 3.353       | 2.081     | 0.000    |           | 1.611 | 0.125     |
| NO3O2    | 28.355      | 37.158    | 0.177    | 1.000     | 0.763 | 0.455     |

Analysis of Variance

| Sour       | ce   | Sum-of-Squares       | df           | Mean-Square     | F-ratio | Р     |
|------------|------|----------------------|--------------|-----------------|---------|-------|
| Regressi   | on   | 8.537                | 1            | 8.537           | 0.582   | 0.455 |
| Residu     | al   | 263.911              | 18           | 14.662          |         |       |
| *** WARNI  | NG   | ***                  |              |                 |         |       |
| Case       | 2    | is an outlier (St    | udentized Re | esidual = 3.334 | -)      |       |
| Case       | 17   | ' has large leverage | (Leverage    | = 0.657)        |         |       |
|            |      |                      |              |                 |         |       |
| Durbin_Wat | lenr | n D Statietic 0      | 673          |                 |         |       |

Durbin-Watson D Statistic0.673First Order Autocorrelation0.571

Dep Var: CHLAC N: 20 Multiple R: 0.742 Squared multiple R: 0.550

| Adjusted squared multiple R: 0.525 | Standard error of | estimate: 2.609 |
|------------------------------------|-------------------|-----------------|
|------------------------------------|-------------------|-----------------|

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 1.651       | 0.889     | 0.000    |           | 1.857 | 0.080     |
| SALINITY | 2.176       | 0.464     | 0.742    | 1.000     | 4.693 | 0.000     |

Analysis of Variance

| Source       | Sum-of-Squares       | df      | Mean-   | Square | F-ratio | Р     |
|--------------|----------------------|---------|---------|--------|---------|-------|
| Regression   | 149.922              | 1       | 149     | .922   | 22.025  | 0.000 |
| Residual     | 122.526              | 18      | 6       | .807   |         |       |
| *** WARNING  | 3 ***                |         |         |        |         |       |
| Case 1       | 7 has large leverage | e (Leve | erage = | 0.398) |         |       |
|              |                      |         |         |        |         |       |
| Durbin Water | n D Statiatia 0      | 600     |         |        |         |       |

| Durbin-Watson D Statistic   | 0.600 |
|-----------------------------|-------|
| First Order Autocorrelation | 0.542 |

Dep Var: CHLAC N: 20 Multiple R: 0.401 Squared multiple R: 0.161

Adjusted squared multiple R: 0.115 Standard error of estimate: 3.563

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | -30.558     | 19.034    | 0.000    |           | -1.605 | 0.126     |
| TEMPC    | 1.676       | 0.902     | 0.401    | 1.000     | 1.859  | 0.079     |

Analysis of Variance

| Source         | Sum-of-Squares  | df          | Mean-Square    | F-ratio | Р     |
|----------------|-----------------|-------------|----------------|---------|-------|
| Regression     | 43.894          | 1           | 43.894         | 3.457   | 0.079 |
| Residual       | 228.555         | 18          | 12.697         |         |       |
| *** WARNING    | 3 ***           |             |                |         |       |
| Case           | 1 is an outlier | (Studentize | d Residual = 2 | 2.890)  |       |
| Durbin-Watso   | on D Statistic  | 0.676       |                |         |       |
| First Order Au | utocorrelation  | 0.517       |                |         |       |

Dep Var: CHLAC N: 20 Multiple R: 0.566 Squared multiple R: 0.320

Adjusted squared multiple R: 0.282 Standard error of estimate: 3.208

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | -4.258      | 3.193     | 0.000    |           | -1.334 | 0.199     |
| TN       | 8.099       | 2.782     | 0.566    | 1.000     | 2.911  | 0.009     |

Analysis of Variance

| Source             | Sum-of-Squares      | df         | Mean-Square   | F-ratio | Р     |
|--------------------|---------------------|------------|---------------|---------|-------|
| Regression         | 87.217              | 1          | 87.217        | 8.475   | 0.009 |
| Residual           | 185.231             | 18         | 10.291        |         |       |
| *** WARNIN         | G ***               |            |               |         |       |
| Case               | 2 is an outlier     | Studentize | ed Residual = | 3.923)  |       |
| Case '             | 17 has large levera | ge (Lever  | age = 0.420)  |         |       |
|                    |                     |            |               |         |       |
| <b>Durbin-Wats</b> | on D Statistic      | 1.121      |               |         |       |

First Order Autocorrelation1.1210.364

Dep Var: CHLAC N: 20 Multiple R: 0.608 Squared multiple R: 0.370

Adjusted squared multiple R: 0.335 Standard error of estimate: 3.088

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 1.930       | 1.120     | 0.000    |           | 1.723 | 0.102     |
| TP       | 30.671      | 9.431     | 0.608    | 1.000     | 3.252 | 0.004     |

Analysis of Variance

| Source      | Sum-of-Squares | df | Mean-Square | F-ratio | Р     |
|-------------|----------------|----|-------------|---------|-------|
| Regression  | 100.840        | 1  | 100.840     | 10.577  | 0.004 |
| Residual    | 171.608        | 18 | 9.534       |         |       |
| *** WARNING | G ***          |    |             |         |       |
| •           |                |    |             |         |       |

Case 2 has large leverage (Leverage = 0.595)

Durbin-Watson D Statistic0.875First Order Autocorrelation0.485

Dep Var: CHLAC N: 13 Multiple R: 0.068 Squared multiple R: 0.005

Adjusted squared multiple R: 0.000 Standard error of estimate: 3.353

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | 4.006       | 1.809     | 0.000    |           | 2.214  | 0.049     |
| TNLOAD   | -0.000      | 0.000     | -0.068   | 1.000     | -0.225 | 0.826     |

Analysis of Variance

| Source        | Sum-of-Squares        | df           | Mean-Square  | F-ratio | Р     |
|---------------|-----------------------|--------------|--------------|---------|-------|
| Regression    | 0.571                 | 1            | 0.571        | 0.051   | 0.826 |
| Residual      | 123.648               | 11           | 11.241       |         |       |
| *** WARNIN    | G ***                 |              |              |         |       |
| Case          | 14 has large leverage | ge (Leverag  | e = 0.562)   |         |       |
| Case          | 18 is an outlier      | (Studentized | Residual = 3 | .285)   |       |
| Durbin Mata   | on D Statiatia        | 0 700        |              |         |       |
| Durbin-wats   | on D Statistic        | 0.720        |              |         |       |
| First Order A | utocorrelation        | 0.392        |              |         |       |

Dep Var: CHLAC N: 13 Multiple R: 0.079 Squared multiple R: 0.006

Adjusted squared multiple R: 0.000 Standard error of estimate: 3.350

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | 4.170       | 2.168     | 0.000    |           | 1.924  | 0.081     |
| TPLOAD   | -0.000      | 0.000     | -0.079   | 1.000     | -0.263 | 0.798     |

Analysis of Variance

| Source        | Sum-of-Squares      | df          | Mean-Square  | e F-ratio | Р     |
|---------------|---------------------|-------------|--------------|-----------|-------|
| Regression    | 0.774               | 1           | 0.774        | 0.069     | 0.798 |
| Residual      | 123.446             | 11          | 11.222       |           |       |
| *** WARNIN    | IG ***              |             |              |           |       |
| Case          | 14 has large levera | ge (Levera  | ge = 0.594)  |           |       |
| Case          | 18 is an outlier    | (Studentize | d Residual = | 3.284)    |       |
| Durbin-Wats   | son D Statistic     | 0 727       |              |           |       |
| First Order A | Autocorrelation     | 0.389       |              |           |       |

133

Dep Var: CHLAC N: 20 Multiple R: 0.361 Squared multiple R: 0.130

| Adjusted squared multiple R: 0.08 | Standard error of estimate: 3.629 |
|-----------------------------------|-----------------------------------|
|-----------------------------------|-----------------------------------|

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | 11.469      | 4.145     | 0.000    |           | 2.767  | 0.013     |
| RAINFALL | -0.132      | 0.081     | -0.361   | 1.000     | -1.641 | 0.118     |

Analysis of Variance

| Source     | Sum-of-Squares | df | Mean-Square | F-ratio | Р     |
|------------|----------------|----|-------------|---------|-------|
| Regression | 35.446         | 1  | 35.446      | 2.692   | 0.118 |
| Residual   | 237.003        | 18 | 13.167      |         |       |

Durbin-Watson D Statistic0.788First Order Autocorrelation0.532

Dep Var: CHLAC N: 20 Multiple R: 0.467 Squared multiple R: 0.218

Adjusted squared multiple R: 0.175 Standard error of estimate: 3.440

| Effect              | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|---------------------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT            | 5.167       | 0.786     | 0.000    |           | 6.570  | 0.000     |
| <b>CUM3YRDEFICI</b> | -0.095      | 0.042     | -0.467   | 1.000     | -2.241 | 0.038     |

Analysis of Variance

| Source        | Sum-of-Squares  | df           | Mean-Square    | F-ratio | Р     |
|---------------|-----------------|--------------|----------------|---------|-------|
| Regression    | 59.450          | 1            | 59.450         | 5.024   | 0.038 |
| Residual      | 212.999         | 18           | 11.833         |         |       |
| *** WARNIN    | G ***           |              |                |         |       |
| Case          | 2 is an outlier | (Studentized | Residual = 3.0 | 72)     |       |
|               |                 |              |                |         |       |
| Durbin-Wats   | on D Statistic  | 0.876        |                |         |       |
| First Order A | utocorrelation  | 0.475        |                |         |       |

134

Dep Var: CHLAC N: 20 Multiple R: 0.586 Squared multiple R: 0.343

Adjusted squared multiple R: 0.306 Standard error of estimate: 3.154

| Effect      | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|-------------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT    | 5.410       | 0.733     | 0.000    |           | 7.384  | 0.000     |
| CUM5YRDEFIC | -0.099      | 0.032     | -0.586   | 1.000     | -3.065 | 0.007     |

Analysis of Variance

| Source     | Sum-of-Squares | df | Mean-Square | F-ratio | Р     |
|------------|----------------|----|-------------|---------|-------|
| Regression | 93.443         | 1  | 93.443      | 9.396   | 0.007 |
| Residual   | 179.006        | 18 | 9.945       |         |       |

Durbin-Watson D Statistic1.062First Order Autocorrelation0.404

Dep Var: CHLAC N: 20 Multiple R: 0.328 Squared multiple R: 0.108

| Adjusted squared multiple R: 0.058 | Standard error of estimate: 3.675 |
|------------------------------------|-----------------------------------|
|------------------------------------|-----------------------------------|

| Effect     | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|------------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT   | 6.717       | 1.537     | 0.000    |           | 4.370  | 0.000     |
| ANNUALFLOW | -0.037      | 0.025     | -0.328   | 1.000     | -1.476 | 0.157     |

Analysis of Variance

| Source     | Sum-of-Squares | df | Mean-Square | F-ratio | Р     |
|------------|----------------|----|-------------|---------|-------|
| Regression | 29.399         | 1  | 29.399      | 2.177   | 0.157 |
| Residual   | 243.050        | 18 | 13.503      |         |       |

| Durbin-Watson D Statistic   | 0.891 |
|-----------------------------|-------|
| First Order Autocorrelation | 0.476 |

Dep Var: CHLAC N: 20 Multiple R: 0.815 Squared multiple R: 0.665

Adjusted squared multiple R: 0.602 Standard error of estimate: 2.389

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | 2.453       | 6.081     | 0.000    |           | 0.403  | 0.692     |
| TN       | -0.892      | 5.828     | -0.062   | 0.126     | -0.153 | 0.880     |
| TP       | -62.029     | 60.932    | -1.230   | 0.014     | -1.018 | 0.324     |
| TP*TN    | 85.625      | 57.701    | 1.941    | 0.012     | 1.484  | 0.157     |

Analysis of Variance

| Source      | Sum-of-Squares       | df         | Mean-Square   | F-ratio | Р     |
|-------------|----------------------|------------|---------------|---------|-------|
| Regression  | 181.101              | 3          | 60.367        | 10.574  | 0.000 |
| Residual    | 91.348               | 16         | 5.709         |         |       |
| *** WARNIN  | G ***                |            |               |         |       |
| Case        | 2 has large leverage | e (Levera  | age = 0.625)  |         |       |
| Case        | 3 is an outlier (S   | Studentize | ed Residual = | -4.009) |       |
|             |                      |            |               |         |       |
| Durbin-Wats | on D Statistic       | 1.310      |               |         |       |

First Order Autocorrelation 0.268
# Appendix K: Annual and Monthly Average Precipitation Plots for Daytona International Airport







138 Florida Department of Environmental Protection

| YEAR | ANNUAL<br>TOTAL<br>(INCHES) | RANK | PERCENTILE |
|------|-----------------------------|------|------------|
| 1956 | 31.36                       | 1    | 1.33%      |
| 2006 | 31.36                       | 2    | 2.67%      |
| 1970 | 33.4                        | 3    | 4.00%      |
| 1954 | 33.96                       | 4    | 5.33%      |
| 1967 | 34.58                       | 5    | 6.67%      |
| 1993 | 35.71                       | 6    | 8.00%      |
| 1990 | 36.12                       | 7    | 9.33%      |
| 1965 | 36.13                       | 8    | 10.67%     |
| 1980 | 37.36                       | 9    | 12.00%     |
| 1955 | 38.8                        | 10   | 13.33%     |
| 1938 | 39.29                       | 11   | 14.67%     |
| 2010 | 39.39                       | 12   | 16.00%     |
| 1981 | 39.68                       | 13   | 17.33%     |
| 1961 | 40.06                       | 14   | 18.67%     |
| 2000 | 40.16                       | 15   | 20.00%     |
| 1998 | 40.51                       | 16   | 21.33%     |
| 1940 | 40.56                       | 17   | 22.67%     |
| 1977 | 40.67                       | 18   | 24.00%     |
| 1988 | 40.91                       | 19   | 25.33%     |
| 1942 | 42.4                        | 20   | 26.67%     |
| 2008 | 42.67                       | 21   | 28.00%     |
| 1973 | 44.23                       | 22   | 29.33%     |
| 1989 | 44.65                       | 23   | 30.67%     |
| 2007 | 45.02                       | 24   | 32.00%     |
| 1939 | 45.09                       | 25   | 33.33%     |
| 1958 | 45.15                       | 26   | 34.67%     |
| 1975 | 45.19                       | 27   | 36.00%     |
| 1985 | 45.38                       | 28   | 37.33%     |
| 1987 | 45.72                       | 29   | 38.67%     |
| 1971 | 46.23                       | 30   | 40.00%     |
| 1999 | 46.37                       | 31   | 41.33%     |
| 1992 | 46.41                       | 32   | 42.67%     |
| 1957 | 46.48                       | 33   | 44.00%     |
| 1962 | 46.59                       | 34   | 45.33%     |

Florida Department of Environmental Protection

139

| YEAR | ANNUAL<br>TOTAL<br>(INCHES) | RANK | PERCENTILE |
|------|-----------------------------|------|------------|
| 1984 | 46.71                       | 35   | 46.67%     |
| 1974 | 47.21                       | 36   | 48.00%     |
| 1950 | 47.22                       | 37   | 49.33%     |
| 1986 | 48.01                       | 38   | 50.67%     |
| 1952 | 48.1                        | 39   | 52.00%     |
| 2011 | 48.71                       | 40   | 53.33%     |
| 1945 | 49.36                       | 41   | 54.67%     |
| 1951 | 49.46                       | 42   | 56.00%     |
| 1982 | 50.18                       | 43   | 57.33%     |
| 1949 | 50.22                       | 44   | 58.67%     |
| 1969 | 50.22                       | 45   | 60.00%     |
| 1946 | 50.3                        | 46   | 61.33%     |
| 2009 | 50.3                        | 47   | 62.67%     |
| 1976 | 52.32                       | 48   | 64.00%     |
| 1963 | 53.03                       | 49   | 65.33%     |
| 1972 | 53.94                       | 50   | 66.67%     |
| 1978 | 53.94                       | 51   | 68.00%     |
| 1995 | 54.44                       | 52   | 69.33%     |
| 1997 | 54.69                       | 53   | 70.67%     |
| 1948 | 55                          | 54   | 72.00%     |
| 1937 | 55.29                       | 55   | 73.33%     |
| 1944 | 55.81                       | 56   | 74.67%     |
| 1959 | 56.24                       | 57   | 76.00%     |
| 2003 | 57.3                        | 58   | 77.33%     |
| 1968 | 58.17                       | 59   | 78.67%     |
| 2001 | 58.27                       | 60   | 80.00%     |
| 1960 | 59.18                       | 61   | 81.33%     |
| 2002 | 59.94                       | 62   | 82.67%     |
| 1943 | 60.11                       | 63   | 84.00%     |
| 1966 | 60.25                       | 64   | 85.33%     |
| 1996 | 60.49                       | 65   | 86.67%     |
| 1964 | 62.76                       | 66   | 88.00%     |
| 2004 | 62.97                       | 67   | 89.33%     |
| 1947 | 65.64                       | 68   | 90.67%     |
| 2005 | 65.77                       | 69   | 92.00%     |

| YEAR | ANNUAL<br>TOTAL<br>(INCHES) | RANK | PERCENTILE |
|------|-----------------------------|------|------------|
| 1994 | 66.64                       | 70   | 93.33%     |
| 1991 | 67.19                       | 71   | 94.67%     |
| 1941 | 67.3                        | 72   | 96.00%     |
| 1979 | 69.02                       | 73   | 97.33%     |
| 1983 | 73.99                       | 74   | 98.67%     |
| 1953 | 79.29                       | 75   | 100.00%    |

# Appendix L: Response to Comments from September 2012 Workshop

Ms. Kelly Young –Volusia County Environmental Health Lab (9/26/ 2012) email

## Good afternoon!

The attached file contains data to hopefully add to, and in some cases detract from the data used to determine the Halifax and Tomoka TMDLs. It was determined that some data that could have been used to support the credibility of some data was never submitted to Storet, and a portion of that data is within the attached file. Unfortunately, much of this data is no longer available in its original form, and the only information available is from spreadsheets with no qualifier code information. Several values for chlorophyll and total nitrogen should not be used for determining TMDLs due to this lack of information. Some obvious unreliable data has been set in bold text, but please use your best scientific judgement on using the data attached. More data is to follow when I get additional results from the City of Daytona Beach Water Testing Lab. Please note that the data included in the file's tab 'City of Daytona Beach data' is from the city lab, and tabs 'Halifax' and 'Tomoka' each have a column indicating the lab that processed the sample for the particular parameter listed. The city lab collects and processes (except for chlorophyll) samples monthly from the Daytona area of the Halifax river which includes stations HL08, HL09, HL10, HL11, HL11a, HL12, HL12a, and 13a. Originally, the only data available from this monthly collection was occasionally field data and chlorophyll data (as I was the one processing these samples for chlorophyll in the VCEH lab, and I began including this data along with the other data I sent to Storet). The other tabs in the file (Halifax and Tomoka) are a group effort project. Samples from the Tomoka and Halifax were collected monthly until the year 2000. Since then, they have been collected quarterly. The City of Daytona Beach lab collected all samples for the Tomoka River and stations HL01 through HL10. The city lab also processed all samples for TP, TKN, Turbidity, and TSS. The Volusia County Environmental Health lab (VCEH) collected stations HL11-20 and processed all other parameters. I'm sorry for the format of the attached files, however I'm in the process of putting it into a more user friendly format and will send that as soon as I can. I hope to provide additional info soon. Sorry for the delay. Sincerely,

Kelly Young

## Response:

We really appreciate the time and effort you spent compiling water quality data collected by both the City of Daytona Beach and Volusia County. I have used your spreadsheet to add additional water quality observations to the data base used in the draft TMDL that had not been included in Florida STORET as well as correct some data errors that were present in data obtained from Florida STORET. Analyses presented in the draft TMDL were rerun using the updated data base and are reflected in this revised TMDL.

Comments prepared on behalf of FDOT by Applied Technology and Management, Inc.

# COMMENTS ON FDEP Proposed Total Maximum Daily Load for Nutrients Tomoka River, Fresh Water (WBID 2634)

142

# September 21, 2012

## TMDL SUMMARY

## TMDL Waste Load and Load Allocation for Tomoka River (Fresh Water) (WBID 2634)

| Parameter | WLA<br>Wastewater<br>(Ibs/year) | WLA NPDES<br>Stormwater<br>(% Reduction) <sup>1</sup> | Load Allocation (% Reduction) | Margin of<br>Safety | TMDL<br>(mg/L) |
|-----------|---------------------------------|-------------------------------------------------------|-------------------------------|---------------------|----------------|
| TN        | NA <sup>a</sup>                 | 22                                                    | 22                            | Implicit            | 1.22           |

a NA – Not Applicable

b – As the TMDL represents a percent reduction, it also complies with EPA requirements to express the TMDL on a daily basis.

The Total Maximum Daily Load (TMDL) was determined using an analysis of the empirical relationship of the trends in long-term corrected Chlorophyll *a* (CHLAC) and the corresponding total nitrogen (TN) concentrations in the fresh water segment of Tomoka River. More specifically, statistical analyses were performed to develop a predictive relationship between annual average CHLAC concentrations and the corresponding annual average TN concentrations. Using the regression model, the target TN concentration for waterbody segment (WBID) 2634, 1.22 milligrams per liter (mg/L), was estimated as the concentration that corresponds to CHLAC target concentration of 4.5 micrograms per liter ( $\mu$ g/L). A cumulative frequency plot of annual average TN in WBID 2634 indicates this corresponds to a TN reduction of 22 percent.

## SUMMARY OF FINDINGS

The following are the key issues identified in this review of the TMDL proposal.

1. The TMDL report presents the results of extensive statistical analyses of the available water quality and rainfall data. The analyses concluded that the most significant relationships existed between CHLAC-salinity and CHLAC-TN, with most of the variation in CHLAC concentration explained by salinity. Linear regressions of CHLAC versus sampling date indicated an increasing trend in CHLAC [significant at an alpha level (a) of 0.05], while the regression of TN versus sampling date was not significant ( $\alpha = 0.05$ ). Regressions of CHLAC with long-term rainfall deficits were significant ( $\alpha = 0.05$ ). Given the correlation of CHLAC with salinity and with long-term rainfall deficits, it would seem that WBID hydrology may play a larger role in CHLAC concentrations than nutrients. The U.S. Geological Survey (USGS) has a long-term discharge monitoring station (USGS) 02247510 TOMOKA RIVER NEAR HOLLY HILL, FL) located at LPGA Blvd., which is approximately the mid-point of the WBID. It is suggested that this flow record be used to perform additional statistical analyses to evaluate water quality responses and relationships. While the analyses using salinity and rainfall deficit provides insights into WBID water quality during drought periods, using the flow record would provide a more direct analysis of the relationship of watershed hydrologic condition and WBID water quality.

Response:

Based upon additional water quality data provided by Volusia County from sampling conducted by the City of Daytona Beach that had not been included in Florida STORET and well as some data error corrections, data analyses presented in the draft TMDL were rerun using the updated data set. As was the case in the draft, the most significant

relationships using individual observations existed between CHLAC-salinity and CHLAC-TN, however, both TN and Salinity each explained approximately 10 percent of the variance in CHLAC. CHLAC versus sampling date did not indicate an increasing trend that was significant (Figure 5.2).

As suggested, daily flow data from the USGS gage on the Tomoka River at the LPGA Boulevard was incorporated into the data set. The simple linear regression of flow versus CHLAC observations was significant at an  $\alpha$  level of 0.05 but only explained 1 percent of the variance in CHLAC. A simple linear regression of annual average CHLAC concentrations versus annual average daily flow was not significant.

2. The TMDL report discusses the possibility of tidal transport downstream of State Road 40, as evidenced by periods of high salinity in this reach. Based on the CHLAC-salinity relationship presented on Figure 5.8 and the time series plots presented on Figures 5.9 through 5.12, these episodic periods of high salinity, with accompanying higher CHLAC levels occurring during drought periods where tidal transport in the lower reaches is more likely, may be biasing the CHLAC statistics upward. The conclusions of the report would be strengthened if statistical analyses of the data were presented when the entire Tomoka River reach was considered fresh and the potential of tidal transport is minimal. This would clarify that the impairment is due to a watershed issue, and that the proposed TN reduction would eliminate the impairment.

#### Response:

The updated data set was divided into fresh and marine subsets based on salinity and/or conductance (marine: salinity > 2.7 ppt, or conductance > 5000 umhos/cm). There were 545 CHLAC observations in the fresh water subset and 95 CHLAC observations in the marine water subset (there were also 14 observations that had insufficient information to classify). Sixty-three of the ninety-five CHLAC observations under marine conditions occurred in the spring period (30 of which occurred in Spring 2008). The following table summarizes the subsets by year.

| Year | Total | Fresh | Marine |
|------|-------|-------|--------|
| 1985 | 9     | 9     | 0      |
| 1986 | 24    | 12    | 12     |
| 1992 | 34    | 30    | 4      |
| 1993 | 31    | 22    | 9      |
| 1994 | 40    | 37    | 3      |
| 1995 | 35    | 30    | 5      |
| 1996 | 33    | 33    | 0      |
| 1997 | 21    | 18    | 3      |
| 1998 | 36    | 33    | 3      |
| 1999 | 35    | 31    | 4      |
| 2000 | 10    | 9     | 1      |
| 2001 | 21    | 20    | 1      |
| 2002 | 19    | 17    | 2      |
| 2003 | 33    | 33    | 0      |

144

| Year | Total | Fresh | Marine |
|------|-------|-------|--------|
| 2004 | 20    | 20    | 0      |
| 2005 | 43    | 31    | 0      |
| 2006 | 21    | 19    | 2      |
| 2007 | 19    | 16    | 1      |
| 2008 | 64    | 32    | 31     |
| 2009 | 50    | 40    | 10     |
| 2010 | 33    | 31    | 2      |
| 2011 | 24    | 22    | 2      |

Annual average CHLAC, TN, and TP concentrations based on the fresh water data subset were calculated using the same methodology as described in the TMDL document. The following table compares the CHLAC, TN, and TP annual averages based on the fresh water subset to the complete data set.

| Year | Fresh  | Fresh  | Fresh  | Complete | Complete  | Complete  |
|------|--------|--------|--------|----------|-----------|-----------|
|      | Water  | Water  | Water  | Data Set | Data Set  | Data Set  |
|      | Subset | Subset | Subset |          |           |           |
|      | CHLAC  | TN     | TP     | CHLAC    | TN (mg/L) | TP (mg/L) |
|      | (µg/L) | (mg/L) | (mg/L) | (µg/L)   |           |           |
| 1992 | 12.5   | 1.28   | 0.149  | 11.2     | 1.26      | 0.149     |
| 1993 | 6.0    | 1.03   | 0.402  | 13.6     | 1.08      | 0.335     |
| 1994 | 5.5    | 1.47   | 0.156  | 5.8      | 1.47      | 0.152     |
| 1995 | 1.9    | 1.52   | 0.067  | 3.3      | 1.48      | 0.071     |
| 1996 | 2.3    | 1.01   | 0.032  | 2.3      | 1.01      | 0.032     |
| 1997 |        | 0.90   | 0.038  | 2.3      | 0.92      | 0.047     |
| 1998 | 1.8    | 1.20   | 0.043  | 2.5      | 1.17      | 0.048     |
| 1999 | 1.8    | 0.91   | 0.046  | 3.7      | 0.93      | 0.053     |
| 2000 | 1.2    | 0.90   | 0.169  | 2.7      | 0.91      | 0.228     |
| 2001 | 1.7    | 0.92   | 0.110  | 1.8      | 0.91      | 0.123     |
| 2002 | 1.2    | 1.05   | 0.048  | 2.6      | 1.06      | 0.050     |
| 2003 | 2.2    | 1.02   | 0.059  | 2.2      | 1.02      | 0.059     |
| 2004 | 1.9    | 1.06   | 0.046  | 1.9      | 1.06      | 0.046     |
| 2005 | 2.5    | 1.05   | 0.047  | 2.4      | 1.08      | 0.050     |
| 2006 | 1.1    | 0.74   | 0.045  | 2.6      | 0.73      | 0.051     |
| 2007 | 1.3    | 0.79   | 0.048  | 1.3      | 0.76      | 0.043     |
| 2008 | 1.6    | 1.79   | 0.074  | 10.2     | 1.82      | 0.100     |
| 2009 | 10.4   | 1.40   | 0.089  | 11.4     | 1.40      | 0.093     |
| 2010 | 5.2    | 1.13   | 0.088  | 6.4      | 1.13      | 0.084     |
| 2011 | 4.9    | 1.10   | 0.055  | 5.9      | 1.19      | 0.057     |

Annual average concentrations for TN and TP were very comparable between the two data sets. With respect to CHLAC, in two years (1992 and 2005) the fresh water annual average CHLAC was higher than that of the complete data set. The largest differences occurred in 1993 (7.6  $\mu$ g/L) and 2008 (8.6  $\mu$ g/L). The TMDL document discussed sampling events in 2008 that contributed to this large difference. In the twenty years that were compared, annual differences in CHLAC were 1  $\mu$ g/L or less 55 percent of the time and the difference was 1.5  $\mu$ g/L or less in 80 percent of the cases.

As indicated in the document, elevated salinity levels in the upper portion of the WBID indicate tidal transport. Lower fresh water flows in the Tomoka River influence the upstream extent of marine conditions which also increases the residence time of nutrients and the opportunity for algal production.

3. The TMDL report states that based on a cumulative frequency plot of annual average TN concentrations (Figure 5.14) approximately 78 percent of the annual TN averages were less than 1.22 mg/L. The TMDL requires a 22 percent reduction in the annual average TN concentration to meet an annual average CHLAC target of 4.5 µg/L or lower in the Tomoka watershed. The way the cumulative frequency plot is used to calculate the required percent reduction in annual average nitrogen concentration seems to imply that this TN concentration target is to be met all the time, although statistically, that is not what is actually being expressed. If so, this would seem to be in conflict with the numeric nutrient criteria, which provided for natural variability (i.e., one exceedance every 3 years). This section of the TMDL report should be expanded to better explain what is expected with respect to achieving the annual average TN concentration target.

## Response:

Based upon additional data the analyses were rerun and significant correlations were identified between CHLAC and both TN and TP. A general linear model that included both TN and TP was used to establish reductions in both TN and TP that would achieve an annual average CHLAC target of  $4.5 \mu g/L$ . The resulting TN and TP concentrations represent an average concentration based on applying a 30 percent reduction to the annual average concentration for each year. Language was added to indicate that use of the average incorporates year to year variations in historic nutrient concentrations. A footnote was also added to Table 6.1 to indicate that the TN and TP concentrations represent annual average values. At this time an effective date for the application of numeric nutrient criteria for Florida streams has not been identified.

4. Page 40 indicates that the annual average TN concentrations over the 1994 – 2011 period ranged between 0.22 mg/L (2000) and 1.91 mg/L (2008), with an overall average of 1.07 mg/L. According to Table 5.5, this minimum TN concentration occurred in1995, although other locations where the data are presented seem to validate the occurrence in 2000. Table 5.5 as well as any graphics that utilize that data should be checked to confirm they are correct.

## Response:

There was an error in Table 5.5 for the mean TN concentration in 1995. The table has been updated based on the updated data set.

5. The TMDL report would benefit from some discussion comparing the period from which the target CHLAC concentration was calculated (1999-2003) and the verification period (2004-2011). Using data from the long-term station at LPGA Blvd (USGS 02247510 TOMOKA RIVER NEAR HOLLY HILL, FL), plots of flow (Figure 1) and various durations of moving averages (Figure 2) along with Weibull plotting position analysis indicate that the verification period has both the wettest and driest 2-yr periods (based on 2-yr moving averages of daily flow) in the period of record (1965-present). The 2006-2011 time period is hydrologically one of the driest periods found in the data record. The wettest

146

period (2004-2005) was immediately followed by the second-driest (2006-2007). It was in 2008, two years after the beginning of the drought, when the higher CHLAC concentrations started to occur. The 1999-2000 dry period was similar to but not quite as severe as the 2006-2007 dry period. A similar pattern of high CHLAC concentration also occurred during the 1999-2000 drought. A noticeable difference between the two periods of high CHLAC measurements was that one occurred during the dry period (1999-2000) and the other occurred following the dry period (2006-2007). The question is whether it is appropriate to use the target CHLAC concentration developed from the 1999-2003 time period for the 2004-2011 verification period. Some discussion of this would be of benefit in the final report.





148 Florida Department of Environmental Protection



## Response:

Text from the Impaired Waters Rule describing the calculation of the historic minimum CHLAC concentration has been added to Chapter three. During the development of the Impaired

149

Waters Rule language, the Technical Advisory Committee recommended that assessment of a potential nutrient impairment based on chlorophyll should include several measures, including a change from historical conditions. Calculation of a historic minimum based on a five year period was considered an appropriate method that incorporated temporal fluctuations in rainfall and discharge. The historic minimum also had to be exceeded by 50 percent or more in two consecutive lists inorder to be listed.

Annual rainfall totals for the 1999 – 2003 period indicated below average rainfall in 1999 and 2000 followed by three years of above average rainfall. In 1998, rainfall was below the long-term average. Annual average CHLAC concentrations in the 2008 -2011 period all exceeded 5  $\mu$ g/L and ranged between 5.9  $\mu$ g/L (2011) and 11.4  $\mu$ g/L (2009). Daily average flows from the USGS gaging station over the 1999 – 2003 period averaged 56.8 cfs while flows ovr the 2008 – 2011 period averaged 33 cfs. The long-term daily average is approximately 53 cfs. Over the 1995 – 2007 period, annual average CHLAC concentrations were all below 3.8  $\mu$ g/L, including the second driest period of 2006 – 2007 as noted in the comment.

<u>Recommendation</u>: The primary recommendations are as follows. First, additional statistical analyses should be performed to evaluate water quality responses and relationships using the USGS flow record at Station 02247510. While the analyses using salinity and rainfall deficit provide insights into WBID water quality during drought periods, using the flow record would provide a more direct analysis of the relationship of watershed hydrologic condition and WBID water quality. Second, statistical analyses of the data should be presented for when the entire Tomoka River reach was considered fresh and the potential of tidal transport is minimal. This would clarify that the impairment is due to a watershed issue and that the proposed TN reduction would eliminate the impairment.

Response: The Department appreciates the recommendations and these have been addressed in other parts of the document.

# Appendix M: Response to Comments from April 2013 Workshop

Comments from Kelly Young Environmental Specialist, Volusia County Environmental Health Lab Wedneday April 10, 2013

Kelly A. Young Environmental Specialist Volusia County Environmental Health Lab 1250 Indian Lake Rd. Daytona Beach, FL 32124 Phone (386) 248-1781

Hi all!

The latest Draft TMDL for the Tomoka has a few data points which were processed by the City of Daytona Beach which should be excluded from calculations for the TMDL. These were collected and processed in conjunction with the Halifax points that were also questionable. The station is 21FLVEMDVC-077, locally referred to as TR03, a saline station. I would disregard the TN and TP results from that station from the following dates:

7/12/2010 10/4/2010 1/10/2011 7/11/2011 10/3/2011

I do not know that the other station listed, 21FLVEMDVC-078 (locally TR04, typically processed as fresh water) was diluted for analyses, maybe Bob can confirm this?... but if it were diluted for processing, then I would disregard the TN and TP for the same dates listed above. Hope to see you all on Friday! -Kelly

**Response:** 

Total nitrogen and TP observations reported for station 21FLVEMDVC-077 for the dates cited were removed from the data set (2 TN and 3 TP values) and the General Linear Model (GLM) was rerun. There was a slight change in the coefficients of the GLM and the revised model explained 65 percent of the variance in the annual average CHLAC (old model  $r^2 = 0.66$ ). Under the revised GLM, a thirty percent reduction in both TN and TP was still required to achieve annual average CHLAC concentrations of less than 4.5 ug/L. Ranges in TN and TP annual averages as well as the TN and TP nutrient targets were unchanged from the earlier GLM.

Dep Var: CHLAC N: 20 Multiple R: 0.808 Squared multiple R: 0.653

Adjusted squared multiple R: 0.588 Standard error of estimate: 2.431

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t      | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|--------|-----------|
| CONSTANT | 3.023       | 6.267     | 0.000    |           | 0.482  | 0.636     |
| TN       | -1.378      | 6.029     | -0.096   | 0.123     | -0.229 | 0.822     |
| TP       | -65.449     | 62.664    | -1.300   | 0.014     | -1.044 | 0.312     |
| TP*TN    | 88.690      | 59.423    | 2.017    | 0.012     | 1.493  | 0.155     |

Analysis of Variance

| Source     | Sum-of-Squares | df | Mean-Square | F-ratio | Р     |
|------------|----------------|----|-------------|---------|-------|
| Regression | 177.922        | 3  | 59.307      | 10.039  | 0.001 |
| Residual   | 94.526         | 16 | 5.908       |         |       |

\*\*\* WARNING \*\*\*

| Case | 2 has large leverage | je (Leverage =     | 0.627)    |       |
|------|----------------------|--------------------|-----------|-------|
| Case | 3 is an outlier      | (Studentized Resid | lual = -3 | .914) |
| Case | 9 has large leverag  | je (Leverage =     | 0.531)    |       |
|      |                      |                    |           |       |

Durbin-Watson D Statistic1.238First Order Autocorrelation0.296





Comments from John C. Gamble, Interim Operations Manager, Volusia County Public Works Tuesday 4/16/2013

John C. Gamble Interim Operations Manager Volusia County Public Works 123 W. Indiana Ave. DeLand, FL 32720-4262 386-736-5965 X15527 DeLand

Jan & Wayne,

1. Any stormwater modeling in Volusia County done since 2007 is to use the LiDAR data collected by the county in 2006. This is a publicly available data set and is the best available data that we are aware of. Use of USGS DEMs are not acceptable for stormwater modeling in this county.

#### Response:

It is our understanding that the LSPC model used for the Daytona watershed developed subwatersheds using the 12-digit hydrologic unit code (HUC12) watershed data layer and the Geological Survey (USGS) National Hydrograph Dataset (NHD). Length and slope for the main channel reach within each sub-watershed were obtained using the USGS DEM and NHD data (Appendix C). The USGS DEM was from the National Elevation Dataset (<u>http://ned.usgs.gov/</u>). Based on the dataset viewer under the data source index, it appears that the best available NED resolution for Volusia County was 1/9 arc second (~3 meter). According to the website the hierarchy of data sources is:

NED source data are selected from an ever-growing inventory of standard production USGS Digital Elevation Model (DEM's), and also from an increasing number of datasets that are project- or agency-specific. The first consideration is always given to quality. Selections are made according to the following ranking, listed in order of descending priority:

- 1. High-resolution data, typically derived from lidar or digital photogrammetry, and often with edited water bodies. If collected at a ground sample distance no coarser than 5 meters, such data may also be offered within the NED at a resolution of 1/9th arc-second.
- 2. Moderate-resolution data, other than that compiled from cartographic contours. These data may also be derived from lidar or digital photogrammetry, or less often by Interferometric Synthetic Aperture Radar IFSAR. A typical ground sample distance is 10 meters, though it is commonly called "1/3 arc-second data".
- 3. 10-meter DEM's derived from cartographic contours and mapped hydrography. Most often, such data are produced by or for the USGS as a standard elevation product, and they currently account for the bulk of the NED.
- 4. 30-meter cartographically derived DEM's. Similar in most respects to their 10-meter counterparts, though usually of lower overall quality.
- 5. 30-meter photogrammetrically derived DEM's. These are the oldest DEM's in the 7.5minute series. These data were derived directly from stereo photography, either by a human operator or by an early form of electronic image correlation. They are badly marred by production artifacts that are addressed to the greatest practical extent by digital filtering within the NED production process.
- 6. 2-arc-second DEMs are a standard USGS product. They are derived from cartographic contours at a scale of 1:63,360 over the state of Alaska, and a scale of 1:100,000 elsewhere.
- 7. 1-arc-second Shuttle Radar Topography Mission (SRTM) data, to date, are only used in preference to 3 arc-second data in the Aleutian Islands.

Florida Department of Environmental Protection

153

8. 3-arc-second DEMs are another standard USGS product, and are generally only used within the NED as a source of fill values over large water bodies.

In both the Halifax and Tomoka River nutrient TMDLs, the estimated LSPC watershed TN and TP annual loads were not used to set nutrient reductions.

2. Two studies done since the LiDAR collection, using that data, have been completed in that area: Nova Canal basin (borders on Tomoka and part of Halifax) and Daytona International Airport Stormwater Master Plan (borders on Tomoka). Both of these studies were done by CDMSmith and should define the eastern boundary of the Tomoka River basin and define part of the Halifax Basin. An additional study done by Taylor Engineering for FIRMs for FEMA, included the basin east of Nova Road in Holly Hill/Ormond Beach area.

#### Response:

Comment noted. That information will be provided to EPA for consideration in their watershed model of the Daytona basin.

3. I would encourage you to closely review the water quality collected after the May 2009 Storm that dumped 20-30 inches of rain from New Smyrna Beach to Ormond Beach for a three day period. This would seem to be an extreme event and should be excluded from the calculations.

#### **Response:**

Linear regressions of annual average CHLAC concentrations versus water quality parameters considered in Appendix J were rerun with 2009 excluded. Results were similar to those presented in Appendix J. The analysis of CHLAC versus TN is presented below. Substituting the target annual average CHLAC concentration of 9 ug/L yields a TN annual average concentration of 1.11 mg/L. The previous analysis that included 2009 resulted in an annual average TN concentration of 1.13 mg/L.

Dep Var: CHLACAVE N: 15 Multiple R: 0.673 Squared multiple R: 0.453

| Effect   | Coefficient | Std Error | Std Coef | Tolerance | t     | P(2 Tail) |
|----------|-------------|-----------|----------|-----------|-------|-----------|
| CONSTANT | 0.816       | 1.895     | 0.000    |           | 0.431 | 0.674     |
| TNAVE    | 7.355       | 2.242     | 0.673    | 1.000     | 3.281 | 0.006     |

154

Adjusted squared multiple R: 0.411 Standard error of estimate: 1.620

#### Analysis of Variance

| Source                        | Sum-of-Squares                   | df             | Mean-Square  | F-ratio | Р     |
|-------------------------------|----------------------------------|----------------|--------------|---------|-------|
| Regression                    | 28.251                           | 1              | 28.251       | 10.767  | 0.006 |
| Residual                      | 34.111                           | 13             | 2.624        |         |       |
| *** WARNING<br>Case 1         | G ***<br>5 has large levera      | ge (Levera     | age = 0.626) |         |       |
| Durbin-Watso<br>First Order A | on D Statistic<br>utocorrelation | 1.357<br>0.274 |              |         |       |

4. Tomoka River water quality testing should not be under minimum flow conditions. We believe sampling during drought conditions does not reflect discharge conditions and should not be included in the TMDL calculations. During drought conditions, there is little or no flow at the southern end. Although the water may be sampled at the bridge, should this data be used if the river is not discharging (flowing).

#### Response:

The impacts to receiving waters from point and nonpoint source contributions under a variety of wet and dry weather conditions are captured under the TMDL process. In the case of the Tomoka River TMDL, annual average CHLAC, TN, and TP concentrations over the 1992 – 2011 period were used to establish the TMDL. Over the 1992 through 2011 period, the long-term annual rainfall average was exceeded in 10 years and there were 10 years that were below the long-term average of 49.63 inches. If portions of a stream or river are dry and sampling occurs in isolated pools we would not consider results from such sampling events to be representative of the system. If, however, there is water throughout the stream length (whether standing or flowing) when sampling occurs, there is little justification to exclude that information from the larger data set.

Comments from Robin Cook, Regulatory Compliance Officer, Utilities Department, City of Daytona Beach Friday 4/26/2013

Robin Cook Regulatory Compliance Officer Utilities Department City of Daytona Beach 386-671-8885- office 386-671-5901 - desktop fax 407-314-5743 - cell

Ms. Mandrup-Poulsen,

Thank you for the opportunity to provide comments. As such the City of Daytona Beach offers the following:

As we stated during the meeting on April 12, CODB staff was very concerned that the May 2009 significant rain event was not thoroughly considered in the evaluation of the TMDL for the Halifax River. The rain began on May 17, 2009. As we informed FDEP staff, the rain lasted several days and left standing water for several weeks afterward. This standing water was no doubt contaminated in some way. The run-off from this event undoubtedly continued to effect water quality in the Halifax River for a period that would have been seen in the sampling event.

155

## Response:

Please refer to the response to comment 3 from Mr. Gamble.

Also, it seems a bit suspect that the County Landfill had zero discharge for that many years and then it started discharging and has continued to have some annual discharge every year since. What change in operations led to the change in discharge characteristics?

#### **Response:**

According to the Tomoka Farms Road Landfill permit, water from the South External Canal is pumped into the swale going east along the landfill access road. The landfill access road swale is designated as ground water discharge (G-001). The NPDES surface water discharge system designated D-001 is at the eastern end of the roadside swale where a control structure limits discharge to periods following heavy rainfall. Discharge is to a wetland area on the north side of the access road which then flows north to the headwaters of the Tomoka River. The permit authorizes only conditional surface water discharge under heavy rainfall situations (10 year 24 hour storm event (7.5 inches) or chronic rainfall event equivalent to 10 year 24 hour event). During the 2005 – 2010 permit cycle, the landfill access swale was partially filled into to accommodate the construction of a new Scale House.

Permit renewal information provided in support of the permit that was issued in February 2011 identified 9 separate discharge events that occurred over the May 2007 through April 2010 period. Eight of the nine discharge events occurred following large rainfall events. Discharge during one event (July 28, 2009 – August 2009) was due to construction activities at the North Cell that required reductions in water levels to allow repair of the North Cell Leachate Collection System.



Florida Department of Environmental Protection Division of Water Resource Management Bureau of Watershed Management 2600 Blair Stone Road, Mail Station 3565 Tallahassee, Florida 32399-2400 www.dep.state.fl.us/water/